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Quantity of Algebraic Numbers
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Abstract. It is well known that the set of algebraic numbers (let us
call it A) is countable. In this paper, instead of the usage of the classi-
cal terminology of cardinals proposed by Cantor, a recently introduced
methodology using ①-based infinite numbers is applied to measure the
set A (where the number ① is called grossone). Our interest to this
methodology is explained by the fact that in certain cases where car-
dinals allow one to say only whether a set is countable or it has the
cardinality of the continuum, the ①-based methodology can provide a
more accurate measurement of infinite sets. In this article, lower and
upper estimates of the number of elements of A are obtained. Both
estimates are expressed in ①-based numbers.
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1. Introduction

The notion of algebraic numbers is very well known: a complex number z
is called algebraic if there exist integers ai ∈ Z, i = 0, . . . n, not all equal to
zero, such that

a0z
n + a1z

n−1 + . . . + an−1z + an = 0.

Let us call the set of all algebraic numbers A. It is easy to show that this
set is infinite. In fact, it is sufficient to consider the roots of the polynomial
z − n = 0, n ∈ Z. Since its unique solution is z = n, it follows that Z ⊂ A.
Insofar as the set of integers Z is infinite, the set A is also infinite. Moreover,
it is also known that the set A is countable, i.e., its cardinality is ℵ0. One of
the possible proofs can be sketched as follows.

Let Bk be the set of all tuples of integers

(a0, a1, . . . , ak), ai ∈ Z, i = 0, . . . , k, a0 �= 0, (1)
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and the elements a0, a1, ..., . . . , ak do not need to be distinct. Then, clearly,
the set Bk is countable. For each tuple (a0, a1, . . . , ak) ∈ Bk let us consider
the corresponding polynomial

a0z
k + a1z

k−1 + . . . + ak−1z + ak = 0. (2)

From the fundamental theorem of algebra, we know that there are exactly k
complex roots (counted according to their multiplicities) for each polynomial
(2).

Since k is a natural number and the set of natural numbers is countable,
we have a countable number of sets Bk, each containing a countable number
of tuples (1), each of which corresponds to k roots of a k-degree polynomial.
The set A is, therefore, a countable union of a countable union of roots of
polynomials corresponding to tuples (1) of sets Bk, i.e., A is also countable.

In this paper, instead of the usage of the classical terminology of car-
dinals (see [8] and modern developments in [5,18,24,26,43]), to measure the
set A we apply a recently introduced counting methodology (see a compre-
hensive survey in [38] and a popular presentation in [34]). Our interest to
this methodology is explained by the fact that there exist cases where car-
dinals allow one to say only whether certain sets are countable or they have
the cardinality of the continuum. In its turn, the new methodology using an
infinite unit of measure called grossone and expressed by the symbol ① can
provide a more accurate measurement of these infinite sets.

Hereinafter, we suppose that the reader is familiar with the ①-based
methodology. Only a list of some applications of this methodology and a few
notions and results from [38] strictly necessary for the further presentation
will be recalled in Sect. 2. The main results providing lower and upper esti-
mates for the quantity of algebraic numbers are presented in Sect. 3. Finally,
Sect. 4 concludes the paper.

2. A Theoretical Background

The ①-based methodology has attracted a lot of attention from scientists
working in different areas of mathematics and computer science. We pro-
vide here just a few examples of areas where this methodology is useful.
First of all, we mention numerous applications in local, global, and multi-
criteria optimization and classification (see, e.g., [4,9,10,13] and references
given therein). Then, we can indicate game theory (see, e.g., [12,16]), proba-
bility theory (see, e.g., [7,31–33]), fractals (see, e.g., [3,6,37]), infinite series
(see [38,41,45]), Turing machines, cellular automata, and ordering (see, e.g.,
[11,33,36,42]), numerical differentiation and numerical solution of ordinary
differential equations (see, e.g., [1,14,15,22] and references given therein),
etc.

In particular, successful applications of this methodology in teaching
mathematics should be mentioned (see [2,21,23,28,30,40]). The dedicated
web page [19], developed at the University of East Anglia, UK, contains,
among other things, a comprehensive teaching manual. It should be also em-
phasized that numerous papers studying consistency of the new methodology
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and its connections to the historical panorama of ideas dealing with infini-
ties and infinitesimals have been published (see [17,25,27,29,35,39,44]). In
particular, it is stressed in [39] that this methodology is not related to non-
standard analysis. Many other applications from different fields of computer
science and pure and applied mathematics can be found at the web page [20].

Let us consider now Table 1 taken from [38] that will be very useful in
our study. It shows that the ①-based methodology allows one to count the
number of elements of certain infinite sets with the precision of one element.

To proceed, let us informally define the set, N, of natural numbers

N = {1, 2, 3, 4, 5, . . . } (3)

as the set of numbers used to count objects. Notice that nowadays not only
positive integers are taken as elements of N, but also zero is frequently in-
cluded in N (see, e.g., [5,18,26]). However, since historically zero has been
invented significantly later with respect to positive integers used for counting
objects, zero is not included in N in this article.

As it can be seen from Table 1, the ①-based methodology provides
us with these results: the set N has ① elements and the set of integers, Z,
has 2①+1 elements. Thus, thanks to this novel way of counting, it becomes
possible to compute (and distinguish) the exact number of elements of these
two countable sets. Notice (see [38], p. 241) that in this methodology ①
is the last natural number and positive integers greater than grossone are
called extended natural numbers. Another result from [38] (once again see p.
241) that is important for our further consideration regards the number of
elements of the set, Cm, of m-tuples of natural numbers:

Cm = {(a1, a2, . . . , am−1, am) : ai ∈ N, 1 ≤ i ≤ m}, 2 ≤ m ≤ ①. (4)

It is known from combinatorial calculus that if we have m positions and each
of them can be filled in by one of the l symbols, the number of the obtained
m-tuples is equal to lm. In our case, since N has grossone elements, l = ①.
As a consequence, the set Cm has ①m elements. In particular, in the case
m = ①, the corresponding set C① has ①① elements.

To conclude this brief tour in the ①-based methodology, let us show
how arithmetical operations can be executed with infinite and infinitesimal
numbers involving grossone. These numbers can have different infinite parts
corresponding in their simplest form to finite positive powers of grossone. The
①-based numbers can also have infinitesimal parts corresponding in their
simplest form to finite negative powers of grossone. Finite numbers a are
represented in the form a = a · ①0 using the fact that 1 = ①0 (see [38]
for a detailed discussion). Let us consider as an example the following five
numbers:

A = 74.9①42.3 + 5.1①0 + 13.8①−25.6,

B = 5.7①16.8 − 7.4①−14.9,

C = 74.9①42.3 + 5.7①16.8 + 5.1①0 − 7.4①−14.9 + 13.8①−25.6,

D = 74.9①42.3 − 5.7①16.8 + 5.1①0 + 7.4①−14.9 + 13.8①−25.6,

E = 426.93①59.1 − 554.26①27.4 + 29.07①16.8 + 78.66①−8.8

−37.74①−14.9 − 102.12①−40.5.
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Table 1. Cardinalities and the ①-based numbers of elements
of some infinite sets (see [38], p. 287)

Description of sets Cantor’s
cardinalities

Number of
elements

The set of natural numbers N Countable, ℵ0 ①
N \ {3, 5, 10, 23, 114} Countable, ℵ0 ①-5
The set of even numbers E (the

set of odd numbers O)
Countable, ℵ0

①
2

The set of integers Z Countable, ℵ0 2①+1
Z \ {0} Countable, ℵ0 2①

Squares of natural numbers G =
{x : x = n2, x ∈ N, n ∈ N}

Countable, ℵ0 �√①	

Pairs of natural numbers P =
{(p, q) : p ∈ N, q ∈ N}

Countable, ℵ0 ①2

The set of numerals Q1 = {p
q :

p ∈ Z, q ∈ Z, q �= 0}
Countable, ℵ0 4①2 + 2①

The set of numerals Q2 =
{0,−p

q ,
p
q : p ∈ N, q ∈ N}

Countable, ℵ0 2①2 + 1

The power set of the set of nat-
ural numbers N

Continuum, c 2①

The power set of the set of even
numbers E

Continuum, c 20.5①

The power set of the set of inte-
gers Z

Continuum, c 22①+1

The power set of the set of nu-
merals Q1

Continuum, c 24①
2
+2①

The power set of the set of nu-
merals Q2

Continuum, c 22①
2
+1

Numbers x ∈ [0, 1) expressible in
the binary numeral system

Continuum, c 2①

Numbers x ∈ [0, 1] expressible in
the binary numeral system

Continuum, c 2① + 1

Numbers x ∈ (0, 1) expressible
in the decimal numeral sys-
tem

Continuum, c 10① − 1

Numbers x ∈ [0, 2) expressible in
the decimal numeral system

Continuum, c 2 · 10①

The first of them, A, has one infinite part, 74.9①42.3, one finite part, 5.1①0,
and one infinitesimal part, 13.8①−25.6. The second number, B, has one infinite
part, 5.7①16.8, and one infinitesimal part, −7.4①−14.9. The third number, B,
has two infinite parts, one finite part, and two infinitesimal parts, etc. The
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arithmetic with ①-based numbers works in such way (see [38] for a formal
detailed description of operations) that

A + B = C, A − B = D, A · B = E, E/A = B.

3. ①-based Estimates

We are ready now to use the ①-based machinery to estimate the number of
elements of the set, A, of algebraic numbers. We shall follow considerations
made in the Introduction by substituting (where it is possible) the cardinal
number ℵ0 with the ①-based quantities. The following theorem holds.

Theorem 1. The number of elements, Â, of the set of all algebraic numbers
A can be estimated as follows

4① + 1 < Â <
(2① + 1)((2① + 1)①(2①2 − 1) + 1)

2①
. (5)

Proof. We start by discussing the left-hand estimate in (5). Since the set of
integers, Z, has 2①+1 elements, real roots of the equations z −n = 0, n ∈ Z,
give us the first 2①+1 algebraic numbers. Then, equations z2 − n = 0 for
negative n ∈ Z give us other 2① roots of the form ±√

n = ±√|n|i, i =
√−1,

that do not coincide with the previously counted real roots. Thus, we have
at least 4①+1 different algebraic numbers.

Let us discuss now the right-hand estimate in (5) and recall once again
that the set of integers, Z, has 2①+1 elements. Then, since in (1) numbers
ai ∈ Z, i = 0, . . . , k, with a0 �= 0, the first position in the tuple (1) can be
filled in by 2① elements since a0 �= 0 and the remaining k positions can be
filled in by any from 2①+1 integers. As a result, it follows from considerations
related to (4) that the number of elements of the set Bk of tuples (1) has
2①(2① + 1)k elements.

The polynomial (2) corresponding to each tuple (1) has k complex roots
counted according to their multiplicities, i.e., the number, lk, of different
algebraic numbers corresponding to this polynomial is lk ≤ k. Notice also
that polynomials obtained from different tuples can have some common roots,
as well. Thus, the quantity of algebraic numbers, Ak, corresponding to the
set Bk can be estimated as Ak < 2①(2① + 1)kk. To estimate the number,
Â, of all algebraic numbers, we should consider the union of the roots of
polynomials linked to all sets Bk. Recall now that k is a natural number and
the set of natural numbers has ① elements (see Table 1). Thus, it follows that
1 ≤ k ≤ ① and we obtain the following estimate

Â <
①∑

k=1

Ak <
①∑

k=1

2①(2① + 1)kk = 2①

①∑

k=1

(2① + 1)kk. (6)

Let us calculate the summation in (6) indicating it as

S(①) =
①∑

k=1

(2① + 1)kk.
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Obviously, the sum S(①) can be rewritten as

S(①) = (2① + 1) + 2(2① + 1)2 + 3(2① + 1)3 + . . . + (① − 1)(2① + 1)①−1

+①(2① + 1)①.

Let us now divide this identity by 2①+1. We obtain
S(①)

2① + 1
=1+2(2①+1)+3(2①+1)2+. . .+(① − 1)(2① + 1)①−2 + ①(2① + 1)①−1

and subtract the former relation from the latter. We get
S(①)

2① + 1
− S(①) = 1 + (2① + 1) + (2① + 1)2 + (2① + 1)3 + . . .

. . . + (2① + 1)①−2 + (2① + 1)①−1 − ①(2① + 1)①. (7)

Positive summands in (7) represent a geometric progression with the common
ratio q = 2① + 1 (see [38], Sect. 6.2, for a detailed discussion on summation
with infinite and infinitesimal ①-based numbers). As a result, (7) can be
rewritten as

S(①)
2① + 1

− S(①) =
1 − (2① + 1)①

1 − (2① + 1)
− ①(2① + 1)①

from where we obtain

− 2①

2① + 1
S(①) =

(2① + 1)①(1 − 2①2) − 1
2①

.

This relation allows us to express S(①) as follows

S(①) =
(2① + 1)((2① + 1)①(2①2 − 1) + 1)

4①2 .

It is sufficient now to substitute this result in (6) to obtain the right-hand
estimate in (5). This fact concludes the proof. �

Remark. Let us emphasize that the lower estimate in (5) can be further
improved by counting algebraic numbers being roots of other polynomials.
For example, let us consider polynomials z2 − n = 0, where n is one of the
first k positive prime numbers

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . .
︸ ︷︷ ︸

k first primes

.

Then, clearly, the 2k roots of these k polynomials are not among 4① + 1
numbers counted in the theorem (e.g., numbers ±√

2 being roots of the poly-
nomial z2 − 2 = 0 have not been counted). Thus, the lower estimate in (5)
can be rewritten as 4① + 2k + 1.

4. A Brief Conclusion

With respect to the set of algebraic numbers, A, the classical terminology of
cardinals proposed by Cantor says that A is countable. This result is obtained
using the fact that a set being a countable union of countable sets is also
countable. In the present paper, instead of the usage of Cantor’s cardinals, a
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recently introduced methodology working with ①-based infinite numerals is
applied. This has been done because the ①-based methodology can provide a
more accurate measurement of certain infinite sets (see Table 1). For example,
if two infinite countable sets P and P ′ are considered such that the set P ′ has
been obtained by adding to P one element p /∈ P then cardinals of Cantor
allow us to say only that both sets are countable. In fact, it follows that the
cardinality of P is ℵ0 and the cardinality of P ′ is ℵ0+1 = ℵ0. In other words,
the numeral system of Cantor does not allow us to register the fact that one
element has been added to P to obtain P ′. In contrast, if we consider the set
P and its number of elements n is expressed in ①-based numerals, then the
set P ′ has n+1 > n elements and ①-based numerals allow us to register this
fact (see, for example, the fourth and the fifth lines in Table 1). Thus, we
have a complete analogy with what happens with finite sets: when one adds
to a finite set F having n elements an element f /∈ F , then the resulting set
F ′ has n + 1 > n elements.

Due to this more precise analysis of infinite sets, ①-based numerals
together with some combinatorial considerations have allowed us to obtain
lower and, what is more important, upper bounds for the number of elements
of the set of algebraic numbers A. In general, it can be safely said that
considerations involving grossone-based numerals performed in this paper
open new promising prospectives for measuring both countable sets and sets
that are countable unions of countable sets.
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