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Simultaneous Approximation by
Gauss–Weierstrass–Wachnicki Operators

Ulrich Abel and Octavian Agratini

Abstract. In this note, we spotlight a generalization of Weierstrass in-
tegral operators introduced by Eugeniusz Wachnicki. The construction
involves modified Bessel functions. The operators are correlated with
diffusion equation. Our main result consists in obtaining the asymptotic
expansion of derivatives of any order of Wachnicki’s operators. All co-
efficients are explicitly calculated, and distinct expressions are provided
for analytical functions.
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1. Introduction

The starting point of this note is the following generalized Gauss–Weierstrass
transform:

W (f ;x, t) =
1

2
√

πt

∫
R

exp
(

− (x − y)2

4t

)
f(y)dy

=
1

2
√

πt

∫
R

f(x − y) exp
(

−y2

4t

)
dy, (1)

where t > 0 is a parameter, x ∈ R, and f : R → R is chosen such that the
integral exists and is finite. Actually, (1) represents the convolution of f with
the density of the normal distribution (also called Gaussian distribution)
having the expectation null and the variance 2t. W (f ; ·, t) is a smoothed
out version of f , and physically W (·; ·, t) ≡ Wt is correlated with a heat or
diffusion equation for t time units. It is additive

Wt1 ◦ Wt2 = Wt1+t2 , (t1, t2) ∈ (0,∞) × (0,∞),

this being read as follows: diffusion for t1 time units and then t2 time units
is equivalent to diffusion for t1 + t2 time units.
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We sketch a formal proof of this relation:

((Wt1 ◦ Wt2) f) (x)

=
1

2
√

πt1

∫ +∞

−∞
exp

(
− (x − z)2

4t1

)(
1

2
√

πt2

∫ +∞

−∞

exp

(
− (z − y)2

4t2

)
f (y) dy

)
dz

=
1

4π
√

t1t2

∫ +∞

−∞

(∫ +∞

−∞

exp

(
− (x − z)2

4t1

)
exp

(
− (z − y)2

4t2

)
dz

)
f (y) dy.

Direct calculation confirms that∫ +∞

−∞
exp

(
− (x − z)2

4t1

)
exp

(
− (z − y)2

4t2

)
dz

=
2
√

π√
1
t1

+ 1
t2

exp

(
− (x − y)2

4 (t1 + t2)

)
,

and we obtain

((Wt1 ◦ Wt2) f) (x) =
1

2
√

π (t1 + t2)

∫ +∞

−∞
exp

(
− (x − y)2

4 (t1 + t2)

)

f (y) dy = (Wt1+t2f) (x) .

Examining relation (1) shows that Wt is translation invariant, meaning
that the transform of f(x + a) is W (f ;x + a, t), for a ∈ R.

We mention that the Wt transform can extend to t = 0 by setting W0

to be the convolution with the Dirac delta function. This case does not come
to our attention.

The special case t = 1 can be interpreted this way. Taking in view the
formula:

eu2
=

1
2
√

π

∫
R

e−uye−y2/4dy, u ∈ R,

if we replace u with the formal differential operator D =
d

dx
and utilize the

Lagrange shift operator

e−yDf(x) = f(x − y), x ∈ R,

then we get

eD2
f(x) =

1
2
√

π

∫
R

e−yDf(x)e−y2/4dy = W (f ;x, 1),

which allows us to get the following formal expression for this particular
transform:

W1 = eD2
.
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The operator eD2
is to be understood as acting on the signal f as

eD2
f(x) =

∞∑
k=0

D2kf(x)
k!

, x ∈ R.

For more documentation on Wt transform, see Zayed’s book [6, Chapter
18: The Weierstrass Transform].

In 2000, Eugeniusz Wachnicki [5] defined and studied an integral op-
erator representing a generalization of Wt which involves modified Bessel
functions. Our paper focuses on bringing to light new properties of Gauss–
Weierstrass–Wachnicki integral operators. In the next section, we present
these operators pointing out some already established properties based on
which we will highlight their noteworthy features. The main results are set
out in Sect. 3.

2. The Operators

In the beginning, we recall the modified Bessel function of the first kind and
fractional order α > −1, see [2, Chapter 10 ]. Using the traditional notation
Iα, it is described by the series

Iα(z) =
∞∑

k=0

1
k!Γ(k + α + 1)

(z

2

)2k+α

, (2)

where Γ is the Gamma function. Iα forms a class of particular solutions of
the ordinary linear differential equation

z2w′′(z) + zw′(z) − (α2 + z2)w(z) = 0.

In the motivation of our results, we will also use the low-order differen-
tiation with respect to z described as follows:

d

dz
(z−αIα(z)) = z−αIα+1(z); (3)

see [2, Formula (9.6.28)].
Set R+ = [0,∞). For a fixed constant K ≥ 0, we consider the space

EK = {f : R+ → R | f is locally integrable and exists Mf ≥ 0,

|f(s)| ≤ Mf exp(Ks2), s > 0}.

The space can be endowed with the norm ‖ · ‖K as such

‖f‖K = sup
s∈R+

|f(s)| exp(−Ks2).

We consider the operator Wα defined on EK by the following relation:

Wα(f ; r, t) =
1
2t

∫ ∞

0

r−αsα+1 exp
(

−r2 + s2

4t

)
Iα

(rs

2t

)
f(s)ds, (4)

where α ≥ −1/2, (r, t) ∈ (0,∞) × (0,∞) and Iα is given at (2).
This operator was introduced in [5, Eq. (1)] with a minor modification

of the domain EK in which the author inserted f ∈ C(R+), the space of all
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real-valued continuous functions defined on R+. Since Wαf , f ∈ EK , is well
defined for any K > 0 , we can consider the domain of Wα as

E =
⋃

K>0

EK .

Wachnicki [5, Theorem 4 ] showed the convergence

lim
t→0+

Wα(f ; r, t) = f(r), f ∈ E ∩ C(R+),

uniformly on compact subintervals of (0,∞).
Also, in [5], the author specified that for α = −1/2, the operator defined

by (4) turns out to be the authentic Gauss–Weierstrass operators. Because
this statement was not accompanied by a proof, we insert it as a detail in
our paper. More precisely, we prove

W−1/2f = Wf̂, f ∈ EK , (5)

see (1), where f̂(s) = f((sgn s)s), s ∈ R.
By using the hyperbolic cosine, the identity

I−1/2(z) =

√
2
πz

cosh(z)

takes place; see [2, page 443 ]. Further, for any (r, t) ∈ (0,∞)× (0,∞), we can
write successively

W−1/2(f ; r, t)

=
1
2t

√
4t

π

∫ ∞

0

exp
(

−r2 + s2

4t

)
cosh

(rs

2t

)
f(s)ds

=
1

2
√

πt

∫ ∞

0

exp
(

−r2 + s2

4t

) (
exp

(rs

2t

)
+ exp

(
−rs

2t

))
f(s)ds

=
1

2
√

πt

∫ ∞

0

(
exp

(
− (r − s)2

4t

)
+ exp

(
− (r + s)2

4t

))
f(s)ds

=
1

2
√

πt

(∫ ∞

0

exp
(

− (r − s)2

4t

)
f(s)ds+

∫ 0

−∞
exp

(
− (r − s)2

4t

))
f(−s)ds

= W (f̂ ; r, t)

and statement (5) is completed.
Wαf is intimately connected to a generalized heat equation having the

expression; see [3, Eq. (1.3)],

∂u(r, t)
∂t

= Δμu(r, t), (6)

where μ = 2(α + 1), α > −1/2, and the operator

Δμ =
∂2

∂r2
+

μ − 1
r

∂

∂r

is the Laplacian in radial coordinates when μ = n ∈ N. As already mentioned,
it is usual to refer to t as time. If f ∈ EK ∩C(R), then Wαf with α = n/2−1
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is a caloric function, which means it is a solution of equation (6) on a certain
domain D,

D =
{

(r, t) : r > 0, 0 < t <
1

4K

}
.

For detailed proof, see [3, pages 254–255 ].
Recently, these operators have come back to the attention of some au-

thors. For example, in [4], an extension of Wαf was achieved for continuous
functions defined on the domain (0,∞) × R and bounded by certain two-
dimensional exponential functions. In [1], the authors obtained the asymp-
totic expansion of the operator Wα(f ; r, t) as t → 0+, for functions f ∈ E
being sufficiently smooth at a point r > 0. If f belonging to E is a real
analytic function, then

Wα(f ; r, t) ∼
∞∑

n=0

cn(α, f, r)tn (t → 0+), (7)

where the coefficients are given by

cn(α, f, r) =
4n

n!r2n

(
∂

∂w

)n [
wn+α

(
∂

∂w

)n

f
(
r
√

w
)] ∣∣∣

w=1
(8)

( [1, Theorem 3 ]). In this paper, we study simultaneous approximation by
the operators Wα(f ; r, t). The main result of this paper (Theorem 6) states
that the expansion (7) can be differentiated term by term, i.e.,(

∂

∂r

)m

Wα(f ; r, t) ∼
∞∑

n=0

[(
∂

∂r

)m

cn(α, f, r)
]

tn (t → 0+).

To obtain an autonomous exposure, in this preliminary section, we recall
some notions which will be used in establishing our results.

The factorial powers (falling and rising factorial, respectively) are marked
as follows:

uj =
j−1∏
l=0

(u − l), uj =
j−1∏
l=0

(u + l), j ∈ N.

An empty product (j = 0) is taken to be 1.
For |z| < 1 and generic parameters a, b, and c, the Gauss hypergeometric

function 2F1 is defined by

2F1(a, b; c; z) =
∑
j≥0

ajbj

cj

zj

j!
, (9)

with this series being convergent; see [2, Chapter 15 ]. Outside the disk with
unit radius, the function is defined as the analytic continuation with respect
to z of this sum, with the parameters a, b, c, held fixed. For a particular case
z = 1, the identity

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, Re(c − a − b) > 0, (10)

c 
= 0,−1,−2, . . ., takes place.
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3. Results

In the first stage, we establish some technical formulas gathered in a few
lemmas. Set N0 = {0} ∪ N.

The first result is an explicit representation of
(

∂

∂r

)m

Wα(f ; r, t) in

terms of Wα+j(f ; r, t), j ∈ N0. We mention the identity that we will state
contains a finite sum.

Lemma 1. Let f belong to EK and let Wαf be defined by (4). For any m ∈
N0, (

∂

∂r

)m

Wα(f ; r, t) =
∑
j≥0

(2j)!
2jj!

(
m

2j

)
rm−2j

(
1
2t

Δ
)m−j

Wα(f ; r, t) (11)

holds, where Δ denotes the forward difference of step one with respect to α.

Proof. If f ∈ EK , for t > 0, we have

∂

∂r
Wα(f ; r, t) =

1
2t

∫ ∞

0

sα+1 ∂

∂r

(
exp

(
−r2 + s2

4t

)
r−αIα

(rs

2t

))
f(s)ds.

Formula (3) yields the relation:

∂

∂r
Wα(f ; r, t) =

r

2t
(Wα+1(f ; r, t) − Wα(f ; r, t)) =

r

2t
ΔWα(f ; r, t). (12)

We will establish the proof of identity (12) by mathematical induction.
Obviously, the assertion is valid for m = 0. Assuming that it is true for an
arbitrary m, we show that it takes place for m + 1. Relations (11) and (12)
imply
(

∂

∂r

)m+1

Wα(f ; r, t) =
∑
j≥0

(2j)!
2jj!

(
m

2j

)

×
[
(m − 2j)rm−2j−1

(
1
2t

Δ
)m−j

+ rm−2j+1

(
1
2t

Δ
)m−j+1

]
Wα(f ; r, t)

= rm+1

(
1
2t

Δ
)m+1

Wα(f ; r, t)

+
∑
j≥1

[
(2j − 2)!

2j−1(j − 1)!

(
m

2j − 2

)
(m − 2j + 2) +

(2j)!
2jj!

(
m

2j

)]

× rm−2j+1

(
1
2t

Δ
)m+1−j

Wα(f ; r, t)

= rm+1

(
1
2t

Δ
)m+1

Wα(f ; r, t)

+
∑
j≥1

(2j)!
2jj!

[(
m

2j − 1

)
+

(
m

2j

)]
rm+1−2j

(
1
2t

Δ
)m+1−j

Wα(f ; r, t).
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Considering the elementary identity(
m

2j − 1

)
+

(
m

2j

)
=

(
m + 1

2j

)
,

we obtain that (11) is valid for m + 1, and the induction is completed. �

Recall that in the following, Δ stands for the forward difference of the
step h = 1 with respect to α.

Lemma 2. Let f ∈ EK be a real analytic function and let Wαf be defined by
(4). For any m ∈ N0,

ΔmWα(f ; r, t) ∼
∞∑

n=m

Δmcn(α, f, r)tn (t → 0+),

where the quantities cn(α, f, r) are described by (8). For m ≤ n,

Δmcn(α, f, r) =
4n

(n − m)!r2n

(
∂

∂w

)n−m [
wn+α

(
∂

∂w

)n

f
(
r
√

w
)] ∣∣∣

w=1
(13)

and for m < n, Δncn(α, f, r) = 0.

Proof. Based on the m-th order forward difference with the step h = 1, we
get

Δmwm+α =
m∑

k=0

(−1)m−k

(
m

k

)
wn+α+k = wn+α(w − 1)m.

Consequently, taking into account (8), we can write

Δmcn(α, f, r) =
4n

n!r2n

(
∂

∂w

)n [
wn+α(w − 1)m

(
∂

∂w

)n

f
(
f
√

w
)] ∣∣∣

w=1
.

Since (
∂

∂w

)k

(w − 1)m
∣∣∣
w=1

= 0

for k 
= m, we deduce that Δmcn(α, f, r) is null for m > n. Otherwise, if
m ≤ n, application of the Leibniz rule for differentiation yields

Δmcn(α, f, r) =
4n

n!r2n

(
n

m

)
m!

(
∂

∂w

)n−m [
wn+α

(
∂

∂w

)n

f
(
r
√

w
)] ∣∣∣

w=1
,

which leads us to (13), and the proof of our lemma is completed. �

Our first main result can be read as follows.

Theorem 3. Let f ∈ EK be a real analytic function and let Wαf be defined
by (4). For any m ∈ N0, the relation

(
∂

∂r

)m

Wα(f ; r, t) ∼
∞∑

n=0

c[m]
n (α, f, r)tn (t → 0+) (14)
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holds, where the coefficients are given by

c[m]
n (α, f, r) =

1
n!

(
2
r

)2n+m ∑
j≥0

(2j)!
4jj!

(
m

2j

)(
∂

∂w

)n

×
[
wn+m−j+α

(
∂

∂w

)n+m−j

f
(
r
√

w
)] ∣∣∣

w=1
. (15)

Proof. Let m ∈ N0 be fixed. Concatenating the conclusions of Lemmas 1
and 2, we can write(

∂

∂r

)m

Wα(f ; r, t)

∼ 1
2m

∑
j≥0

(2j)!
j!

(
m

2j

)
rm−2j

∞∑
n=m−j

Δm−jcn(α, f, r)tn−m+j

=
1

2m

∑
j≥0

(2j)!
j!

(
m

2j

)
rm−2j

∞∑
n=0

Δm−jcn+m−j(α, f, r)tn (t → 0+).(16)

Further, with the help of the relation (13) applied for Δm−jcn+m−j(α, f, r),
for each n ∈ N0, the coefficient of tn can be found to be

1
2m

∑
j≥0

(2j)!
j!

(
m

2j

)
rm−2jΔm−jcn+m−j(α, f, r)

=
1

2m

∑
j≥0

(2j)!
j!

(
m

2j

)
rm−2j 4n+m−j

n!r2(n+m−j)

×
(

∂

∂w

)n
[
wn+m−j+α

(
∂

∂w

)n+m−j

f
(
r
√

w
)] ∣∣∣

w=1
:= c[m]

n (α, f, r);

see (15). Returning to (16), the statement (14) is proven. �

Remark. Choosing in (15) m = 0, the sum is reduced to a single term (j = 0)
and c

[0]
n (α, f, r) coincides with cn(α, f, r) defined at (8).
Now, we show that

c[m]
n (α, f, r) =

(
∂

∂r

)m

cn (α, f, r) , (17)

where c
[m]
n (α, f, r) and cn (α, f, r) are as defined by (15) and (8).

To present our result (see Proposition 5), we first need to establish some
identities that involve hypergeometric functions defined by (9) and (10).

Lemma 4. Let m ∈ N0 and x > m − 1, x 
∈ Z, be arbitrarily chosen.
(i) For any z, |z| < 1/4, the identity

∑
j≥0

(
2j

j

)(
x

m − j

)((
m

2j

)
/

(
m

j

))
zj =

(
x

m

)
2F1

(−m

2
,
−m + 1

2
;x−m+1; 4z

)
,

(18)

holds, where 2F1 is given by (9).
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(ii) For z = 1/4, the identity
∑
j≥0

(2j)!
4jj!

(
m

2j

)
xm−j = 2−m(2x)m (19)

holds.

Proof. (i) The sum of the left-hand side of (18) is finite and has terms only
for integer values of j satisfying 0 ≤ j ≤ �m/2�, where �·� stands for the floor
function. Using the obvious formulas

xm

m!
=

(
x

m

)
, wp = (−1)p(−w)p = (w + p − 1)p,

valid for any p ∈ N0 and real or complex w, we can write the next set of
identities: (

2j

j

)(
x

m − j

) ((
m

2j

)
/

(
m

j

))

=
m2j

j!m!
xm−j =

(−m)2j

j!m!
xm

(x − m + j)j

=
xm

m!

2j
(
−m

2

)j

2j

(
−m − 1

2

)j

(x − m + 1)jj!
.

From the above relations, we obtain

∑
j≥0

(
2j

j

)(
x

m − j

)((
m

2j

)
/

(
m

j

))
zj =

(
x

m

) ∑
j≥0

(
−m

2

)j
(

−m − 1
2

)j

(x − m + 1)j

(4z)j

j!
.

Considering (9), the relation (18) is proved.
(ii) Choosing z = 1/4 in (18) and using (10), this identity can thus be

rewritten as

∑
j≥0

(2j)!
4jj!

(
m

2j

)
xm−j = xm

Γ(x − m + 1)Γ
(

x +
1
2

)

Γ
(
x − m

2
+ 1

)
Γ

(
x − m

2
+

1
2

) . (20)

The Legendre duplication formula for the Gamma function

Γ(2w) =
1√
π

22w−1Γ(w)Γ
(

w +
1
2

)
, 2w 
= 0,−1,−2, . . . ,

see, e.g., [7, Eq. 5.5.5 ], allows us to write

Γ(x − m + 1)Γ
(

x +
1
2

)

Γ
(
x − m

2
+ 1

)
Γ

(
x − m

2
+

1
2

) =
Γ(x − m + 1)Γ(2x + 1)2−2x

Γ(x + 1)Γ(2x − m + 1)2−2x+m

= 2−m (2x)m

xm
.
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Returning to (20), identity (19) is obtained, and our lemma is completely
motivated. �

Since cn (α, f, r) is a finite linear combination of derivatives of f , it is
sufficient to prove Identity (17) for monomials ei, ei(r) = ri (i ∈ N0). We
confirm this in the next proposition.

Proposition 5. For any m ∈ N0 and n ∈ N0, the identity

c[m]
n (α, ei, r) =

(
∂

∂r

)m

cn(α, ei, r) (21)

holds for all monomials ei (i ∈ N0), where c
[m]
n (α, ·, r) and cn(α, ·, r) are re-

spectively defined by (15) and (8).

Proof. For m = 0, we have highlighted this identity; see Remark. Further,
we consider m ∈ N.

c[m]
n (α, ei, r)

=
1
n!

(
2
r

)2n+m ∑
j≥0

(2j)!
4jj!

(
m

2j

)(
∂

∂w

)n

[
wn+m−j+α

(
∂

∂w

)n+m−j

riwi/2

] ∣∣∣
w=1

=
ri

n!

(
2
r

)2n+m ∑
j≥0

(2j)!
4jj!

(
m

2j

)(
∂

∂w

)n
[(

i

2

)n+m−j

wi/2+α

] ∣∣∣
w=1

=
ri

n!

(
2
r

)2n+m ∑
j≥0

(2j)!
4jj!

(
m

2j

)(
i

2

)n+m−j (
i

2
+ α

)n

. (22)

On the other hand,(
∂

∂r

)m

cn(α, ei, r)

=
4n

n!

[(
∂

∂r

)m
ri

r2n

] (
∂

∂w

)n [
wn+α

(
∂

∂w

)n

wi/2

] ∣∣∣
w=1

=
4n

n!
(i − 2n)mri−2n−m

(
∂

∂w

)n [
wn+α

(
i

2

)n

wi/2−n

] ∣∣∣
w=1

=
ri

n!
22n

i2n+m
(i − 2n)m

(
i

2

)n (
i

2
+ α

)n

. (23)

To match the expressions (22) and (23), it remains to be shown that

2m
∑
j≥0

(2j)!
4jj!

(
m

2j

)(
i

2
− n

)m−j

= (i − 2n)m. (24)

We have taken into account that(
i

2

)n+m−j

/

(
i

2

)n

=
(

i

2
− n

)m−j

.
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Now, we turn to Lemma 4. By choosing x := i/2 − n in the identity (19), we
obtain exactly (24). Thus, relation (21) is proven. �

Now, we can state our main result.

Theorem 6. Let f ∈ EK be a real analytic function and let Wαf be defined
by (4). For any m ∈ N0, the relation(

∂

∂r

)m

Wα(f ; r, t) ∼
∞∑

n=0

[(
∂

∂r

)m

cn(α, f, r)
]

tn (t → 0+)

holds, where the coefficients cn(α, f, r) are given by (8).

Acknowledgements

The authors are grateful to the anoynmous referee for a thorough reading of
the manuscript. The detailed advice led to a better exposition of the manu-
script.

Author contributions UA derived the results. OA checked the proofs and
formulated the text. All authors reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. Not
applicable.

Data availibility Not applicable.

Declarations

Conflict of interest Not applicable.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Abel, U., Agratini, O.: On Wachnicki’s generalization of the Gauss-Weierstrass
integral, In: recent advances. In: Analysis, Mathematical (ed.) Anna Maria Can-
dela. Mirella Cappelletti Montano, Elisabeta Mangino), Springer (2022)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


267 Page 12 of 12 U. Abel and O. Agratini MJOM

[2] Abramowitz, M., Stegun, I.A. (Eds.): Handbook of mathematical functions with
formulas, graphs and mathematical tables, National Bureau of Standards Ap-
plied Mathematics Series 55, Issued June 1964, Tenth Printing, with corrections
(December 1972)

[3] Bragg, L.R.: The radial heat polynomials and related functions. Trans. Amer.
Math. Soc. 119, 270–290 (1965)

[4] Krech, G., Krech, I.: On some bivariate Gauss-Weierstrass operators. Constr.
Math. Anal. 2(2), 57–63 (2019)

[5] Wachnicki, E.: On a Gauss-Weierstrass generalized integral. Rocznik Naukowo-
Dydaktyczny Akademii Pedagogicznej W Krakowie, Prace Matematyczne 17,
251–263 (2000)

[6] Zayed, A.I.: Handbook of function and generalized function transformations, 1st

Edition. CRC Press, London (1996)

[7] Digital Library of Mathematical Functions, https://dlmf.nist.gov

Ulrich Abel
Fachbereich MND
Technische Hochschule Mittelhessen
Wilhelm-Leuschner-Strasse 13
61169 Friedberg
Germany
e-mail: ulrich.abel@mnd.thm.de

Octavian Agratini
Faculty of Mathematics and Computer Science
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