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Weak-Type Lower Bounds for
High-Dimensional Hardy–Littlewood
Maximal Operators on Certain Measures
via Averaging Operators

F. J. Pérez Lázaro

Abstract. Consider R
d with the euclidean distance, and let 0 < α < 1.

We study the behavior of the averaging operators given by the radial
density dμ(x) = |x|−αddx. When 1 ≤ p < ∞ is such that (1 − 2α)p <
1 − α, we show that the weak (p, p) bounds grow exponentially with
the dimension d. As a consequence, the corresponding results follow for
the centered Hardy–Littlewood maximal operator. The lower bounds
obtained here are new for averaging operators, and when 0 < α ≤ 1/2
and p > 1, they are also new for the maximal operator.

Mathematics Subject Classification. Primary 42B25; Secondary 47B38.

Keywords. Maximal operators, averaging operators, weak-type bounds,
radial measures.

1. Introduction

Consider the metric space Rd with the euclidean distance, and let μ be a Borel
measure on R

d such that all balls (with strictly positive and finite radii) have
strictly positive and finite measure. For a fixed r > 0, the averaging operator
acting on a locally integrable function f is defined by

Ar,μf(x) :=
1

μ(B(x, r))

∫
B(x,r)

f(y)dμ(y). (1)

This operator is obviously related to the centered Hardy–Littlewood maximal
operator Mμ, which is given by

Mμf(x) := sup
r>0

1
μ(B(x, r))

∫
B(x,r)

|f(y)|dμ(y). (2)
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It is clear that Mμf(x) = supr>0 Ar,μ|f |(x) and thus, averaging operators
are bounded by the Hardy–Littlewood maximal operator.

Let us note that since μ assigns finite measure to all balls (with finite
radii), then it does not matter whether one uses open or closed balls in the
definition of Mμ.

The Hardy–Littlewood maximal operator admits many variants: Instead
of averaging |f | over balls centered at x (the centered operator) as in (2), it
is possible to consider all balls containing x (the uncentered operator) or
average over convex bodies more general than euclidean balls, or averages
over spheres, etc.

The Hardy–Littlewood maximal operator is an often used tool in Real
and Harmonic Analysis, mainly (but not exclusively) due to the fact that
while |f | ≤ Mμf a.e., Mμf is not too large (in a Lp sense) since for every
locally finite Borel measure μ defined on R

d, it satisfies the following strong-
type (p, p) inequality: ‖Mμf‖p ≤ Cp‖f‖p, for 1 < p ≤ ∞. Thus, Mμf is often
used to replace f , or some average of f , in chains of inequalities, without
leaving Lp (p > 1).

The situation when p = 1 is different. It follows from the Besi-
covitch Covering Theorem that Mμ satisfies the weak (1, 1) inequality
supλ>0 λμ({Mμf ≥ λ}) ≤ c1‖f‖1 for every locally finite Borel measure μ on
R

d. This is a very important fact, as it implies the Lp bounds for 1 < p < ∞
via interpolation (the Marcinkiewicz Interpolation Theorem generalizes this
result). From now on, we shall use cp,d,μ to denote the lowest possible con-
stant in the weak (p, p) inequality when the measure in R

d is μ, and likewise,
Cp,d,μ will denote the lowest possible strong (p, p) constant.

Let us take into account that for other maximal operators, the situa-
tion for Lp bounds can be different. E.M. Stein showed that for d ≥ 3 the
(Stein’s) spherical maximal operator (where averages are taken over spheres)
was bounded in Lp if and only if p > d/(d − 1), cf. [29]. Some years later,
Bourgain extended Stein’s result to d = 2, cf. [11].

The study of the constants c1,d,μ and Cp,d,μ has attracted considerable
interest. For instance, if d = 1, given any Borel measure in R, a simple
covering argument yields for the uncentered operator c1,1,μ ≤ 2 (cf. [1]), and
often c1,1,μ = 2 is sharp, for instance, for μ = m, the Lebesgue measure.
However, the same question for the centered operator is difficult, even for
the Lebesgue measure. Of course, since the centered operator is bounded by
the uncentered operator, it is clear that c1,1,m ≤ 2. In [2] the commonly
accepted conjecture c1,1,m = 3/2 was refuted. The exact value c1,1,m = (11+√

61)/12 was obtained by Melas by a rather involved argument, in the two
papers [24,25]. Thus, it seems that, even for the Lebesgue measure md in R

d,
obtaining a precise formula for c1,d,md

is a very difficult task.
Considerable efforts have gone into determining how changing the

dimension on R
d modifies the best constants Cp,d,md

and c1,d,md
in the case

of Lebesgue measure. When p = ∞, we can take C∞,d,md
= 1 in every dimen-

sion, since averages never exceed a supremum. At the other endpoint p = 1,
the first boundedness arguments used the Vitali covering lemma, which leads
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to exponential bounds of the type c1,d,md
≤ 3d, and by interpolation, to expo-

nential bounds for Cp,d,md
. So, it is natural to try to improve on these bounds,

and in particular, to seek bounds independent on the dimension, with a view
towards infinite dimensional generalizations of Harmonic Analysis.

Quite remarkably, E.M. Stein showed that for Mmd
, there exists bounds

for Cp,d,md
that are independent of d ([30,31,33], see also [32]). Stein’s result

was generalized to the maximal function defined using an arbitrary norm by
Bourgain [12–14] and Carbery [16] when p > 3/2. For �q balls, 1 ≤ q < ∞,
Müller [27] showed that uniform bounds again hold for every p > 1. For the
case of �∞ balls (cubes) it took decades to fill the gap 1 < p ≤ 3/2. Bourgain
showed the existence of uniform bounds also in this case (see [14]).

Regarding weak-type (1, 1) inequalities, in [33], Stein and Strömberg
proved that the smallest constants in the weak-type (1, 1) inequality satisfied
by Mmd

grow at most like O(d) for euclidean balls, and at most like O(d log d)
for more general balls. They also asked if uniform bounds could be found, a
question still open for euclidean balls.

In 2008, Aldaz (cf. [4]) proved that if one considers cubes with sides
parallel to the coordinate axes (that is, �∞ balls) instead of euclidean balls,
then the best constants c1,d,md

must diverge to infinity with d, and thus the
answer to the Stein-Strömberg question is negative for cubes. This result
was posted in 2008 in the Math ArXiv, but it was published in 2011. In
the meantime, G. Aubrun refined Aldaz’s result and showed that c1,d,md

≥
Θ(log1−ε d), where Θ denotes the exact order and ε > 0 is arbitrary, cf. [10].
Later, Iakovlev and Strömberg proved c1,d,md

≥ Θ(d1/4), cf. [20].
For a thorough survey about the results cited in the three previous

paragraphs, we refer the reader to [19].
A different line of research studies if the previous results can be extended

to more general settings than R
d and Lebesgue measure. In this sense, a

remarkable extension of the Stein and Strömberg O(d log d) theorem has
been obtained by Naor and Tao (cf. [28]) who consider separable metric
spaces equipped with a Radon measure finite over balls of finite radius. It is
assumed also a microdoubling condition on the measure. They bound local-
ized maximal operators by averaging operators and use this microdoubling
condition. Other interesting results are the O(d) upper bound of the weak
(1, 1) inequality in the Heisenberg groups (cf. [22]) or the O(d log d) upper
bound in hyperbolic spaces with the Riemannian volume (which does not
satisfy a doubling condition) (cf. [23]).

Till now, we have mentioned O(d) or O(d log d) upper bounds for the
weak (1, 1) inequality and bounds independent on the dimension for the
strong (p, p) inequality. However, as we will see later, it is known that even
in R

d with the euclidean distance, the situation can be quite different for
arbitrary locally finite Borel measures. Let us recall that by the Besicovitch
covering theorem for R

d, one can obtain upper bounds exponential in the
dimension for c1,d,μ and, by interpolation, for Cp,d,μ. These bounds are inde-
pendent on the Radon measure chosen. The structure of the metric space is
important in order to get this kind of bounds. For instance, Aldaz proved
in [6] that a geometrically bounded condition of the metric space assures
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boundedness of averaging operators in Lp for any 1 ≤ p < ∞, with bounds
independent on the measure.

From now on, we always refer to the centered Hardy–Littlewood maxi-
mal function defined by euclidean balls. We only deal with some special classes
of functions (something that of course, simplifies the arguments and lower the
constants). It is shown in [26, Theorem 3] that considering only radial func-
tions (with Lebesgue measure) leads to c1,d,md

≤ 4 in all dimensions, and the
same happens if Lebesgue measure is replaced by a radial, radially increas-
ing measure, cf. [21, Theorem 2.1]. Besides, for Lebesgue measure and radial
decreasing functions, it is shown in [7, Theorem 2.7] that the sharp constant
is c1,d,md

= 1.

If instead of radial, radially increasing measures, one considers radial,
radially decreasing measures, the situation changes radically. Typically, one
has exponential increase in the dimension for c1,d,μ, and some times even
for the strong-type constants Cp,d,μ. Furthermore, it is enough to consider
characteristic functions of balls centered at zero (hence, radial and decreasing)
to prove exponential increase. The weak-type (1, 1) case for integrable radial
densities defined via bounded decreasing functions was studied in [3]. It was

shown there that the best constants c1,d,μ satisfy c1,d,μ ≥ Θ (1)
(
2/

√
3
)d/6

,
in strong contrast with the linear O(d) upper bounds known for Lebesgue
measure. Exponential increase was also shown for the same measures and
small values of p > 1 in [17]; shortly after (and independently) these results
were improved in [8], as they applied to larger exponents p and to a wider class
of measures. It was also shown in [8] that exponential increase could occur for
arbitrarily large values of p and suitably chosen doubling measures. Together
with the results for hyperbolic spaces mentioned before, this shows that the
doubling condition is neither necessary nor sufficient to have “good bounds”
for maximal inequalities in terms of the dimension. Finally, it is proven in [18]
that for the standard Gaussian measure in R

d, one has exponential increase
in the constants for all p ∈ (1,∞) (cf. [5] for a related result, dealing with
averaging operators).

In the previous paragraphs, we have seen that, acting only on radial
functions, the maximal operator has c1,d,μ upper bounds independent on the
dimension if μ is a radially increasing density or the Lebesgue measure. We
have seen also that for some μ defined by radial decreasing densities, we
have exponential increase of c1,d,μ, exponential increase of cp,d,μ for some
sufficiently small values of p > 1, and in some special cases, for every p > 1.
So, it is natural to ask whether Lebesgue measure is the borderline case which
separates uniform from non-uniform behavior in the constants. The answer
to this question is negative. In [9, Theorem 3.1(3)] it is proved that for the
homogeneous measures dμ(x) = dx/|x|αd if αd ≤ K (with K that does not
depend on d), acting on radial functions, c1,d,μ are bounded uniformly in d
and, by interpolation, the same happens for Cp,d,μ.

When d → ∞, the behavior of c1,d,μ depends on whether αd is bounded
or not. For αd ≤ d/2 we have that c1,d,μ ≥ Θ((51/2/2)αd) (cf. Theorem 3.1(2)
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of [9]). Thus, if αd ≤ d/2 and lim supd→∞ αd = ∞, then lim supd→∞ c1,d,μ =
∞.

In the case of radial densities that decrease faster than the previous
ones, such as αd = α · d for 1/2 < α < 1 we not only have exponential
increase of c1,d,μ but also for all p < ∞. That is, there exist b(α, p) > 1 such
that cp,d,μ ≥ Θ(bd) (cf. [9]).

Here, we consider the homogeneous densities dμ(x) = dx/|x|αd. In
Corollary 2.2, we prove that for any 0 < α < 1 and 1 ≤ p < ∞ such that
(1 − 2α)p < 1 − α we have a lower bound for cp,d,μ which is exponential with
d. This implies that if α ∈ [1/2, 1) and 1 ≤ p < ∞, cp,d,μ grows exponentially
in d. Besides, if 0 < α < 1/2 and 1 ≤ p < (1 − α)/(1 − 2α), cp,d,μ also grows
exponentially in d.

Let us note that for 0 < α ≤ 1/2, as we have written in the previous
paragraphs, the result was known for p = 1. For small p > 1, it was not
known whether the constants cp,d,μ are bounded with the dimension or not,
even when we restrict the operator to radial functions (let us note that the
results in [8] for small p > 1 do not apply for these measures). In Corollary 2.2,
we obtain exponential growth for α = 1/2 and p ∈ [1,∞) and for 0 < α < 1/2
and p ∈ [1, (1 − α)/(1 − 2α)).

Theorem 2.1 below deals with averaging operators. Since Ar,μf ≤ Mμf
it is clear that Ar,μ satisfies weak (1, 1) and strong (p, p) inequalities. Further-
more, for some measures μ, the operator Ar,μ can be substantially smaller
than Mμ. This is the case with the Lebesgue measure, since Ar,md satisfies
a strong (1, 1) inequality with constant 1. If we denote by ζp,d,μ the best
constant of the operator Ar in the weak (p, p) inequality we trivially have
ζp,d,μ ≤ cp,d,μ. One can see (cf. Lemma 3.1) that for the measures considered
in this paper ζp,d,μ does not depend on the radius r of the operator Ar,μ

considered. In Theorem 2.1, under the conditions on α and p mentioned pre-
viously, exponential growth for ζp,d,μ is obtained. As a consequence Corollary
2.2 immediately follows.

I am indebted to Prof. J.M. Aldaz for some suggestions that improved
the presentation of this note.

2. Notation and Results

Recall that for any x ∈ R
d, we denote by |x| = (x2

1 + x2
2 + . . . + x2

d)
1/2 its

euclidean norm. Given r > 0, denote by B(x, r) = {y ∈ R
d : |x − y| < r}

the euclidean open ball. A function f : Rd −→ R is radial if there exists a
g : [0,∞) −→ R such that f(x) = g(|x|) for all x ∈ R

d, i.e., f depends only on
one parameter (the distance to the origin), and thus, f is rotation invariant.

Let 0 < α < 1 be fixed. For any A Borel subset of R
d, we define the

radial measures

μ(A) =
∫

A

dx

|x|αd
.
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Since α < 1, the measures are locally finite. For these measures we define
the centered Hardy–Littlewood maximal operator Mμ as in (2), and for any
r > 0 we define the averaging operator Ar,μ as in (1).

Since Ar,μ|f | ≤ Mμf , by Besicovitch covering Lemma both operators
satisfy weak (p, p) inequalities for 1 ≤ p < ∞. Let us denote by ζp,d,μ the
best constant in the weak (p, p) inequality for Ar,μ in R

d. By homogeneity
one can check (see Lemma 3.1 below) that ζp,d,μ does not depend on the
r > 0 chosen.

The following theorem shows exponential growth of ζp,d,μ with the
dimension.

Theorem 2.1. Fix 0 < α < 1 and 1 ≤ p < ∞ satisfying (1 − 2α)p ≤ 1 − α.
Let μ be the measure on R

d defined by dμ(x) = dx/|x|αd. Let ζp,d,μ be the
best constant for the weak (p, p) inequality satisfied by all averaging operators
in this measure space.

Then, there exist c(α, p) > 0 and K(α, p) > 1, independent of d, such
that

ζp,d,μ ≥ c(α, p)
d

K(α, p)d−1 for all d ≥ 3.

From this theorem, the following corollary is obtained.

Corollary 2.2. Fix 0 < α < 1 and 1 ≤ p < ∞ satisfying (1 − 2α)p ≤ 1 − α.
Let μ be the measure on R

d defined by dμ(x) = dx/|x|αd. Let cp,d,μ be the
best constant for the weak (p, p) inequality for Mμ.

Then, there exist c(α, p) > 0 and K(α, p) > 1, independent of d, such
that

cp,d,μ ≥ c(α, p)
d

K(α, p)d−1, for all d ≥ 3.

3. Preliminary Lemmas

The next lemma shows that for a measure dx/|x|αd, the best constants for
the weak (p, p) inequality are the same for all the averaging operators and
they do not depend on the radius chosen.

Lemma 3.1. Let 0 < α < 1 and let dμ(x) = dx/|x|αd be a measure on R
d.

Let 1 ≤ p < ∞. For every r > 0 and Ar,μ (the averaging operator with radius
r) denote by ζp,d,μ(r) the best constant for the weak (p, p) inequality satisfied
by Ar,μ. Then, ζp,d,μ(r) = ζp,d,μ(1).

Proof. Let A be a measurable subset of Rd. For any r > 0, denote by rA :=
{ra : a ∈ A}. By a change of variable, it is easy to see that

μ(rA) = r(1−α)dμ(A). (3)

Let us note also that

B(rx, r) = rB(x, 1), x ∈ R
d. (4)
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Besides, for any measurable function f on R
d and any r > 0, denote by

fr(x) := f(r−1x). By (3), (4) and a change of variable, it can be proved that

Ar(fr)(rx) = A1(f)(x), x ∈ R
d, (5)

and

‖fr‖p,μ = r(1−α)d/p‖f‖p,μ.

Now, for any λ > 0 and any f measurable function on R
d, (5) implies

that x ∈ {A1,μ(f) > λ} if and only if rx ∈ {Ar,μ(fr) > λ}. Thus, if f is not
equivalent to the null function, we have

λ
(μ({Ar,μ(fr) > λ}))1/p

‖fr‖p,μ
= λ

(μ({A1,μ(f) > λ}))1/p

‖f‖p,μ
.

From here, a routine argument shows that ζp,d,μ(r) = ζp,d,μ(1). �

Lemma 3.2. For 0 < a < 2, let us define

ha(R) =
1 − a

2 − a
(1+R2)+

1
2 − a

√
1 + 2[1 − 2a(2 − a)]R2 + R4, −1 < R < 1.

(6)
For every 0 < a < 1, set

Ha(R) =
1 + R2 − ha(R)

2a
ha(R)1−a, −1 < R < 1. (7)

Then, for every 0 < a, b < 1 such that 2a+ b− 1 > 0, there exists 0 < Ra,b <
1/2 such that

Ha+b(Ra,b)
Ha(Ra,b)

> 1.

Proof. First, note that h(a,R) ∈ R. Now, for fixed 0 < a < 2, it is easy to
prove that the McLaurin expansion of ha(R) is:

ha(R) = 1 + (1 − 2a)R2 + 2a(1 − a)2R4 + o(R4).

Thus,

Ha(R) = R2[1 − (1 − a)2R2 + o(R2)]ha(R)1−a

= R2[1 − (1 − a)2R2 + o(R2)][1 + (1 − a)(1 − 2a)R2 + o(R2)]

= R2[1 − a(1 − a)R2 + o(R2)].

Then, for every 0 < a, b < 1 and R 	= 0, we have

Ha+b(R)
Ha(R)

=
1 − (a + b)(1 − a − b)R2 + o(R2)

1 − a(1 − a)R2 + o(R2)
= 1 + b(2a + b − 1)R2 + o(R2).

In consequence, the lemma holds since b(2a + b − 1) + o(R2)/R2 > 0 at least
for Ra,b sufficiently close to 0. �

Lemma 3.3. For every 0 < a < 1 and 0 < R < 1 we set

Fa,R(t) =
4t − (t + 1 − R2)2

4ta
, t ∈ [

(1 − R)2, (1 + R)2
]
, (8)
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and

ta,R =
1 − a

2 − a
(1 + R2) +

1
2 − a

√
1 + 2[1 − 2a(2 − a)]R2 + R4. (9)

Then,
max

t∈[(1−R)2,(1+R)2]
Fa,R(t) = Fa,R(ta,R) = Ha(R), (10)

where Ha(R) is defined as in Lemma 3.2. Besides, if

1 − R2

1 + 3R2
≤ γ ≤ 1, (11)

we have
Fa,R(γta,R) ≥ γ2−aFa,R(ta,R). (12)

Proof. It is easy to see that

Fa,R(t) =
−t2 + 2(1 + R2)t − (1 − R2)2

4ta
. (13)

Thus, Fa,R((1 − R)2) = Fa,R((1 + R)2) = 0. Besides, the derivative is

F ′
a,R(t) =

−(2 − a)t2 + 2(1 − a)(1 + R2)t + a(1 − R2)2

4ta+1
.

It is easy to check that the equation

− (2 − a)t2 + 2(1 − a)(1 + R2)t + a(1 − R2)2 = 0 (14)

has one root less than (1 − R)2 and the other root, ta,R, satisfies (9). With
routine calculations one can check that

(1 − R)2 < 1 − R2 < ta,R < 1 + R2 < (1 + R)2. (15)

Thus, Fa,R increases from (1−R)2 to ta,R and decreases from ta,R to (1+R)2,
so the left equality in (10) holds.

Now, by (13) and (14) with ta,R instead of t, it follows that

Fa,R(ta,R) =
(1 + R2 − ta,R)t1−a

a,R

2a
. (16)

Comparing (16) and (7), and taking into account that ta,R has the same
expression as ha(R) in (6) we obtain the right hand side equality in (10).

By (15) and (11) we have that (1 − R)2 ≤ γta,R ≤ ta,R. Thus, γta,R is
in the domain of Fa,R. Using (13), it is easy to check that inequality (12) is
equivalent to

2(1 + R2)γta,R ≥ (1 − R2)2(1 + γ),

which easily follows from (15) and (11). �

Remark 3.4. Denote by S
d−1 = {x ∈ R

d : |x| = 1} the unit (d − 1)-
dimensional sphere in R

d, and by ωd−1 = |Sd−1|d−1, its (d − 1)-dimensional
Hausdorff measure.
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Since we deal with radial measures dx/|x|αd and we will use radial
measurable functions g(|x|), x ∈ R

d, it will be natural to use a spherical
change of coordinates. Thus, it is easy to see that∫

B(0,R)

g(|x|) dx

|x|αd
= ωd−1

∫ R

0

g(ρ)ρd(1−α) dρ

ρ
. (17)

When the ball is not centered at the origin, things are not so straightforward.
To simplify the proof of the theorem, in the next Lemma, we integrate over a
ball that does not touch the origin. These computations appeared in [9,18].
We include them here for the reader’s convenience. �

Lemma 3.5. Let 0 < α < 1, 0 < R < 1/2 and let g(| · |) be a measurable radial
function on R

d. Let e1 ∈ R
d be the first vector in the standard basis. Then,

ωd−2

d − 1

∫ 1+R

1−R

Fα,R(ρ2)
d−1
2 g(ρ)

dρ

ρα
≤

∫
B(e1,R)

g(|x|) dx

|x|αd

≤ 2√
3

ωd−2

d − 1

∫ 1+R

1−R

Fα,R(ρ2)
d−1
2 g(ρ)

dρ

ρα
,

where Fα,R is defined in (8).

Proof. By changing to spherical coordinates, we have∫
B(e1,R)

g(|x|) dx

|x|αd
=

∫ 1+R

1−R

|∂B(0, ρ) ∩ B(e1, R)|d−1g(ρ)
dρ

ραd
,

where | · |d−1 denotes the (d − 1)-dimensional Hausdorff measure. Call βρ

the angle determined by the segment that joins the origin with e1 and the
one that connects the origin to any point of the intersection of ∂B(0, ρ) with
∂B(e1, R). Then 0 ≤ βρ < π/6 since R < 1/2. Thus,

|∂B(0, ρ) ∩ B(e1, R)|d−1 =
∫ βρ

0

ωd−2(ρ sin θ)d−2ρdθ

= ωd−2ρ
d−1

∫ βρ

0

(sin θ)d−2dθ. (18)

By the cosine law, applied to the triangle T (1, ρ, R) with side lengths 1, ρ,
and R, and the angle βρ facing the R-side, we have

cos βρ =
1 + ρ2 − R2

2ρ
, (19)

so

sin βρ =

[
1 −

(
1 + ρ2 − R2

2ρ

)2
]1/2

. (20)

Note that the minimum value of cos βρ occurs when βρ attains its maximum
value. And this happens when the ray starting at 0 is tangent to B(e1, R),
so the triangle T (1, ρ, R) has a right angle and hence ρ =

√
1 − R2. Thus, by

(19) we have that for every ρ ∈ [1 − R, 1 + R],

cos βρ ≥ 1 + (
√

1 − R2)2 − R2

2
√

1 − R2
=

√
1 − R2.
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Now, with this inequality and (18), we obtain

ωd−2ρ
d−1

∫ βρ

0

cos θ(sin θ)d−2dθ ≤ |∂B(0, ρ) ∩ B(e1, R)|d−1

≤ ωd−2ρ
d−1

√
1 − R2

∫ βρ

0

cos θ(sin θ)d−2dθ.

In consequence,
ωd−2

d − 1
ρd−1(sin βρ)d−1 ≤ |∂B(0, ρ) ∩ B(e1, R)|d−1

≤ 1√
1 − R2

ωd−2

d − 1
ρd−1(sin βρ)d−1.

Using this inequality and (20), the lemma is proved. �

4. Proof of the Theorem

Proof of Theorem 2.1. First, fix 0 < α < 1 and p ≥ 1 such that (1 − 2α)p ≤
1 − α. Now we apply Lemma 3.2 with a = α and b = (1 − α)/p. Then, since
2a + b > 1, there exists 0 < Rα,α+(1−α)/p < 1/2 depending on α and p such
that

Hα+(1−α)/p(Rα,α+(1−α)/p)
Hα(Rα,α+(1−α)/p)

> 1.

We denote the previous quotient by K(α, p)2 > 1. Let us fix this
Rα,α+(1−α)/p; for simplicity we write R ≡ Rα,α+(1−α)/p. Now, for these values
of R and α, we set tα,R as in (9).

Define T :=
√

tα+(1−α)/p,R. Since tα+(1−α)/p,R ∈ [(1 − R)2, (1 + R)2], it
follows that T ∈ (1 − R, 1 + R). Moreover, since (15) and R < 1/2 we have

T ≥
√

1 − R2 ≥
√

3
2

.

Let us define

f(x) = g(|x|) =
1

((1 − 1/d) T )
1−α

p d
χ[0,(1−1/d)T )(|x|)

+
1

|x| 1−α
p d

χ[(1−1/d)T,T ](|x|), x ∈ R
d.

Note that f is radially decreasing. Furthermore, from (17) we obtain

‖f‖p
p,μ =

1

((1 − 1/d) T )(1−α)d

∫
B(0,(1−1/d)T )

dx

|x|αd

+
∫

B(0,T )\B(0,(1−1/d)T )

dx

|x|d

=
ωd−1

((1 − 1/d) T )(1−α)d

∫ (1−1/d)T

0

ρd(1−α) dρ

ρ
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+ ωd−1

∫ T

(1−1/d)T

dρ

ρ

= ωd−1

(
1

d(1 − α)
− log(1 − 1/d)

)

=
ωd−1

d

(
1

1 − α
+ log

(
(1 − 1/d)−d

))
.

Since (1 − 1/d)−d decreases in d and d ≥ 3, we have

‖f‖p
p,μ ≤ ωd−1

d

(
1

1 − α
+ 3 log(3/2)

)
. (21)

Utilizing again (17), we compute

μ (B(0, 1) \ B(0, 1 − 1/d)) = ωd−1

∫ 1

1−1/d

ρd(1−α) dρ

ρ

=
ωd−1

d(1 − α)

(
1 − (1 − 1/d)d(1−α)

)

≥ ωd−1

d(1 − α)

(
1 − e−(1−α)

)
≥ ωd−1

d
(1 − e−1). (22)

Next, given x ∈ B(0, 1) \B(0, 1− 1/d), we present a lower bound for its
averaging function

AR,μf(x) =

∫
B(x,R)

f(y) dy
|y|αd∫

B(x,R)
dy

|y|αd

. (23)

Let us note that radial functions are invariant with respect rotations at
the origin, while a ball remains a ball after any rigid motion. Thus,∫

B(x,R)

f(y)
dy

|y|αd
=

∫
B(|x|e1,R)

f(y)
dy

|y|αd
and

∫
B(x,R)

dy

|y|αd

=
∫

B(|x|e1,R)

dy

|y|αd
. (24)

Besides, since f is radially decreasing, we have∫
B(|x|e1,R)

f(y)
dy

|y|αd
≥

∫
B(e1,R)

f(y)
dy

|y|αd
and

∫
B(|x|e1,R)

dy

|y|αd

≤
∫

B((1−1/d)e1,R)

dy

|y|αd
. (25)

Moreover, ∫
B((1−1/d)e1,R)

dy

|y|αd
=

∫
B(e1,R)

dy

|y − e1/d|αd

=
∫

B(e1,R)

|y|αd

|y − e1/d|αd

dy

|y|αd

≤
∫

B(e1,R)

( |y|
|y| − 1/d

)αd
dy

|y|αd
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=
∫

B(e1,R)

(
1

1 − 1/(d|y|)
)αd

dy

|y|αd

≤
(

1
1 − 1

d(1−R)

)αd ∫
B(e1,R)

dy

|y|αd

≤ 33α

∫
B(e1,R)

dy

|y|αd
. (26)

By (23), (24), (25) and (26) we get

AR,μf(x) ≥
∫

B(e1,R)
f(y) dy

|y|αd

27
∫

B(e1,R)
dy

|y|αd

, x ∈ B(0, 1) \ B(0, 1 − 1/d). (27)

Now, using Lemma 3.5, we estimate the integrals from (27). For the integral
in the denominator, Lemma 3.5 together with (10) leads to

∫
B(e1,R)

dy

|y|αd
≤ 2√

3
ωd−2

d − 1

∫ 1+R

1−R

Fα,R(ρ2)
d−1
2

dρ

ρα

≤ 2√
3

ωd−2

d − 1
Hα(R)

d−1
2

∫ 1+R

1−R

dρ

ρα

≤ 4√
3

ωd−2

d − 1
Hα(R)

d−1
2 . (28)

For the integral in the numerator,
∫

B(e1,R)

f(y)
dy

|y|αd
≥ ωd−2

d − 1

∫ 1+R

1−R

Fα,R(ρ2)
d−1
2 g(ρ)

dρ

ρα

≥ ωd−2

d − 1

∫ T

(1−1/d)T

Fα,R(ρ2)
d−1
2 g(ρ)

dρ

ρα
=

=
ωd−2

d − 1

∫ T

(1−1/d)T

Fα+ 1−α
p ,R(ρ2)

d−1
2

dρ

ρα+ 1−α
p

.

We choose γ = max{(1−1/d)2, (1−R2)/(1+3R2)}. From this last inequality
and (12) we get

∫
B(e1,R)

f(y)
dy

|y|αd
≥ ωd−2

d − 1

∫ T

T
√

γ

dρ

ρα+ 1−α
p

min
t∈[γta,R,ta,R]

Fα+ 1−α
p ,R(t)

d−1
2

≥ ωd−2

d − 1
(T )1−α−(1−α)/p (1 − √

γ)Hα+ 1−α
p

(R)
d−1
2 γd−1

≥
√

3 ωd−2

2(d − 1)
(1 − √

γ)Hα+ 1−α
p

(R)
d−1
2 γd−1. (29)

Now, since

γd−1 ≥ γd ≥
(

1 − 1
d

)2d

≥ (2/3)6,
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and

1 − √
γ = min

{
1
d
, 1 −

√
1 − R2

1 + 3R2

}
≥ min

{
1
d
,R2

}
,

we can bound (29) and get∫
B(e1,R)

f(y)
dy

|y|αd
≥ 25

311/2
min

{
1
d
,R2

}
ωd−2

d − 1
Hα+ 1−α

p
(R)

d−1
2 . (30)

In conclusion, from (27), (28) and (30) it follows that

ARf(x) ≥ 23

38
min

{
1
d
,R2

} (
Hα+(1−α)/p(R)

Hα(R)

)(d−1)/2

=
23

38
min

{
1
d
,R2

}
(K(α, p))d−1

,

for all x∈B(0, 1)\B(0, 1−1/d). Now, we choose λ= 23

38 min
{

1
d , R2

}
(K(α, p))d−1.

Then, by (21) and (22)

ζp,d,μ ≥ λμ({x ∈ R
d : AR,μf(x) ≥ λ})1/p

‖f‖p,μ
≥ λ

μ(B(0, 1) \ B(0, 1 − 1/d))1/p

‖f‖p,μ

≥ 23

38

(
1 − e−1

1
1−α + 3 log(3/2)

)1/p

min
{

1
d
,R2

}
(K(α, p))d−1

.
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