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FC-groups with Few Subnormal
Non-normal Subgroups

Mattia Brescia

Abstract. A group G is said to be an FC-group if every conjugacy class
of G has finite order and is said to be a T -group if every subnormal
subgroup is normal in G. In this paper we give a characterization of
groups that are both FC-groups and T -groups and go further in the
study of FC-groups with few subnormal non-normal subgroups in the
sense of the chain conditions. The structure of FC-groups satisfying
the maximal, the minimal and the double chain condition on subnormal
non-normal subgroups will be described.

Mathematics Subject Classification. 20E15, 20F22, 20F24.

Keywords. FC-groups, T-groups, double chain condition, finite simple
groups.

1. Introduction

A group G is called an FC-group if every conjugacy class of G has finite order
or, equivalently, if |G : CG(g)| is finite for each element g of G. The theory
of FC-groups has been extensively developed; for instance, it is well-known
that if G is an FC-group, then both G/Z(G) and G′ are locally finite and
these two results are due to Baer and Neumann, respectively. For a reference
on the subject, one may refer to [8]. On the other hand, a group G is called a
T -group if normality is a transitive relation in G, i.e. if all the subnormal sub-
groups of G are normal in G. The structure of soluble T -groups was described
by Gaschütz [11] in the finite case and by Robinson [14] for arbitrary groups.
It turns out that all soluble groups with the T -property are metabelian and
hypercyclic, while any finitely generated soluble T -group either is finite or
abelian. Relevant classes of generalized T -groups can be introduced by im-
posing that the set of all subnormal non-normal subgroups of the group is
small in some sense (see, among the others, [3–5]). In this connection goes the
imposition of the so-called double chain conditions on subnormal non-normal
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subgroups. Generalizing the classical results of Černikov and O. Schmidt on
groups satisfying the minimal and the maximal condition on subgroups, re-
spectively, Shores [19] and Zaicev [20] independently proved that if G is a
(generalized) soluble group admitting no chains of subgroups with the same
order type of the set of the integers, then G is soluble-by-finite and is either a
Černikov or a polycyclic-by-finite group. Conditions of this type can of course
be considered for special systems of subgroups: if θ is a subgroup-theoretical
property, we shall say that a group G satisfies the double chain condition on
θ-subgroups if for each double chain

· · · ≤ X−n ≤ · · · ≤ X−1 ≤ X0 ≤ X1 ≤ · · · ≤ Xn ≤ · · ·
of θ-subgroups of G there exists an integer k such that either Xn = Xk for
all n ≤ k or Xn = Xk for all n ≥ k. For some values of θ already studied, see
for instance [1,2,6,7]. In the present work, θ will be the subgroup-theoretical
property of being subnormal and not normal. Clearly, every T -group, every
Černikov and every polycyclic group satisfies the double chain condition on
subnormal non-normal subgroups. A group satisfying this condition will be
sometimes called for short a DCsnn-group.

Joining together these classes of problems, this work deals with a thor-
ough study of FC-groups having few subnormal non-normal subgroups. In
particular, we present in Sect. 2 a characterization of FC-groups all of whose
subnormal subgroups are normal, which is a natural extension of some re-
sults in [18]; in the same section a description of soluble FC-groups will also
be made explicit: although it can be retrieved without too much effort from
what is already known (for instance from [14]), so far it had no place in liter-
ature. In Sect. 3, we will give a characterization of FC-groups satisfying the
double chain condition on subnormal non-normal subgroups and from this we
will derive the structure of FC-groups satisfying the maximal or the minimal
condition on subnormal non-normal subgroups. Finally, in Sect. 4, we will
present some examples aiming to show how our results cannot be improved
and giving concrete instances to the groups studied here.

Along the paper, it will be evident that some parts of this work rely
on the Classification of Finite Simple Groups, in that, for instance, we need
precise information on the Schur multipliers of every finite simple group.
Recall here that the Schur multiplier of a group G can be defined as the
second homology group H2(G, Z) for trivial group action and that it has
strong connections with the theory of projective representations and with
central extensions. For an account on this, the reader may for instance refer
to [13].

Most of our notation is standard and can be found in [15].

2. T -groups with Finite Conjugacy Classes

We begin studying FC-groups in which normality is a transitive relation. The
proof of the first result is indeed akin to the theorem of Gaschütz classifying
finite T -groups. For the well-known properties of soluble T -groups, we refer
to [14].
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There are basic examples showing that T -groups do not constitute a
formation. On the other hand, something can be easily said for quotients
over central subgroups.

Lemma 2.1. Let G be a group and let A and B be central subgroups of G. If
G/A and G/B are T -groups, the same holds for G/A ∩ B.

Proof. First, we may clearly assume without loss of generality that A ∩ B =
{1}. Let X be a subnormal subgroup of G. To show that X is normal in
G, we can further assume that X has trivial intersection with AB, as by
hypothesis AB ≤ Z(G). Let now x1 and x2 be elements of X and let a
and b be elements of A and B, respectively, such that x1a = x2b. Since
X ∩AB = {1}, ab−1 = 1 and hence a = b = 1 because A∩B = {1}. We have
just shown that X = XA ∩ XB and hence that X is normal in G. �

The following proposition deals with the soluble case.

Proposition 2.2. Let G be a soluble group and let L be the last term of the
lower central series of G. Then G is a T -group with finite conjugacy classes
if and only if either

(i) G is abelian or
(ii) G is periodic, every subgroup of L is normal in G, L is the direct product

of cyclic subgroups, Lp is finite for each p ∈ π(L) and G = K �L, where
K is a Dedekind group, π(K) ∩ π(L) = ∅, 2 �∈ π(L) and [k, L] is finite
for each element k of K \ Z(G).

Proof. Assume that G is a T -group with finite conjugacy classes, let Z =
Z(G) and let F be the Fitting subgroup of G. Since G is a T -group, every
subgroup of F is normal in G and hence G/Z(F ) acts on F as a group
of power automorphisms; moreover, the FC-property implies that G/Z is
locally finite and residually finite and G′ is periodic, so that in particular
G, if not periodic, is generated by its elements of infinite order. If G is not
periodic, then such is Z and hence F , so that, since every subgroup of F is
normal in G and there are central elements of infinite order, it follows that F
is central in G and hence Z = F = CG(F ) = G. Then we may assume that
G is periodic and recall that L2 is divisible. Since G/Z is residually finite, L2

must be trivial and hence L ∩ Z = {1}, so that L is reduced. Moreover, if we
let P be a non-trivial primary component of L, G must contain an x element
acting as a non-trivial (universal) power automorphism on P , so that P must
be finite, otherwise x would have infinitely many conjugates. In particular,
L is the direct product of cyclic subgroups. Let C = CG(L) and let g be an
element in G\C. As g has finitely many conjugates in G, it follows that [g, L]
is finite. From this and from the fact that every subgroup of L is normal in
G, it follows that G/C is isomorphic with a subgroup of

Dr
p∈π(L)

PAut(Lp),

where Lp is the p-component of L. Then G/C is countable and by Theorem
5.1.2 in [14] we may find a subgroup K of G such that G = K � L and
π(K) ∩ π(L) = ∅. Clearly, K � G/L is a nilpotent T -group and hence is a
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Dedekind group. Finally, just as above, the FC-property implies that [k, L]
is finite for each element k of K \ Z(G).

Conversely, one sees immediately that G is an FC-group, while it is a
T -group by a straightforward application of Lemma 5.2.2 in [14]. �

We notice that one thing we can deduce from the proof is that that last
condition in point (ii) is just another way of saying that K/Z(G) acts on
L as a subgroup of the direct product Drp∈π(L)PAut(Lp), where Lp is the
p-component of L for a prime p in π(L) and PAut(Lp) is the group of power
automorphisms of Lp, i.e. the group of all automorphisms of Lp which fix
every cyclic subgroup of Lp.

Corollary 2.3. Every non-periodic T -group with finite conjugacy classes is
abelian.

We continue with a descriptive lemma which relies on the Classification
of Finite Simple Groups and allows us to be more specific about our exposi-
tion. Its proof is a straightforward application of the theory of Schur covers
together with a knowledge of Schur multipliers of finite simple groups (see,
for instance, Table 4.1 in [12]).

Lemma 2.4. Let G be a group which is a central extension of a subgroup Z
by a finite simple non-abelian group. Then G′ ∩ Z either is isomorphic with
a subgroup of Zl × Zm × Zn with

(l,m, n) ∈ {(3, 3, 4), (3, 4, 4)}
or is a periodic cyclic group if G/Z is of projective or unitary type.

We pass now to a characterization of T -groups with finite conjugacy
classes. This is a natural generalization of Theorem 4.1 in [18].

Theorem 2.5. Let G be a group and let S be the subsoluble radical of G. Then
G is a T -group with finite conjugacy classes if and only if there exists a perfect
subgroup P of G such that

(i) P ∩ Z(S) = Z(P ) and P/Z(P ) is the direct product of finite simple
normal subgroups of G;

(ii) if there is a bound over the order of the fields or over the dimensions of
every finite simple subgroup of P/Z(P ) which is of projective or unitary
type, then Z(P ) has finite exponent;

(iii) G/P is a soluble T -group with finite conjugacy classes;
(iv) [P, S] = {1} and each subnormal subgroup of S is normal in G;
(v) [g, P ] is finite and non-trivial for each element g of G \ PS.

Proof. Suppose that G is a T-group with finite conjugacy classes. Let S be the
subsoluble radical of G, which is also the soluble radical of G, since subsoluble
T -groups are easily seen to be soluble. As G/Z(G) is locally finite and any
finite subset of a periodic FC-group can be embedded in a finite normal
subgroup, it is clear that G contains no infinite simple sections. The soluble
case has already been treated in Proposition 2.2, so we may suppose that G
is not soluble. Let H be a subgroup of G such that HS/S is non-abelian and
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simple, so that it is also finite. Since H/H ∩ S is perfect and G′ is periodic,
H contains a finite perfect subgroup K such that H = K(H ∩ S). As every
subgroup of both S/γ3(S) and γ3(S) is G-invariant and K is perfect, the latter
must centralize the whole S and hence, in particular, it is a central extension
of K ∩ Z(S) by a finite simple non-abelian group. Let now {Si/Z(S)}i∈I be
the collection of all simple non-abelian normal subgroups of G/Z(S) and let
Z = 〈S′

i ∩Z(S) | i ∈ I〉. Since G′ is periodic, Z is a periodic subgroup of Z(S)
and if there is a bound over the order of the fields or over the dimensions
of every Si/Z(S) which is of projective or unitary type, then Z has finite
exponent by Lemma 2.4. Let now P/Z be the subgroup of G/Z generated
by all simple non-abelian normal subgroups of G/Z and let C/Z be the
centralizer in G/Z of P/Z. Clearly, Z = P ∩ Z(S) = Z(P ). Then P/Z is the
direct product of (possibly infinitely many) finite simple non-abelian groups
(see, for instance, [15, Lemma 5.44]). If C contains a normal subgroup D such
that DS/S is simple and non-abelian, then by a previous argument C/Z will
contain a simple non-abelian subgroup, against the fact that P ∩ C = Z. So
we have that C/Z is soluble and hence C = S. Now, by the Classification
of Finite Simple Groups the outer automorphism group of any finite simple
group is soluble and hence G/P is a soluble group, which is of the type
described by Proposition 2.2, because G/P is still a T -group.

Since now [P, S] lies in the centre of P , it follows that each mapping
g ∈ P → [g, s] ∈ Z for any element s of S is a homomorphism, which shows
that [P, S] must be trivial. Moreover, it is obvious that every subnormal
subgroup of S is normal in G. Finally, [g, P ] is finite for any element g of
G\PS, because G is an FC-group and so g must act non-trivially on finitely
many simple direct factors of P/Z.

Conversely, let G be a group satisfying our description. As G/P and G/S
are both FC-groups by (iii) and (v), respectively, and since [P, S] = {1} by
(iv), it follows that G is isomorphic with a subgroup of the direct product of
FC-groups and hence it is an FC-group itself. Assume now for a contradiction
that there exists a subnormal non-normal subgroup H of G. By (iv), H ∩S is
normal in G and hence we may assume that H and S have trivial intersection.
Moreover, the same holds for P by (i) and hence we take H ∩ PS = {1}, so
that H has to contain an element in G\PS. However, any such element must
act non-trivially on some simple direct factor of P/Z, otherwise it would be
contained in CG(P ) = S, and this implies that P and H have non-trivial
intersection by means of the subnormality of H and the fact that P/Z is
perfect, a contradiction. �

With the notation of Theorem 2.5, the subgroup Z(P ) seems to have
quite an unrestricted structure, excepted for the case in which there is some
sort of bound over the finite simple subgroups of P/Z(P ). Example 4.1 shows
that Z(P ) cannot be taken in general to be a subgroup of Z(G). Other
reasonable questions are about the possible rank and exponent of Z(P ). To
answer this, we will show in Example 4.5 that Z(P ) can have infinite exponent
and also infinite rank.
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3. FC-groups with Few Subnormal Non-normal Subgroups

We now want to inspect the structure of FC-groups with few subnormal non-
normal subgroups in the sense of satisfying either the maximal, the minimal or
the double chain condition on subnormal non-normal subgroups. As a general
classification of FC-groups satisfying the latter property will easily enable
us to specialize to the other two properties, we begin studying FC-groups
satisfying the double chain condition on subnormal non-normal subgroups.
In dealing with this case, just as in the previous section, finite simple groups
will naturally show up and a use of the Classification of Finite Simple Groups
seems to be unavoidable.

Just as in the case of a subsoluble T -group, if a subsoluble group satisfies
the double chain condition on subnormal non-normal subgroups, then it is
soluble. This has been proved in [4].

Proposition 3.1. Every subsoluble DCsnn-group is soluble.

Before stating our results, we need some tools to construct double chains
of subnormal non-normal subgroups out of some particular infinite direct
products. To this aim, let G be a group such that

G = Dr
n∈N

Gn (1)

is a decomposition of G into the direct product of countably many non-trivial
subgroups. Then G admits the double chain

· · · < U−k < · · · < U−1 < U0 < U1 < · · · < Uk < · · · (2)

where

Uk = ( Dr
n∈N

G2n−1) × ( Dr
1≤n≤k

G2n) and U−k = Dr
k<n+1

G2n−1

for each non-negative integer k. We shall say that (2) is the double chain
associated to the direct decomposition (1).

Remember here that a subnormal section of an arbitrary group G is a
factor group of the form X/Y , where X is a subnormal subgroup of G and
Y is a normal subgroup of X.

Lemma 3.2. Let G be a DCsnn-group and let H/K be a subnormal section
of G which is a direct product of an infinite family of non-trivial subgroups
F = {Si/K}i∈I . Then K is normal in G and every subnormal subgroup of
G/K having trivial intersection with infinitely many elements of F is normal.
In particular, each Si is normal in G. Moreover, if G is an FC-group, then
G/K is a T -group.

Proof. Assume first without loss of generality that I = N and split the col-
lection F into the two infinite subcollections {S2n}n∈N and {S2n−1}n∈N, so
that

H/K = U/K × V/K

where

U/K = Dr
n∈N

(S2n/K) and V/K = Dr
n∈N

(S2n−1/K).
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Since the group satisfies the double chain condition on subnormal non-
normal subgroups, taking into account the double chains associated with
U/K and V/K, respectively, one can find two G-invariant subgroups U∗ and
V ∗ of G such that K ≤ U∗ ≤ U and K ≤ V ∗ ≤ V . Obviously, we have
U∗ ∩ V ∗ = K and hence K is normal in G. On the other hand, by a similar
reasoning we see that each direct term of H/K is normal in G/K and in
particular H is normal in G.

Let now X/K be any subnormal subgroup of G/K with trivial intersec-
tion with infinitely many Si/K. Then we may find a positive integer m such
that X ∩ H ≤ 〈S1, . . . , Sm〉. Consider now the double chains

· · · < W−n < · · · < W−1 < W0 < W1 < · · · < Wn < · · ·
and

· · · < Y−n < · · · < Y−1 < Y0 < Y1 < · · · < Yn < · · ·
respectively associated to the collections of normal subgroups {S2m, S2m+2,
S2m+4, . . .} and {S2m+1, S2m+3, S2m+5, . . .}. Notice that any two distinct
members of the two collections have intersection equal to K. Then

· · · < XW−n < · · · < XW−1 < XW0 < XW1 < · · · < XWn < · · ·
and

· · · < XY−n < · · · < XY−1 < XY0 < XY1 < · · · < XYn < · · ·
are double chains consisting of subnormal subgroups of G, and so there exist
two integers r and s such that XWr and XYs are normal in G. On the other
hand, X = XWr ∩ XYs and hence X is normal in G.

Finally, suppose that G is an FC-group and let Y be a subgroup of G
such that Y K is a subnormal non-normal subgroup of G. If we now let y
be an element of Y such that 〈y〉G is not contained in Y K, by replacing the
latter with (Y ∩ 〈y〉G)K we may assume that Y K/K is finitely generated by
the FC-property. However, one immediately finds in H/K an infinite family
of G-invariant subgroups with trivial intersection with Y K/K and this leads
to a contradiction by what proved in the previous paragraph. �

Lemma 3.3. Let G be an FC-group satisfying the double chain condition on
subnormal non-normal subgroups, let S be the subsoluble radical of G and let
T be the torsion subgroup of Z(G). If G is not a T -group, G/S is infinite and
S/Z(G) is finite, then

(i) T has finite total rank and G contains subgroups A, B and P such that
A ≤ B ≤ T , G/A is a maximal T -quotient of G, P/B is an infinite
direct product of finite simple non-abelian normal subgroups of G/B
and G′′/P is finite; moreover, if A is infinite, then A = B, while if A
is finite A ≤ N ′ for each normal factor N/B of P/B;

(ii) A is isomorphic either with a subgroup of Zl × Zm × Zn, where

(l,m, n) ∈ {(3, 3, 4), (3, 4, 4)},

or with a locally cyclic periodic group; if moreover there is a bound over
the order of the fields or over the dimensions of every simple direct
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factor of P/B which is of projective or unitary type, then B has finite
exponent.

Proof. By Proposition 3.1, S is also the soluble radical of G, while G/Z(G)
is periodic and residually finite since G is an FC-group. Let Z = Z(G), let
X be a subnormal non-normal subgroup of G and let x be an element of X
such that 〈x〉G is not contained in X. By changing X with X ∩ 〈x〉G, which
is finitely generated because G is an FC-group, we may also assume that
X is finitely generated. By this and Lemma 3.2, it follows that the torsion
subgroup T of Z has finite total rank.

Let H/Z be a normal subgroup of finite index of G/Z such that H ∩S =
Z. Then H/Z has no non-trivial soluble subnormal subgroup. Let F/Z be a
finite non-abelian simple subnormal subgroup of H/Z. Then E1/Z = F1/Z =
FG/Z is the direct product of finitely many non-abelian simple subgroups
of H/Z (see, for instance, [15, Lemma 5.44]). Now consider H1/Z to be the
normal core of CH/Z(F1/Z) in G/Z. Clearly, H1 is a normal subgroup of
finite index of G and F1 ∩ H1 = Z, because F1/Z has trivial centre. As
H1/Z does not contain soluble subnormal subgroups, arguing as above, there
exists a G-invariant subgroup E2/Z of H1/Z, which is the direct product
of finitely many non-abelian finite simple groups. Clearly, F2/Z = E1E2/Z
is still a normal subgroup of G/Z which is the direct product of finitely
many non-abelian finite simple groups and has trivial intersection with the
normal core H2/Z of CH/Z(F2/Z) in G/Z. Hence, by recursion we construct
the normal subgroup

⋃
Fi/Z, which is the direct product of infinitely many

subnormal non-abelian simple subgroups, any of them being normal in G/Z
by Lemma 3.2. If we now let {Si/Z}i∈I be the collection of all simple non-
abelian normal subgroups of G/Z, from Lemma 2.4 we get that each S′

i ∩ Z
is a periodic central subgroup of G which can have only a very restricted
structure. Put Zi = S′

i ∩ Z and let U be the subgroup of Z generated by
every Zi. As G/U contains a direct product of infinitely many subgroups,
from Lemma 3.2 it follows that G/U is a T -group. Moreover, since U satisfies
the minimal condition on subgroups, we may find a subgroup A of U such
that G/A is a maximal T -quotient of G. If A is finite, set J = {i ∈ I |A ≤ Zi}.
If I \ J is infinite, we may let H = 〈Zi | i ∈ I \ J 〉, so that the quotient G/H
contains an infinite direct product of finite simple non-abelian groups and it
is a T -group by Lemma 3.2. However, Lemma 2.1 shows that G/H ∩ A is a
T -group and this goes against the maximality of G/A. Then in this case J
is infinite and I \ J is finite. On the other hand, if A is infinite, this means
that there are infinitely many projective or unitary members of {Si/Zi} and,
correspondingly, infinitely many cyclic members of {Zi}. Since U has finite
total rank, we may find an infinite subfamily of {Sij}j∈J1 of {Si} whose
corresponding {Zij}j∈J1 generate an infinite locally cyclic group of finite
total rank. This, together with the minimality of A, shows that A is exactly
the subgroup 〈Sij | j ∈ J1〉 and in particular it is divisible. In this case, set
J = {i ∈ I |Zi < A}. As before, I \ J is finite.

Put now P = 〈Sj | j ∈ J〉, R = 〈Si | i ∈ I〉 and B = 〈Zj | j ∈ J〉. Notice
that P1 ≤ G′′, since P is perfect, and that P/B is an infinite direct product of
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finite simple non-abelian normal subgroups of G/B, since J is infinite. Now
the finiteness of I \ J yields that R/P is finite, while G/Z is a T -group by
Lemma 3.2 since P/B is infinite. Then by Theorem 2.5 we may find a perfect
subgroup P1/Z containing Z(S)/Z such that G/P1 is a soluble T -group, so
that G′′ = P1. Remember that |G : H| is finite, so that |G′′ : G′′ ∩ H| is
finite as well. However, H ∩S = Z and hence G′′ ∩H ≤ R, which shows that
|G′′ : R| is finite. Then G′′/P is finite.

If now A is infinite, we already saw that A ≤ 〈Zj | j ∈ J〉 and hence
A = B. On the other hand, if A is finite, by definition it is contained in each
S′

j for j ∈ J , and hence we are done with point (i).
Finally, if A is infinite, we have already showed that it is locally cyclic,

while if it is finite it is defined in a way to be contained in each Zj with j ∈ J .
In particular, Lemma 2.4 applied to the subgroups Sj (with j ∈ J) yields the
structural information on A needed in point (ii). The same application of
Lemma 2.4 gives the condition for B to have bounded exponent and this
completes (ii) and the proof of our lemma. �

Notice here that Example 4.5 shows that in this lemma the hypothesis on
G being not a T -group cannot be omitted. In that case, G is a T -group, so A =
{1} and B can even have infinite rank. Moreover, some further information
about the relation between A and B in an FC-group satisfying the DCsnn-
property but not the T -property is given in Example 4.4, as they can be as
far away as possible with regard to cardinality.

We prove a splitting criterion which makes use of cohomology. It can be
put in a more general form, but we present it here in a way, that is more than
enough for our scopes. From now on, we denote with Q the group of rational
numbers and with Qp the group of rational numbers whose denominators are
integer powers of a prime number p.

Lemma 3.4. Let G be a group whose torsion elements form a subgroup T and
let p be a prime number. If G/T is isomorphic with a subgroup of Q, Z(T )
is finite, G acts trivially on the p′-component of Z(T ) and either fixed-point-
freely or trivially on the p-component of Z(T ), then G splits over T .

Proof. Let Q = G/T , let Z = Z(T ), make Z a Q-module with the induced G-
action and let B = [Q,Z] and A = CZ(Q). We first claim that H2(Q,Z) = 0.
By hypothesis, B is either trivial or equal to the p-component Zp of Z, so we
can take into account the extension

A � Z � B

and take the long exact cohomology sequence

· · · H2(Q,A) H2(Q,Z) H2(Q,B) · · ·
If we let

Ext(Q,A) � H2(Q,A) � Hom(M(Q), A)

be the short exact sequence derived by the Universal Coefficients Theorem, we
see that Hom(M(Q), A) = 0, because Q is locally cyclic and hence M(Q) = 0,
and that Ext(Q,A) is zero, too, since Q is torsion-free and A is finite (see
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[10, p. 223]). If B = {1} our claim is proved, so we may assume that Q acts
fixed-point-freely on B. On the other hand, now the results in [16] yield that
also H2(Q,B) is zero, so that H2(Q,Z) = 0 in any case. Let now χ be a
coupling of Q to T , let F a free subgroup of Q and consider the following
diagram

F

Aut(T ) Out(T ) Q

ϕF μF

π χ

where μF is the inclusion, π is the canonical epimorphism over Inn(G) and
ϕF is the homomorphism from F to Aut(T ) which exists by the projective
property of free groups. Since Q is locally free, its free subgroups form a
directed system, so that, by the universal property of direct limits, there
exists a homomorphism from Q to Aut(T ) which induces χ over Out(T ). This
shows that there is a semidirect product of T by Q with χ as its coupling.
Since we have already seen that H2(Q,Z) vanishes, it follows that there is
only one equivalence class of extensions of T by Q with coupling χ (see, for
instance, [17, 11.4.10]) and hence G splits over T . �

Recall here that an abelian group A is said to be minimax if it contains
a finitely generated subgroup X such that A/X is the product of finitely
many Prüfer subgroups. It is customary to define the spectrum of A, Sp(A)
to be the set of primes dividing orders of elements in A/X. We are now ready
to prove the main theorem of this section.

Theorem 3.5. Let G be an FC-group and let T be the torsion subgroup of
G. Then G satisfies the double chain condition on subnormal non-normal
subgroups if and only if it satisfies one of the following conditions:

(a) G is a Černikov or a polycyclic group;
(b) G is T -group;
(c) G is not central-by-finite and

(c.1) G contains subgroups A, B and P such that A ≤ B ≤ T ∩ Z(G),
G/A is a maximal T -quotient of G, P/B is an infinite direc-
t product of finite simple non-abelian normal subgroups of G/B
and G′′/P is finite; moreover, if A is infinite, then A = B and
G/A is maximal with respect to containing infinite direct products
of finite simple non-abelian G-invariant subgroups, while if A is
finite A ≤ N ′ for each normal factor N/B of P/B;

(c.2) if S is the subsoluble radical G, then either
(i) S is a Černikov group or
(ii) S is a polycyclic group or
(iii) S is a polycyclic extension of a Prüfer group properly con-

taining A;
(c.3) A is isomorphic either with a subgroup of Zl × Zm × Zn, where

(l,m, n) ∈ {(3, 3, 4), (3, 4, 4)},
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or with a locally cyclic periodic group; if moreover there is a bound
over the order of the fields or over the dimensions of every simple
direct factor of P/B which is of projective or unitary type, then B
has finite exponent;

(d) G is central-by-finite and Z(G) = H × P , where H is finitely generat-
ed and infinite and P is a Prüfer group containing a finite non-trivial
subgroup A such that G/A is a T -group;

(e) G = H � T , where H is torsion-free minimax group of rank 1 such that
Sp(H) = {p} for a prime p, T is finite, every subnormal subgroup of T
is normal in G and G acts trivially on each p′-subgroup of Fit(T ) and
Fit(T/T ′′).

Proof. Suppose first that G satisfies the double chain condition on subnormal
non-normal subgroups. Assume that G is neither Černikov nor polycyclic nor
a T -group, let X be a subnormal non-normal subgroup of G, put Z = Z(G)
and let S be the subsoluble radical of G, which is also the soluble radical
of G by Proposition 3.1. If S is either Černikov or polycyclic, we have that
G/S is infinite and that S/Z is finite, since G/Z is locally and residually
finite, so that G satisfies (c.1) and (c.3) by Lemma 3.3 and clearly also (c.2).
Suppose hence that S is neither Černikov nor polycyclic. If we let x be an
element of X such that 〈x〉G is not contained in X, then we may replace
X with X ∩ 〈x〉G and assume from now on that X is finite if and only if x
is periodic and that XG is finitely generated, because of the FC-property.
By this and Lemma 3.2, we have that any abelian subgroup of F = Fit(S)
has finite total rank, so that, in particular, the torsion subgroup T of F is a
Černikov group. Then, if Z is torsion, the whole G is torsion, so that T = F
and S is a Černikov group, as S/CS(F ) is periodic group of automorphisms
of a Černikov group. This contradiction to our assumption on S gives that Z
is not periodic.

Suppose now for a contradiction that G does not satisfy the maxi-
mal condition on subnormal non-normal subgroups and let M be a mini-
mal subnormal non-normal subgroup of G. Notice here that any minimal
subnormal non-normal subgroup of an FC-group is finite. For if m is an el-
ement of M such that 〈m〉G is not contained in M and m has finite order,
M = M ∩〈m〉G < 〈m〉G is finite, while if m has infinite order, then M is eas-
ily seen to contain some proper subgroup which is subnormal and not normal
in G, as G/Z is periodic. Let now

M = G0 < G1 < · · · < Gn < · · ·
be an ascending chain of subnormal non-normal subgroups of G with M
minimal subnormal non-normal and G1 minimal subnormal non-normal with
respect to the condition of containing M . We remark that the existence of
G1 is guaranteed by the double chain condition. Let N = MG1 , which is
finite because M itself is finite. Since M is subnormal in G1, N is a proper
subgroup of G1, so that we may write G1 = 〈〈g〉G1N | g ∈ G1 \ N〉; then by
the minimality of G1 and since it is not normal in G, we have as before that
G1/N must coincide with the normal closure in itself of one of its elements,
say G1 = 〈g1〉G1N . If now g1N has infinite order, as before it contains a
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proper subgroup containing M which is subnormal non-normal in G and this
contradicts the minimality of G1. So G1/N is finite and thus G1 is finite.
Hence we may assume that every Gi is finite. If a is a central element of
infinite order of G, then

· · · < 〈a2〉G0 < 〈a〉G0 < 〈a〉G1 < · · · < 〈a〉Gn < · · ·
is a double chain of subnormal non-normal subgroups of G, so that G is peri-
odic, against what we already proved. Then G satisfies the maximal condition
on subnormal non-normal subgroups. Moreover, notice that F is nilpotent
(see [4, Corollary 2.8]) and that in particular it satisfies the maximal con-
dition on non-normal subgroups. Let now P be a Prüfer p-subgroup of Z
for a prime p, if any. It follows from the maximal condition on subnormal
non-normal subgroups that for each subnormal non-normal subgroup Y of G
we may find a non-trivial cyclic subgroup CY contained in P such that Y CY

is normal in G. Assume by a contradiction that the orders of these CY have
no upper bound. In this case, let 〈ci〉 be the subgroup of order pi of P for any
positive integer i and let J be an infinite subset of N such that {Yj}j∈J is a
family of subnormal non-normal subgroups of G for which CYj

= 〈cj〉. Since
the normal closure of Yj is precisely Yj〈cj〉, we have that each subgroup of
the following ascending chain

Yj1 < 〈Yj1 , Yj2〉 < · · · < 〈Yj1 , Yj2 , . . . , Yji〉 < · · ·
is subnormal and not normal and this goes against our last assumption on G.
Then there is a maximal cyclic subgroup C of P such that G/C is a T -group.
We now want to show that if such P exists, it is the only Prüfer subgroup of
G. To this aim, let P1 be a Prüfer subgroup of Z with trivial intersection with
P . By what just proved, there exists a subgroup C1 of P1 such that G/C1

is a T -group. However, Lemma 2.1 yields that G itself is a T -group and this
case has been already ruled out.

We split the proof in two cases: whether F/T is finitely generated or
not.

Suppose first that F/T is finitely generated. This, together with the fact
that S is not polycyclic, implies that T contains the Prüfer p-subgroup P .
Now, S/Z(F ) is isomorphic with a periodic group of automorphisms of F and
hence is finite. Since P is the only Prüfer subgroup of S, S/P is polycyclic.
Thence, if G/S is infinite, S satisfies (c.2) and G satisfies (c.1) and (c.3) again
by Lemma 3.3, while if G/S is finite, G satisfies (d).

Suppose finally that F/T is not finitely generated. As F satisfies the
maximal condition on non-normal subgroups and T is a Černikov group, by
the results in [9] we may write F = Q×T , where Q is abelian, torsion-free and
not finitely generated. Notice that by Lemma 2.2 in [4], every subgroup of Q
is normal in G and hence Q is central in G by the FC-property. By this, we
get that S/Z(S) is isomorphic with a periodic group of automorphisms of T ,
which is a Černikov group and hence is itself finite. Assume by a contradiction
that Q has rank at least 2, let K be a maximal locally cyclic subgroup of Q
which is not finitely generated and let a be an element of Q such that 〈a〉 has
trivial intersection with K. Notice that X ∩ K < 〈x〉. If 〈x〉 has non-trivial
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intersection with K, then 〈xa〉 ∩ K = {1}, so that we may assume that X
and K have trivial intersection. However, if

〈k1〉 < 〈k2〉 < · · · < 〈ki〉 < · · ·
is an ascending chain in K, then the family of subgroups of G defined by
{X〈ki〉}i≥1 forms an ascending chain of subnormal non-normal subgroups.
Hence Q has rank 1. Moreover, if Q contains a subgroup R such that Q/R
has infinite total rank, than G/R contains an infinite direct product of locally
cyclic subgroups and hence G/R is a T -group by Lemma 3.2 and even G is
a T -group by Lemma 2.1. This shows in particular that Q is minimax and,
since Q is not finitely generated, it is divisible for at least one prime, call it
q. Let

Q0 < Q1 < · · · < Qn < · · ·
be an ascending chain of subgroups of Q. Every finitely generated periodic
subnormal subgroup W of G has trivial intersection with Q, and hence there
exists a non-negative integer m such that WBm is normal in G, so that
W = W ∩WQm is also normal in G. Then every periodic subnormal subgroup
of G is normal in G and in particular x has infinite order. Let X = 〈x〉 � X1

for a periodic subgroup X1 of G. Notice that we can do this since X =
〈x〉G ∩ X and since X ′ is periodic. Let now Tp and Tp′ be the p-component
and the p′-component of T , respectively, and assume the existence of a q′-
element t of T such that 〈ta〉 is different from 〈ta〉g for some g in G and a
in Q. As Q is q-divisible, we may find a subset {a = a0, a1, . . .} of Q such
that aq

i+1 = ai for any non-negative integer i. Let e be the order of 〈t〉 and
consider now the following family of subgroups: {〈tkiai〉}i≥0, where k0 = 1
and qki = ki−1 (mod e) for i > 0. Then this family is easily seen to form a
proper ascending chain of subgroups which are not normal in G and this is a
contradiction. So every subgroup of Q × Tq′ is normal in G. In particular, as
the same reasoning can be made in G/X1 and not every subgroup of XF/X1

is normal in G, Q is divisible only by q.
As we want to show that T is finite, which is to say that it contains

no Prüfer subgroups, and that G/S is finite, we will assume for simplicity in
this paragraph that X1 = {1}; in fact, the Fitting subgroup of G/X1 is still a
direct product of a subgroup which is torsion-free, minimax, divisible only by
q and has rank 1, with a torsion subgroup all of whose cyclic subgroups are
normal in G/X1. Now, F contains 〈x〉, which is subnormal and non-normal,
so that we have that Tp is not central in G, otherwise F itself would be
central, and may write x = ab for elements a of Q and b of Tp \ Z(G). In
particular, Tp is reduced, otherwise P would not be central in G. However, if
Tp′ is infinitely generated, one steadily finds an ascending chain of subnormal
non-normal subgroups containing x and this cannot be. Thence T is finite.
Assume now for a contradiction that G/S is infinite. Then Lemma 3.3 yields
the existence of a periodic subgroup A ≤ Z(G) such that G/A is a T -group.
Notice that we can keep on assuming X1 = {1}, since it clearly does not
contain A. However, 〈a, b〉 has trivial intersection with A, so that 〈x〉A is
still subnormal and not normal in G/A. Then G/S is finite. Let E be the
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torsion subgroup of G. Since Q has rank 1 and Sp(Q) = {q}, the same
holds for G/E, which is hence a torsion-free minimax group of rank 1 with
Sp(G/E) = {q}. As G/E is q-divisible, it either acts trivially or fixed-point-
freely on Tp and hence we can use Lemma 3.4 to find a subgroup H of G
such that G = H � T and H is torsion-free minimax group of rank 1 such
that Sp(H) = {q}. Finally, assume for a contradiction that U is a periodic
normal non-central subgroup of G containing a normal subgroup V such that
U/V = 〈u〉V/V is cyclic of order qn for a prime q �= p and a positive integer
n. Since A∩V = {1}, we may assume without loss of generality that V = {1}.
Let h be a non-trivial element of Q and let y = hu. Now, F/〈yqn〉 contains a
Prüfer p-group and 〈y〉〈yqn〉 is a subnormal non-normal subgroup of G/〈yqn〉,
which makes it possible to construct an ascending chain of subnormal non-
normal subgroups. Hence G is of type (e) and this concludes the necessary
condition.

Conversely, an FC-group of type (a) or (b) clearly satisfies the double
chain condition on subnormal non-normal subgroups, while a group of type
(d) certainly satisfies the maximal one. Hence we may assume that G is
an FC-group of type (c) or (e). Begin with type (c) and notice that the
subsoluble radical S of G is also the soluble radical of G by (c.2). Denote
here with a ”bar” a quotient group modulo S. Let G

′′
= P × Q, where

P = DrPi and Q = DrQi. Since G is an FC-group, G/A is a T -group and G
′′

has trivial centralizer in G, G/G′′ can be embedded into the direct product
of DrAut(Pi) × DrAut(Qi), so that CG(P ) is a finite group by (c.1). Let
C = CG(P ) and let X be any subnormal non-normal subgroup of G. Assume
first that A is finite and let N/B be any finite simple direct factor of P/B.
Since A ≤ N ′ by (c.1), X has to centralise N and hence the whole P by the
generality of N . In particular, X is contained in C. If S is either polycyclic
or Černikov, every subnormal non-normal subgroup of G is contained in a
polycyclic or Černikov group (i.e. the subgroup C), respectively, so G satisfies
the double chain condition on subnormal non-normal subgroups. Hence we
may assume that S is a polycyclic extension of a Prüfer p-group D for a
prime p such that D properly contains A. In this case, since C/D satisfies
the maximal condition on subgroups, for any ascending chain

G1 < G2 < · · · < Gn < · · ·
of subnormal non-normal subgroup of G, the subgroups of which we have
shown are contained in C, there exists a positive integer m such that Gm has
to contain A itself. Hence Gm is normal in G and this contradiction shows that
G satisfies again the maximal condition on subnormal non-normal subgroups.
Assume now that A is infinite, so that, by (c.2) and (c.3), S is a Černikov
group. Since G/A is a T -group, X∩A is a proper subgroup of A. Since A = B
and G/A is maximal with respect to containing infinite direct products of
finite simple non-abelian G-invariant subgroups, we have that only finitely
many P ′

i are contained inside X ∩A, so we may collect all of these in a finite
subgroup P1 of P and write P = P1 × P2. Since C is finite, CG(P2) is finite
as well. Now, if we let C1 = CG(P2), just as in the case where A was finite,
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X is contained in C1, which is Černikov since S is such. Hence in this case G
satisfies the minimal condition on subnormal non-normal subgroups. Finally,
let G be a group described in (e), assume without loss of generality that
X is finitely generated and let X = 〈x〉 � X1 be a subnormal non-normal
subgroups of G for an element x of infinite order and a periodic subgroup
X1. Since we want to show that only finitely many subnormal non-normal
subgroups contain X, using the facts that T is a T -group with structure as
in Theorem 2.5 and that moreover every subnormal subgroup of T is normal
in G, it is not difficult to show that we can assume that X1 = {1} and that
〈xt〉 is central in G for an element t of F = Fit(T ) of order a power of a
prime q. Now we know that every p′-subgroup of F is central in G, so that
q = p. Then, in particular, the element x(Z(G) ∩ 〈x〉) has order a (positive)
power of p. However, x(Z(G) ∩ 〈x〉) is not contained in the only Prüfer p-
subgroup of G/(Z(G)∩〈x〉) and hence cannot have infinite height. From this
it follows that G has only finitely many subgroups containing 〈x〉 and our
proof is concluded. �

From the proof of this theorem it is not difficult to derive the follow-
ing two corollaries pertaining the maximal and the minimal condition on
subnormal non-normal subgroups.

Corollary 3.6. Let G be an FC-group. Then G satisfies the maximal chain
condition on subnormal non-normal subgroups if and only if it satisfies one
of the following
(a) G is a polycyclic group;
(b) G is T -group;
(c) if G is not central-by-finite, then

(c.1) G contains subgroups A, B and P such that A ≤ B ≤ T ∩ Z(G),
G/A is a maximal T -quotient of G, P/B is an infinite direct prod-
uct of finite simple non-abelian normal subgroups of G/B, G′′/P
is finite and A ≤ N ′ for each normal factor N/B of P/B;

(c.2) the subsoluble radical S of G is either polycyclic or a polycyclic
extension of a Prüfer group properly containing A;

(c.3) A is isomorphic with a subgroup of Zl × Zm × Zn, with

(l,m, n) ∈ {(3, 3, 4), (3, 4, 4)};

(d) if G is central-by-finite, then Z(G) = H × P , where H is finitely gener-
ated and infinite and P is a Prüfer group containing a finite non-trivial
subgroup A such that G/A is a T -group.

(e) G = H � T , where H is torsion-free minimax group of rank 1 such that
Sp(H) = {p} for a prime p, T is finite, every subnormal subgroup of T
is normal in G and G acts trivially on each p′-subgroup of Fit(T ) and
Fit(T/T ′′).

Corollary 3.7. Let G be an FC-group. Then G satisfies the minimal condi-
tion on subnormal non-normal subgroups if and only if it satisfies one of the
following
(a) G is a Černikov group;
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(b) G is T -group;
(c) G is not central-by-finite and

(c.1) G contains subgroups A, B and P such that A ≤ B ≤ T ∩ Z(G),
G/A is a maximal T -quotient of G, P/B is an infinite direc-
t product of finite simple non-abelian normal subgroups of G/B
and G′′/P is finite; moreover, if A is infinite, then A = B and
G/A is maximal with respect to containing infinite direct products
of finite simple non-abelian G-invariant subgroups, while if A is
finite A ≤ N ′ for each normal factor N/B of P/B;

(c.2) the subsoluble radical S of G is a Černikov group;
(c.3) A is isomorphic either with a subgroup of Zl × Zm × Zn, where

(l,m, n) ∈ {(3, 3, 4), (3, 4, 4)},

or with a locally cyclic periodic group; if moreover there is a bound
over the order of the fields or over the dimensions of every simple
direct factor of P/B which is of projective or unitary type, then B
has finite exponent;

Notice finally that from the latter corollary it follows that any non-
periodic FC-group satisfying the minimal condition on subnormal non-normal
subgroups has to be a T -group.

4. Some Examples

In this section, we present some examples on how our results cannot be
improved. We begin showing that in Theorem 2.5 the subgroup Z cannot
be required to be central in G. To this aim, let f be a primitive root of
GF (25), let H = SL(3, 25) and let σ be the element of Aut(H) induced
by the Frobenius map f → f5. Now, the centre of H has order 3 and is
generated by the diagonal element diag(f8), so that, if we consider the group
G = 〈σ〉 � H under the usual action of σ, we immediately see that G is a
T -group with trivial centre. Clearly, we immediately get an infinite T -group
of the same kind if we take the direct product of G by itself infinitely many
times.

Example 4.1. There exist finite and infinite T -groups with finite conjugacy
classes, trivial centre and non-trivial soluble radical.

Notice that this behaviour is not typical of the case in which G is a
T -group. Indeed, if G is the direct product of a group constructed above
by any DCsnn-group H such that 3 �∈ π(H), then we have that G satisfies
the double chain condition on subnormal non-normal subgroups and that for
any subgroup K of G such that G/K contains a maximal direct product of
finite simple non-abelian G-invariant subgroups, K cannot be contained in
the centre.

In this connection, we deal now with questions regarding the structure of
the centre of an FC-group satisfying the double chain condition on subnormal
non-normal subgroups.
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Example 4.2. It is possible to construct, for any prime p, an FC-group satis-
fying the double chain condition on subnormal non-normal subgroups which
is a non-split central extension of a Prüfer p-group P and such that each
factor of G over a finite subgroup of P is not a T -group.

Proof. Fix a prime p and use Dirichlet’s theorem on arithmetic progressions
to find, for every integer m > 1, a prime qm such that lmpm = qm − 1 for
a positive integer lm. Let now nm = pm−1, define (for r ∈ {1, 2}) rSm =
SL(nm, qm), rGm = 〈rgm〉 �

rSm � GL(nm, qm), Z(rGm) = 〈rzm〉 and
P =

⋃
i∈N

〈ci〉 a group of type p∞ with |〈ci〉| = pi. Notice that the order of
rzm is pm−1 and that the order of gm, which is qm − 1, is divided by pm for
each m. Let

H = ( Dr
m>1

2Gm) � ( Dr
m>1

1Gm × P ),

where [P, 2Gm] = 1, [1Gi,
2 Gj ] = 1 if i �= j, [1Si〈gpi

i 〉, 2gi] = 1 and [1gli
i , 2gi] =

ci. Let K be the (central) subgroup of H generated by the elements rz−1
m cm−1

(for each r ∈ {1, 2} and m > 1) and let G = H/K. Then G is the FC-group
which we were looking for. Notice that G clearly satisfies the minimal condi-
tion on subnormal non-normal subgroups, while it does not satisfy the max-
imal one, as the consideration of the family {1G2H/H, . . . , 1GmH/H, . . .}
shows. �

A little modification in what just constructed (namely taking nm = pm

and, consequently, H being generated by the elements of the form rz−1
m cm)

leads to the following

Example 4.3. It is possible to construct, for any prime p, a T -group with
finite conjugacy classes in which every proper central factor is a non-split
central extension of a Prufer p-group P .

With the same notations as in Example 4.2, let

H = (2G2 × Dr
m>2

2Sm) � (1G2 × Dr
m>2

1Sm × P ),

where [P, 2Sm] = [P, 2G2] = 1, [1Sm, 2G2] = [2Sm, 1G2] = 1 for m > 2,
[1Si,

2 Sj ] = 1 for all i and j and [1gl2
2 , 2g2] = c2. Let K be the (central)

subgroup of H generated by the elements rz−1
m cm−1 (for each r ∈ {1, 2} and

m > 2) and let G = H/K. Then G is an FC-group satisfying the minimal
condition on subnormal non-normal subgroups with A and B respectively
finite and infinite in the notation of Theorem 3.5. Then, we have proved the
following

Example 4.4. It is possible to construct, for any prime p, an FC-group G
satisfying the double chain condition on subnormal non-normal subgroups
which is not a T -group and which contains a finite subgroup A and an infinite
subgroup B such that A ≤ B ≤ Z(G), G/A is a maximal T -quotient of G
and G/B is maximal with respect to containing an infinite direct product of
finite simple non-abelian G-invariant subgroups.
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Another question arises naturally from Theorem 2.5 and it concerns the
rank and the exponent of the subgroup Z(P ). Again with the same notations
as in Example 4.2, let Gp = ( Dr

m>1

1Sm × P )K/K and let G = Dr
p∈P

Gp. Then

we get more information on Z(P ).

Example 4.5. There exists a T -group G with finite conjugacy classes which
contains a perfect subgroup P such that Z(P ) has infinite exponent and
infinite total rank.

We remark here that one can construct a similar example where Z(P )
is not even central in G.
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Federico II within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Brescia, M.: Groups satisfying the double chain condition on non-subnormal
subgroups. J. Group Theory 24, 95–108 (2021)

[2] Brescia, M., de Giovanni, F.: Groups satisfying the double chain condition on
subnormal subgroups. Ric. Mat. 65, 255–261 (2016)

[3] Brescia, M., de Giovanni, F.: Groups satisfying the double chain condition on
non-pronormal subgroups. Riv. Mat. Univ. Parma 8, 353–366 (2017)

[4] Brescia, M., de Giovanni, F.: Groups satisfying the double chain condition
on subnormal non-normal subgroup”. Adv. Group Theory Appl., 13, 83–102
(2022)

[5] Brescia, M., de Giovanni, F.: “Non-periodic groups satisfying the double chain
condition on subnormal non-normal subgroups”, In preparation

[6] Brescia, M., Russo, A.: Groups satisfying the double chain condition on abelian
subgroups. Bull. Aust. Math. Soc. 99, 212–218 (2019)

[7] Brescia, M., Russo, A.: Groups satisfying the double chain condition on non-
abelian subgroups. J. Algebra Appl. 19, 2 (2020)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


MJOM FC-groups with Few Subnormal Non-normal Subgroups Page 19 of 19 231

[8] Catino, F., de Giovanni, F.: “Some topics in the theory of groups with finite
conjugacy classes”, Aracne ed., Roma (2015)

[9] Cutolo, G.: On groups satisfying the maximal condition on non-normal sub-
groups. Riv. Mat. Pura Appl. 9, 49–59 (1991)

[10] Fuchs, L.: Infinite Abelian Grouos, vol. 1. Academic Press, New York (1970)
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