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Sasakian Structures on Tangent Sphere
Bundles of Compact Rank-One Symmetric
Spaces

J. C. González-Dávila

Abstract. A positive answer is given to the existence of Sasakian struc-
tures on the tangent sphere bundle of some Riemannian manifold whose
sectional curvature is not constant. Among other results, it is proved
that the tangent sphere bundle Tr(G/K), for any r > 0, of a compact
rank-one symmetric space G/K, not necessarily of constant sectional
curvature, admits a unique G-invariant K-contact structure whose char-
acteristic vector field is the standard field of T (G/K). Such a structure
is in fact Sasakian and it can be expressed as an induced structure
from an almost Hermitian structure on the punctured tangent bundle
T (G/K)\{zero section}.
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1. Introduction

The tangent sphere bundle of radius r > 0 over a Riemannian manifold
(M, g) is the hypersurface TrM = {u ∈ TM : g(u, u) = r2} of the tangent
bundle TM. There is an extensive bibliography on the Riemannian geometry
of TrM equipped with the induced metric g̃S from the Sasaki metric gS ,
specially about the unit tangent sphere bundle T1M. See E. Boeckx and L.
Vanhecke [6,7] and G. Calvaruso [9] for surveys of T1M and O. Kowalski
and M. Sekizawa [12–14] of TrM, for an arbitrary radius r > 0. The induced
metric on T1M from a g-natural metric, which generalizes the Sasaki and the
Cheeger–Gromoll metric, has been treated by Abbassi, Calvaruso and Sarih
(see, for example, [1–3]).
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With respect to the standard almost complex structure J, the Sasaki
metric on TM is Hermitian, in fact it is almost Kähler [18]. Then TrM,
as hypersurface of (TM, J, gS), inherits an almost contact metric structure
(ϕ, ξ, η, g̃S) and the unit vector field ξ = −JN, where N is the outward
normal unit vector field to the singular foliation {TrM}r≥0, is defined on
TM\{zerosection}. We say that ξ is the standard vector field of TM.

On T1M, the pair (1
2η, 1

4 g̃S) becomes a contact metric structure and
Tashiro [19] proved it is K-contact if and only if the base manifold (M, g)
has constant sectional curvature 1. Moreover, in this case, T1M is Sasakian.
For g-natural metrics, (M, g) must be of constant sectional curvature [1,
Theorem 2] and again the structure on T1M is Sasakian. Sasakian manifolds
can be considered in many respects as the class analogous to that of the
Kähler manifolds for the odd dimensional case. Principal circle bundles over
Kähler manifolds, together with the standard structure on R

2n+1, are the
best known examples (see, for example, [5, Ch. 6]).

The main objective of this paper is to find Sasakian structures on tan-
gent sphere bundles TrM, for any radius r > 0, over Riemannian manifolds
(M, g) with non-constant sectional curvature. As far as the author knows,
there are no examples satisfying these conditions in the literature.

The most natural Riemannian manifolds (M, g) in this search should
be complex or quaternionic projective spaces, or even the Cayley plane since
the tangent sphere bundle of any compact rank-one symmetric space G/K is,
among other properties, G-homogeneous (see [8,15]) and its standard vector
field ξ is G-invariant. To achieve our objective, it is necessary to go further
and carry out a detailed study of compact rank-one symmetric spaces and
their tangent bundles and tangent sphere bundles. Such a study is included
in Sects. 3 and 4, while in Sect. 2 some basic concepts about almost contact
metric structures and homogeneous manifolds are exposed.

Given a compact rank-one symmetric space G/K, we set a Cartan de-
composition g = m ⊕ k and a Cartan subspace a = R{X} of m. Then the
punctured tangent bundle D+(G/K) := T (G/K)\{zero section} can be i-
dentified with G/H × R

+ and Tr(G/K), for each r > 0, with the quotient
G/H via G-equivariant diffeomorphisms, where H is the closed subgroup
H = {k ∈ K : AdkX = X} of K (Proposition 4.1).

The homogeneity of Tr(G/K) is discussed in Sect. 4, where the quotient
expressions G/H, for each compact rank-one symmetric space, together with
the sphere-homogeneous fibration associated to the projection πT : Tr(G/K)
= G/H → G/K are given. As a direct consequence, a natural diffeomor-
phism is established between TrKPn and the K-projective Stiefel manifold
W2(Kn+1), K being the field of real or complex numbers or the algebra of
quaternions.

On the other hand, we consider the system Σ of restricted roots of
(g, k, a), which is either Σ = {±ε} or Σ = {±ε,±ε/2}, where ε ∈ (aC)∗,
together with the subspaces

mλ = {ξ ∈ m : ad2
Xξ = λ2(X)ξ}, kλ = {ζ ∈ k : ad2

Xζ = λ2(X)ζ}, λ ∈ Σ+.
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Because the tangent space ToH
(G/H) at the origin oH = {H} is identified

with m = (a ⊕ mε ⊕ mε/2) ⊕ (kε ⊕ kε/2) and this decomposition is Ad(H)-
irreducible, all the G-invariant metrics on Tr(G/K) are obtained (Proposi-
tion 4.4). In particular, the induced metric g̃S of Sasaki metric is analyzed
in this context, which allows obtaining, among other results, a version of
Tashiro’s Theorem for tangent sphere bundles of any radius (Corollary 5.5).

In the last section, Sect. 5, we use all the material developed in the
previous sections to prove our main result.

Theorem 1.1. Let G/K be a compact rank-one symmetric space and let ξ
be the standard vector field of T (G/K). Then, for each smooth function
f : R+ → R

+, there exists a G-invariant almost Hermitian structure on
T (G/K)\{zero section} such that its induced almost contact metric structure
on Tr(G/K), for all r > 0, is K-contact and f(r)−1ξ is the characteristic
vector field.

Such K-contact structure on Tr(G/K), for each r > 0, is Sasakian and
it is given by (κ−1ξ, g̃κ), where κ = f(r) and the G-invariant metric g̃κ is
determined by

g̃κ
oH

(·, ·) = κ2〈·, ·〉a +
κ

2
〈·, ·〉mε⊕kε

+
κ

4
〈·, ·〉mε/2⊕kε/2 . (1.1)

Moreover, (κ−1ξ, g̃κ) is the unique G-invariant K-contact structure on
Tr(G/K) whose characteristic vector field is κ−1ξ.

We must point out that, from Proposition 5.2, the G-invariant almost
Hermitian structure in Theorem 1.1 cannot be differentially extended to all
T (G/K) and, from Proposition 4.8, the standard contact structure (1

2η, 1
4 g̃S)

on T1S
n or on T1RPn is the Sasakian structure for κ = 1

2 .

2. Preliminaries

2.1. Almost Contact Metric Structures

We briefly recall some basic concepts of almost contact metric structures. For
more information, see [5]. An odd-dimensional smooth manifold M is called
almost contact if it admits a (ϕ, ξ, η)-structure, where ϕ is a tensor field of
type (1, 1), ξ is a vector field and η is a 1-form, such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

Then ϕξ = 0 and η ◦ ϕ = 0. If M is equipped with a Riemannian metric g
such that

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ),

for all X,Y ∈ X(M), where X(M) is the Lie algebra of the vector fields on M,
(M,ϕ, ξ, η, g) is said to be an almost contact metric manifold and g is called a
compatible metric. We say it is contact metric if dη(X,Y ) = g(X,ϕY ). Then
a contact metric structure is determined by the pair (ξ, g) (or (η, g)) and ξ
is known as its characteristic vector field. If, in addition, ξ is a Killing vector
field, then the manifold is called K-contact.
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An almost contact structure (ϕ, ξ, η) is said to be normal if the (1, 1)-
tensor field N(X,Y ) = [ϕ,ϕ](X,Y ) + 2dη(X,Y )ξ vanishes for all X,Y ∈
X(M), where [ϕ,ϕ] is the Nijenhuis torsion of ϕ,

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ] − ϕ[ϕX, Y ] − ϕ[X,ϕY ]. (2.2)

A contact metric structure (ξ, g) which is normal is called a Sasakian struc-
ture. A useful characterization for Sasakian manifolds is the following: An
almost contact metric manifold (ϕ, ξ, η, g) is Sasakian if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, X, Y ∈ X(M), (2.3)

where ∇ is the Levi-Civita connection of (M, g). Any Sasakian manifold is
always K-contact. The converse holds for the three-dimensional case, but it
may not true in higher dimension.

2.2. Homogeneous Manifolds

A connected homogeneous manifold M can be described as a quotient man-
ifold G/K, where G is a Lie group, which is supposed to be connected, act-
ing transitively and effectively on M and K is the isotropy subgroup of G
at some point o ∈ M, the origin of G/K. Denote by πK the projection
πK : G → G/K, πK(a) = aK, and by τb, for each b ∈ G, the translation
τb : G/K → G/K, τb(aK) = baK. If, moreover, g is a G-invariant Riemann-
ian metric on M = G/K, then (M, g) is said to be a homogeneous Riemannian
manifold.

When G is compact, there exists a positive-definite Ad(G)-invariant 2-
form 〈·, ·〉 on the Lie algebra g of G and we have the reductive decomposition
g = m⊕ k, m being the 〈·, ·〉-orthogonal complement of the Lie algebra k of K.
Then the restriction of 〈·, ·〉 to m determines a G-invariant metric g on M.

The differential map (πK)∗e of πK at the identity element e of G gives a
linear isomorphism of m onto To(G/K). Here and in what follows, To(G/K)
is identified with m via (πK)∗e. It is clear that there exists a sufficiently small
neighborhood Om ⊂ m of zero in m such that exp(Om) is a submanifold
of G and the mapping πK|exp(Om) is a diffeomorphism onto a neighborhood
Uo of o. Then, for each ξ ∈ m, define ξτ as the vector field on Uo such
that ξτ

exp xK = (τexp x)∗oξ, for all x ∈ Om. Then ξτ = (πK)∗ξl, where ξl

denotes the left G-invariant vector field on G such that ξle = ξ. Under the
identification To(G/K) ∼= m, ξτ

o = ξ and [ξτ
1 , ξτ

2 ]o = [ξ1, ξ2]m, where [·, ·]m
denotes the m-component of [·, ·] (see [16]).

Let α : m × m → m be the Ad(K)-invariant bilinear function that de-
termines ∇, given by α(ξ1, ξ2) = ∇ξ1ξ

τ
2 , for all ξ1, ξ2 ∈ m. Then, using the

Koszul formula, we have

α(ξ1, ξ2) =
1
2
[ξ1, ξ2]m + U(ξ1, ξ2), (2.4)

where U is the symmetric bilinear function on m × m such that

2〈U(ξ1, ξ2), ξ3〉 = 〈[ξ3, ξ1]m, ξ2〉 + 〈[ξ3, ξ2]m, ξ1〉. (2.5)

When U = 0, (G/K, g) is said to be naturally reductive. A G-invariant vector
field X on G/K is Killing if and only if 〈α(ξ1, ξ), ξ2〉+〈α(ξ2, ξ), ξ1〉 = 0, for all



MJOM Sasakian Structures on Tangent Sphere Page 5 of 24 227

ξ1, ξ2 ∈ m, where ξ = Xo ∈ m. But, from (2.4) and (2.5), we get 〈α(ξ1, ξ), ξ2〉+
〈α(ξ2, ξ), ξ1〉 = −2〈U(ξ1, ξ2), ξ〉. Hence, X is a Killing vector field if and only
if 〈U(·, ·), ξ〉 = 0. In particular, on naturally reductive homogeneous manifolds
any G-invariant vector field must be Killing.

2.3. Tangent Bundles

Let M = G/K be a homogeneous manifold. On the trivial vector bundle
G×m consider two Lie group actions which commute on it: the left G-action,
lb : (a, x) �→ (ba, x) and the right K-action rk : (a, x) �→ (ak,Adk−1x).

Let π : G×m → G×K m, (a, x) �→ [(a, x)], be the natural projection for
this right K-action. Then π is G-equivariant and, because the linear isotropy
group {(τk)∗o : k ∈ K} acting on To(G/K) corresponds under (πK)∗e with
Ad(K) on m, the mapping φ given by

φ : G ×K m → T (G/K), [(a, x)] �→ (τa)∗ox, (2.6)

is a G-equivariant diffeomorphism.
Next, we determine the tangent space T[(a,x)]G ×K m for all (a, x) ∈

G × m. For each ξ ∈ g, ξ = ξm + ξk ∈ m ⊕ k,

π∗(a,x)((ξk)la, 0) =
d
dt |t=0

π(a exp tξk, x) =
d
dt |t=0

π(a,Adexp tξkx)

= π∗(a,x)(0, [ξk, x]x).

Then, since π∗(a,x)(ξlg, ux) = π∗(a,x)(((ξm)la, ux) + ((ξk)la, 0)), it follows that

π∗(a,x)(ξla, ux) = π∗(a,x)((ξm)la, ux + [ξk, x]x) (2.7)

and we have

T[(a,x)]G ×K m = {π∗(a,x)(ξla, ux) : (ξ, u) ∈ m × m}, (a, x) ∈ G × m.

(2.8)

3. Compact Rank-One Symmetric Spaces

3.1. Restricted Roots of Symmetric Spaces of Compact Type

We review a few facts about complex simple Lie algebras and symmetric
spaces. See [11, Ch. III and Ch. VII] for more details. Suppose that g is a
compact simple Lie algebra and denote by gC its complexification. If tC is a
Cartan subalgebra of gC, we have the root space decomposition

gC = tC ⊕
∑

α∈Δ

gα,

where Δ is the root system of gC with respect to tC and gα = {ξ ∈ gC :
adtξ = α(t)ξ, t ∈ tC}.

Let Π = {α1, . . . , αl} be a basis of Δ. Because the restriction of the
Killing form B of gC to tC×tC is nondegenerate, there exists a unique element
tα ∈ tC such that B(t, tα) = α(t), for all t ∈ tC and tC is expressed as
tC =

∑

α∈Δ Ctα. Put < α, β >= B(tα, tβ).
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Choose root vectors {Eα}α∈Δ such that Eα and Eβ are orthogonal
under B, if α + β = 0, and B(Eα, E−α) = 1 and define the number Nα,β by
[Eα, Eβ ] = Nα,βEα+β , if α + β ∈ Δ and Nα,β = 0 if α + β ∈ Δ. Then

Nα,β = −N−α,−β , Nα,β = −Nβ,α (3.9)

and, if α, β, γ ∈ Δ and α + β + γ = 0,

Nα,β = Nβ,γ = Nγ,α. (3.10)

Moreover, given an α-series β + nα (p ≤ n ≤ q) containing β,

(Nα,β)2 =
q(1 − p)

2
< α,α > . (3.11)

Denote by Δ+ the set of positive roots of Δ with respect to some lexicographic
order in Π. Then each α ∈ Δ+ may be written as α =

∑l
k=1 nk(α)αk, where

nk(α) ∈ Z, nk(α) ≥ 0, for all k = 1, . . . , l, and g as subspace of gC is given
by

g = t ⊕
∑

α∈Δ+

(R U0
α + R U1

α),

where t =
∑

α∈Δ Ritα, U0
α = Eα − E−α and U1

α = i(Eα + E−α). Using [11,
Theorem 5.5, Ch. III], we obtain the following.

Lemma 3.1. For all α, β ∈ Δ+ and a = 0, 1, the following equalities hold:
(i) [Ua

α, itβ ] = (−1)a+1 < α, β > Ua+1
α ;

(ii) [U0
α, U1

α] = 2itα;
(iii) [Ua

α, U b
β ] = (−1)abNα,βUa+b

α+β + (−1)a+bN−α,βUa+b
α−β , where α = β and

a ≤ b.

If G/K is a symmetric spaces of compact type, then G is a compact
semisimple Lie group and there exists an involutive automorphism σ : g → g
such that the corresponding ±1-eigenspaces k = {ξ ∈ g : σ(ξ) = ξ} and
m = {ξ ∈ g : σ(ξ) = −ξ} determine a reductive decomposition g = m⊕ k with
[m,m] ⊂ k.

Let μ =
∑l

i=1 miαi be the maximal root of Δ and consider tj ∈ tC,
j = 1, . . . , l, defined by αk(tj) = (1/mj)δjk, j, k = 1, . . . , l. Each inner au-
tomorphism of order 2 on gC is conjugate in the inner automorphism group
of gC to some σ = Adexp 2πit, where t = (1/2)tk with mk = 1 (Hermit-
ian symmetric space) or t = tk with mk = 2 (non-Hermitian symmetric
space). Denote by Δ+(t) the positive root system generated by Π(t), where
Π(t) = {αj ∈ Π: j = k}, if mk = 1, and Π(t) = {αj ∈ Π: j = k} ∪ {−μ}, if
mk = 2. Then, t ⊂ k, or equivalently rank g = rank k, and

k = t ⊕
∑

α∈Δ+(t)

(R U0
α + R U1

α). (3.12)

Because B(Ua
α, U b

β) = −2δαβδab, it follows that the set {Ua
α : a = 0, 1; α ∈

Δ+\Δ+(t)} is an orthonormal basis for (m,− 1
2B|m).

Suppose that G/K has rank r. Then, fixed a r-dimensional Cartan sub-
space a of m, there exists a σ-invariant Cartan subalgebra ta of g containing
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a. This implies that ta = a ⊕ t0, where t0 = ta ∩ k, and the complexification
tCa is a Cartan subalgebra of gC.

The set Σ = {λ ∈ (aC)∗ : λ = α|aC , α ∈ Δ\Δ0} of non-vanishing restric-
tions of roots to aC, where Δ0 = {α ∈ Δ: α|aC = 0}, is known as the set
of restricted roots of (g, k, a). Denote by Σ+ the subset of positive restricted
roots in Σ determined Δ+ and by mλ the multiplicity of λ ∈ Σ+, that is,
mλ = card{α ∈ Δ: α|aC = λ}. For each linear form λ on aC put

mλ =
{

η ∈ m : ad2
w(η) = λ2(w)η, ∀w ∈ a

}

,

kλ =
{

ζ ∈ k : ad2
w(ζ) = λ2(w)ζ, ∀w ∈ a

}

.

Then mλ = m−λ, kλ = k−λ, m0 = a and k0 equals to the centralizer h of a in
k, that is,

h = {u ∈ k : [u, a] = 0}.

Clearly t0 is a maximal abelian subalgebra of h and rank h = rank g− r. Put
h = h0 ⊕ h1, where h0 = t0 and h1 is the orthogonal complement of h0 in h.
By [11, Ch. VII, Lemma 11.3], the following decompositions are direct and
orthogonal:

m = a ⊕
∑

λ∈Σ+

mλ, k = h ⊕
∑

λ∈Σ+

kλ. (3.13)

Define the linear function λR : a → R, λ ∈ Σ+, by the relation iλR = λ.
Note that, since the Lie algebra g is compact, λ(a) ⊂ iR. From [10, Lemma
4.2] we have that for any vector ξλ ∈ mλ, λ ∈ Σ+, there exists a unique vector
ζλ ∈ kλ such that

[u, ξλ] = −λR(u)ζλ, [u, ζλ] = λR(u)ξλ, for all u ∈ a. (3.14)

3.2. Restricted Roots of Compact Rank-One Symmetric Spaces

Compact rank-one Riemannian symmetric spaces can be characterized as
those symmetric spaces with strictly positive curvature. They are Euclidean
spheres, real, complex and quaternionic projective spaces and the Cayley
plane [4, Ch. 3]. Their quotient expressions G/K as symmetric spaces appear
in Table 1.

Except for odd-dimensional spheres S
2n−1 = G/K = SO(2n)/SO(2n −

1) (n ≥ 2), where rank g = n > rank k = n − 1, the rest of all compact
rank-one symmetric spaces admit inner automorphisms. Note that dim a = 1

Table 1. Compact rank-one symmetric spaces

G/K dim mε mε/2 h

S
n, (n ≥ 2)

RPn, (n ≥ 2)
SO(n+1)/SO(n)
SO(n+1)/S(O(1) × O(n)) n n−1 0 so(n−1)

CPn, (n ≥ 2) SU(n+1)/S(U(1)×U(n)) 2n 1 2n−2 R ⊕ su(n−1)
HPn, (n ≥ 1) Sp(n+1)/Sp(1)×Sp(n) 4n 3 4n−4 sp(1) ⊕ sp(n−1)
CaP2 F4/Spin(9) 16 7 8 so(7)
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and, from Lemma 3.1 and (3.12), a compact symmetric space G/K has rank
one if and only if α + β = 0 or α − β = 0, for all α, β ∈ Δ+\Δ+(t), α = β.

Each compact rank-one symmetric space is described in detail below.
As a consequence, the following lemmas, Lemmas 3.2 and 3.3, are proven.

Lemma 3.2. The restricted root system Σ of (g, k, a) is either Σ = {±ε} or
Σ = {±ε,± 1

2ε}, where ε ∈ (aC)∗. The corresponding multiplicities mε, mε/2

of these roots and the Lie algebra h are listed in Table 1.

Denote by X the unique (basis) vector X ∈ a such that εR(X) = 1,
where ε = iεR. Multiplying the inner product 〈·, ·〉 by a positive constant, we
can assume that 〈X,X〉 = 1.

To simplify notations we put m+ = mε ⊕mε/2 and k+ = kε ⊕ kε/2, where
mε/2 = 0 and kε/2 = 0 if ε/2 is not in Σ. Then fixing in mε and mε/2 some
〈·, ·〉-orthonormal basis {ξj

ε} and {ξp
ε/2}, j = 1, . . . , mε, p = 1, . . . , mε/2, we

take the unique bases {ζj
ε} and {ζp

ε/2} of kε and kε/2 satisfying (3.14) for
λ = ε and λ = ε/2. Clearly these last two basis are also 〈·, ·〉-orthonormal.

Lemma 3.3. We have

[ξj
ε , ξ

p
ε/2] = [ζj

ε , ζp
ε/2], [ζj

ε , ξp
ε/2] = −[ξj

ε , ζ
p
ε/2], (3.15)

for all j = 1, . . . , mε and p = 1, . . . , mε/2.

Applying [11, Ch. VII, Lemma 11.4, p. 335]), it is immediate the fol-
lowing.

Lemma 3.4. We have:
[h,mλ] ⊂ mλ, [h, kλ] ⊂ kλ, [a,mλ] ⊂ kλ, [a, kλ] ⊂ mλ, λ = ε, ε/2,
[mε,mε] ⊂ h, [mε,mε/2] ⊂ kε/2, [mε, kε] ⊂ a, [mε, kε/2] ⊂ mε/2,
[mε/2,mε/2] ⊂ h ⊕ kε, [mε/2, kε] ⊂ mε/2, [mε/2, kε/2] ⊂ a ⊕ mε,
[kε, kε] ⊂ h, [kε, kε/2] ⊂ kε/2, [kε/2, kε/2] ⊂ h ⊕ kε.

(3.16)

Case 1: Sn, RPn (n ≥ 2). Denote by Ejk the (n + 1) × (n + 1)-matrix with 1
in the entry of the jth row and the kth column and 0 elsewhere. Then the set
of matrices {Ajk = Ejk −Ekj : 1 ≤ j < k ≤ n+1} is an orthonormal basis of
the Lie algebra so(n+1) of SO(n+1) with respect to the invariant trace form
〈A,B〉 = − 1

2 traceAB, for all A,B ∈ so(n+1). Here, k = R{Ajk}2≤j<k≤n+1 is
isomorphic to so(n) and m = R{A1k}2≤k≤n+1 is its orthogonal complement
in so(n + 1). We take as Cartan subspace to a = RX, where X = A12. Then
the centralizer h of a in k is given by

h = R{Ajk}3≤j<k≤n+1. (3.17)

Because ad2
XA1k = −A1k, for k = 3, . . . , n+1, it follows that mε = R{A1k}k=3,

. . . , n + 1. This implies that Σ+ = {ε}, mε = n − 1 and mε/2 = 0.

Case 2: CPn (n ≥ 2). Consider g = su(n + 1) as compact real form of the
complex simple Lie algebra an = sl(n + 1,C). Let Π = {α1, . . . , αn} be a
system of simple roots. Then the set Δ+ of positive roots is expressed as

Δ+ = {αpq = αp + · · · + αq : 1 ≤ p ≤ q ≤ n}.
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We get 〈α1, α1〉 = · · · = 〈αn, αn〉 = − 1
2 〈αk, αk+1〉, for all k = 1, . . . , n − 1,

being zero the rest of the products of basic elements.
The complex projective space CPn is obtained for the inner automor-

phism σ = Adexp 2πit, where t = 1
2 t1 (or, equivalently, t = 1

2 tn). Then
Π(t) = {α2, . . . , αn}, Δ+(t) = {αpq : 2 ≤ p ≤ q ≤ n} and Δ+\Δ+(t) =
{α1q : 1 ≤ q ≤ n}. We choose as Cartan subspace to a = RU0

α1
.

From Lemma 3.1 it follows that [U0
α1

, itα1 + itα2 ] = 0 and [U0
α1

, itαk
] =

0, for all k = 3, . . . , n. Therefore, the Cartan subalgebra tCa of an is the
complexification of ta = a⊕t0, where t0 = R{itα1+2itα2 , itαk

(k = 3, . . . , n)}.
Put X = βU0

α1
, where β = (2〈α1, α1〉)−1. Then, using Lemma 3.1 and

(3.9), (3.10) and (3.11), we have

ad2
XU1

α1
= −U1

α1
, ad2

XUa
α1(j+1)

= −1
4
Ua

α1(j+1)
,

for all a = 0, 1 and j = 1, . . . , n − 1. Hence, mε = RU1
α1

and mε/2 =
R{Ua

α1(j+1)
: a = 0, 1; 1 ≤ j ≤ n − 1}. Since dimmε/2 = 2(n − 1), it fol-

lows that Σ+ = {ε, 1
2ε}.

We choose the inner product 〈·, ·〉 such that on m it is proportional to
B|m and 〈X,X〉 = 1. Then, 〈·, ·〉 = −〈α1, α1〉B(·, ·). Hence ξε = βU1

α1
is a

unit vector of mε and the set of vectors

{ξj,a
ε/2 = βUa

α1(j+1)
: a = 0, 1, j = 1, . . . , n − 1}

forms an orthonormal basis for mε/2. Applying Lemma 3.1 and (3.14), kε =
Rζε and kε/2 = R{ζj,a

ε/2 : a = 0, 1, j = 1, . . . , n−1}, where ζε = −i〈α1, α1〉−1tα1

and ζj,a
ε/2 = βUa

α2(j+1)
.

Let Δ+
1 (t) = {α ∈ Δ+(t) : α ± α1 ∈ Δ} = {αpq : 3 ≤ p ≤ q ≤ n}. Then

h = h0 ⊕ h1, where h0 = t0 and h1 =
∑

α∈Δ+
1 (t)(RU0

α + RU1
α). From Lemma

3.1, the vector Z1 given by

Z1 = (n − 1)(itα1 + 2itα2) + 2((n − 2)itα3 + (n − 3)itα4 + · · · + itαn
)
(3.18)

belongs to the center z(h) of h and

h = RZ1 ⊕ hs, (3.19)

where hs = R{itαk
: k = 3, . . . , n}⊕h1 = su(n−1) is the maximal semisimple

ideal [h, h] of h. By direct calculation, using (3.14) and (3.16), the nonzero
brackets of basic elements of m+ ⊕ k+ satisfy the following equalities:

[ξε, ξ
j,a
ε/2] = [ζε, ζ

j,a
ε/2] = (−1)a

2 ζj,a+1
ε/2 , [ξε, ζ

j,a
ε/2] = −[ζε, ξ

j,a
ε/2] = (−1)a

2 ξj,a+1
ε/2 ,

[ξj
ε/2, ζ

j
ε/2] = [ξj,1

ε/2, ζ
j,1
ε/2] = − 1

2X, [ξj
ε/2, ζ

j,1
ε/2] = −[ξj,1

ε/2, ζ
j
ε/2] = 1

2ξε,

[ξε, ζε] = −X, [ξj
ε/2, ξ

j,1
ε/2]m = −[ζj

ε/2, ζ
j,1
ε/2]m = − 1

2ζε.

(3.20)

Case 3: HPn (n ≥ 1). The Lie algebra g = sp(n+1) of Sp(n+1) is a compact

real form of cn+1 = sp(n+1,C),
2
◦

α1

2
◦

α2 . . .

2
◦

αn
��

1
◦

αn+1
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and

Δ+ = {αpq (1 ≤ p ≤ q ≤ n + 1), α̃pq (1 ≤ p ≤ q ≤ n)}
is a set of positive roots, where α̃pq = αp + · · · + 2αq + · · · + 2αn + αn+1,
for 1 ≤ p < q ≤ n, and α̃pp = 2αp + · · · + 2αn + αn+1, for 1 ≤ p ≤ n. The
maximal root is μ = α̃11 and the inner product 〈·, ·〉 on Π = {α1, . . . , αn+1}
satisfies

〈α1, α1〉 = · · · = 〈αn, αn〉 =
1
2
〈αn+1, αn+1〉,

〈α1, α1〉 = −〈αn, αn+1〉 = −1
2
〈αj , αj+1〉,

1 ≤ j ≤ n − 1, being zero the rest of products of basic elements.
The quaternionic projective space HPn appears for σ = Adexp 2πit,

where t = t1. Then, Π(t) = {−μ, α2, . . . , αn+1}. Hence, Δ+(t) = {αp,q (2 ≤
p ≤ q ≤ n + 1), α̃p,q (2 ≤ p ≤ q ≤ n), μ} and Δ+\Δ+(t) = {α1q (1 ≤ q ≤
n + 1), α̃1q (2 ≤ q ≤ n)}.

From (3.12), k = sp(1) ⊕ sp(n), where sp(1) ∼= R{itαμ
, U0

μ, U1
μ}. By

Lemma 3.1, because μ ± α /∈ Δ and 〈μ, α〉 = 0, for all α ∈ Δ+(t), this
subalgebra is the center z(k) of k.

We choose as Cartan subalgebra to a = RU0
α1

. From Lemma 3.1, it
follows that the Cartan subalgebra tCa of cn+1 containing a is the complexifi-
cation of ta = a ⊕ t0, where t0 = R{itα1 + 2itα2 , itαk

(k = 3, . . . , n + 1)}. Put
X = βU0

α1
, where β = (2〈α1, α1〉)−1/2. Applying again Lemma 3.1 and using

(3.9), (3.10) and (3.11), we have

ad2
XU1

α1
= −U1

α1
, ad2

XUa
α̃12

= −Ua
α̃12

,

ad2
XUa

α1(j+1)
= − 1

4Ua
α1(j+1)

, ad2
XUa

α̃1(k+2)
= − 1

4Ua
α̃1(k+2)

,

for a = 0, 1, j = 1, . . . , n and k = 1, . . . , n − 2. We choose the inner product
〈·, ·〉 = −〈α1, α1〉B(·, ·). Then {ξ1

ε , ξ2
ε , ξ3

ε} is an 〈·, ·〉-orthonormal basis of mε,
where ξ1

ε = βU1
α1

and ξ2+a
ε = βUa

α̃12
, a = 0, 1, and the set of vectors

ξj,a
ε/2 = βUa

α1(j+1)
(j = 1, . . . , n), ξn+k,a

ε/2 = βUa
α̃1(k+2)

(k = 1, . . . , n − 2)

form an orthonormal basis for mε/2. From Lemma 3.1 and (3.14), we have
that the vectors

ζ1
ε = − 1

〈α1, α1〉 itα1 , ζ2+a
ε =

√
2β

2
(Ua

α̃22
− Ua

μ), (a = 0, 1)

form an orthonormal basis of kε and, of kε/2, the following set of vectors

ζj,a
ε/2 = βUa

α2(j+1)
, ζn+k,a

ε/2 = βUa
α̃2(k+2)

.

Let Δ+
1 (t) = {α ∈ Δ+(t) : α±α1 ∈ Δ} = {αpq (3 ≤ p ≤ q ≤ n+1), α̃pq (3 ≤

p ≤ q ≤ n)}. Then h = h0 ⊕ h1, where h0 = t0 and h1 is the subspace

h1 = R{U0
μ + U0

α̃22
, U1

μ + U1
α̃22

} ⊕
∑

α∈Δ+
1 (t)

(RU0
α + RU1

α).
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Hence, h = R{itα1 + 2itα2 , U
a
μ + Ua

α̃22
; a = 0, 1} ⊕ sp(n − 1). By Lemma 3.1

and since μ ± α̃22 /∈ Δ, 〈μ, α̃22〉 = 0 and 〈μ, μ〉 = 〈α̃22, α̃22〉 = 2〈α1, α1〉,
R{itμ + itα̃22 , U

a
μ + Ua

α̃22
} is a subalgebra isomorphic to sp(1), which using

that 〈μ, α〉 = 〈α̃22, α〉 = 0, μ ± α /∈ Δ and α̃22 ± α /∈ Δ for all α ∈ Δ+
1 (t),

it is the center z(h) of h. On the other hand, itμ + itα̃22 = 2((itα1 + 2itα2) +
2(itα3 + · · · + itαn

) + itαn+1). This implies that h = sp(1) ⊕ sp(n − 1).
Using (3.9), (3.10), (3.11) and Lemma 3.1, we obtain

[ξ1
ε , ξl,a

ε/2] = [ζ1
ε , ζl,a

ε/2] = (−1)a

2 ζl,a+1
ε/2 ,

[ζ1
ε , ξl,a

ε/2] = −[ξ1
ε , ζl,a

ε/2] = (−1)a+1

2 ξl,a+1
ε/2 ,

[ξ2+b
ε , ξk,a

ε/2] = [ζ2+b
ε , ζk,a

ε/2] = (−1)c

2 ζn+k,a+b
ε/2 ,

[ξ2+b
ε , ξn+k,a

ε/2 ] = [ζ2+b
ε , ζn+k,a

ε/2 ] = (−1)c+1

2 ζk,a+b
ε/2 ,

[ζ2+b
ε/2 , ξk,a

ε/2] = −[ξ2+b
ε , ζk,a

ε/2] = (−1)c+1

2 ξn+k,a+b
ε/2 ,

[ζ2+b
ε , ξn+k,a

ε/2 ] = −[ξ2+b
ε , ζn+k,a

ε/2 ] = (−1)c

2 ξk,a+b
ε/2 ,

[ξ2+b
ε , ξn−1,a

ε/2 ] = [ζ2+b
ε , ζn−1,a

ε/2 ] = (−1)c

2 ζn,a+b
ε/2 ,

[ξ2+b
ε , ξn,a

ε/2] = [ζ2+b
ε , ζn,a

ε/2 ] = (−1)c+1

2 ζn−1,a+b
ε/2

[ζ2+b
ε , ξn−1,a

ε/2 ] = −[ξ2+b
ε , ζn−1,a

ε/2 ] = (−1)c+1

2 ξn,a+b
ε ,

[ζ2+b
ε , ξn,a

ε/2] = −[ξ2+b
ε , ζn,a

ε/2 ] = (−1)c

2 ξn−1,a+b
ε/2 ,

where 1 ≤ l ≤ 2n − 2, 1 ≤ k ≤ n − 2, a, b = 0, 1 and c = a(b + 1).

Case 4: CaP2. On f4,

2
◦

α1

3
◦

α2
��

4
◦

α3

2
◦

α4 , a set of positive roots
is given by

Δ+ = {αp,q (1 ≤ p ≤ q ≤ 4), α2,3 + α3, α1,q

+αp,3 (p = 2, 3; q = 3, 4), α2,4 + α3,q (q = 3, 4),
α14 + αp4 (p = 2, 3), α1,4 + α2,q + α3 (q = 3, 4), α1,4 + α2,4

+αp,3 + α3 (p = 2, 3), μ},

where μ = 2α1,4 + α2,3 + α3 is the maximal root. We get the following
relationships for the nonzero products on Π = {α1, α2, α3, α4} :

1 = 〈α3, α3〉 = 〈α4, α4〉 =
1
2
〈α1, α1〉 =

1
2
〈α2, α2〉

= −〈α1, α2〉 = −〈α2, α3〉 = −2〈α3, α4〉.

The Cayley plane CaP2 = F4/Spin(9) is obtained for σ = Adexp 2πit, where
t = t4. Then Π(t) = {−μ, α1, α2, α3}. Putting β1 = −μ, β2 = α1, β3 = α2

and β4 = α3, we have

Δ+(t) = {βpq (1 ≤ p ≤ q ≤ 4), ˜βpq = βp + · · · + 2βq + · · · + 2β4 (1 ≤ p < q ≤ 4)},



227 Page 12 of 24 J. C. González-Dávila MJOM

which coincides with a positive root set for b4 :
1
◦
β1

2
◦
β2

2
◦
β3

��
2
◦
β4 ,

and

Δ+\Δ+(t) = {α4, α3,4, α2,4, α1,4, α1,4 + αp,3 (p = 2, 3), α2,4 + α3, α14 + α2,3 + α3}.

We choose as Cartan subalgebra to a = RU0
α4

. Then, from Lemma 3.1, tCa is
the complexification of ta = a ⊕ t0, where t0 = R{itα1 , itα2 , itα4 + 2itα3} =
R{itβ1 , itβ2 , itβ3}. Note that 2(α4 + 2α3) = −(β1 + 2β2 + 3β3).

Put X =
√

2
2 U0

α4
and take 〈·, ·〉 = −B. Then applying again Lemma 3.1

and (3.9), (3.10) and (3.11), the following basis is orthonormal for mε and
mε/2,, respectively:

{ξ1
ε =

√
2

2 U1
α4

, ξp,a
ε =

√
2

2 Ua
α14+αp3

(p = 2, 3), ξ4,a
ε =

√
2

2 Ua
α24+α3

}
{ξq,a

ε/2 =
√

2
2 Ua

αq4
(q = 1, 2, 3), ξ4,a

ε/2 =
√

2
2 Ua

α14+α23+α3
}.

The corresponding orthonormal basis for kε is {ζ1
ε , ζp,a

ε (p = 2, 3), ζ4,a
ε } and,

for kε/2, {ζq,a
ε/2 (q = 1, 2, 3), ζ4,a

ε/2}, where

ζ1
ε = −itα4 = 1

2 (itβ1 + 2itβ2 + 3itβ3 + 4itβ4),

ζp,a
ε = 1

2 (Ua
α13+αp3

− Ua
α14+αp4

) = 1
2 (Ua

˜β2(p+1)
+ (−1)aUa

˜β1(6−p)
),

ζ4,a
ε = 1

2 (Ua
α23+α3

− Ua
α24+α34

) = 1
2 (Ua

˜β34
+ (−1)aUa

˜β12
),

ζq,a
ε/2 =

√
2

2 Ua
αq3

=
√

2
2 Ua

β(q+1)4
, ζ4,a

ε/2 =
√

2
2 Ua

α14+α24+α3
=

√
2

2 (−1)a+1Ua
β14

.

The subalgebra h ⊂ k is of type b3, given by h = h0 ⊕ h1, where h0 = t0
and

h1 = R{Ua
˜β2(p+1)

+ (−1)a+1Ua
˜β1(6−p)

(p = 2, 3), Ua
˜β34

+(−1)a+1Ua
˜β12

, Ua
βst

(1 ≤ s ≤ t ≤ 3)}.

This proves Lemma 3.2 and, by direct calculation, also Lemma 3.3 for this
case.

4. Tangent Sphere Bundles of Compact Rank-One Symmetric
Spaces

4.1. Tangent Sphere Bundles as Homogeneous Manifolds

Let (M = G/K, g) be a compact rank-one Riemannian symmetric space and
let a = R{X} be a Cartan subspace of m = ToM, where X is the unique
vector in a such that εR(X) = 1 and the G-invariant Riemannian metric g
is determined by the inner product 〈·, ·〉 such that 〈X,X〉 = 1. Consider the
Weyl chamber W+ in a containing X given by

W+ = {w ∈ a : εR(w) > 0} = {tX : t ∈ R
+},

which is naturally identified with R
+. Since each nonzero Ad(K)-orbit in

m intersects a and also W+, the open dense subset of regular points mR :=
Ad(K)(W+) of m is m\{0} and φ(G×K mR) is the punctured tangent bundle
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D+(G/K). This means that the action of the subgroup Ad(K) on the unit
sphere Sm(1) of m is transitive. Such property characterizes the class of com-
pact rank-one symmetric spaces. In fact, if rank G/K ≥ 2, the hyperplane
λ(w) = 0 for each restricted root λ intersects Sm(1) and it implies that the
Ad(K)-action cannot be transitive on Sm(1).

Let H be the closed subgroup of K defined by

H = {k ∈ K : AdkX = X}.

Then H = Ga ∩ K, where Ga is the centralizer of a, and h is the Lie alge-
bra of H. Moreover, Sm(1), under the K-action determined by the isotropy
representation, is expressed as the quotient manifold K/H.

Consider the projection πH ×id : G×R
+ → G/H×R

+, (a, t) �→ (aH, t),
and the mapping

f+ : G/H × R
+ → G ×K (m\{0}), (aH, t) �→ [(a, tX)], (4.21)

which is a well-defined G-equivariant diffeomorphism and (f+)−1([(a,Adkw)])
= (akH, t), for all a ∈ G, k ∈ K and w = tX ∈ W+. Then, G/H × R

+ is
identified via φ ◦ f+ with D+(G/K).

Proposition 4.1. The natural action of G on T (G/K) ∼= G ×K m is of coho-
mogeneity one. The principal orbits are the tangent sphere bundles Tr(G/K)
of radius r > 0, which are diffeomorphic to the quotient manifold G/H. The
zero section is the unique singular orbit. Moreover, the natural projection
πT : Tr(G/K) → G/K determines the homogeneous fibration

Sm(r) = K/H → Tr(G/K) = G/H → G/K, aH → aK. (4.22)

Proof. From the transitivity of the isotropy action on Sm(1), for each u ∈
m\{0} there exists k ∈ K such that u = rAdkX, where 〈u, u〉 = r2, and the
G-orbit G · [(a, u)] = G ×K {u} of [(a, u)] in G ×K m can be expressed as

G · [(a, u)] = {[(a, rAdkX)] : a ∈ G} = G ×K Sm(r).

Let ιr : G/H → G/H × R
+ be the imbedding given by ιr(aH) = (aH, r).

Then f+ ◦ ιr is a G-equivariant diffeomorphism from G/H onto G · [(a, u)].
Taking into account that for each (a, x) ∈ G × m, we get 〈x, x〉 =

gτg(o)((τa)∗ox, (τa)∗ox) = gτa(o)(φ[(a, x)], φ[(a, x)]), the tangent sphere bundle
Tr(G/K) is given by

Tr(G/K) = φ(G ×K Sm(r)). (4.23)

Hence, using that φ is G-equivariant, the G-orbit of (τa)∗ou is φ(G · [(a, u)] =
Tr(G/K) and the orbit φ(G·[(a, 0)]) of the zero vector in TaK(G/K) is clearly
the zero section in T (G/K). Therefore, the first part of the proposition is
proved. For the second, note that by definition, H is the isotropy subgroup
of the Ad(K)-action on Sm(r) at rX. �

The compact Lie groups acting effectively and transitively on some
sphere S

n ⊂ R
n+1 have been classified by Montgomery and Samelson and

Borel (see [17] for more information). They are given, together with their
isotropy subgroups and isotropy representations in Table 2, where the super-
script indicates the dimension of the corresponding irreducible subspace.
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Table 2. Compact transitive groups on spheres

G K dim G/K Isotropy repr.

(1) SO(n) SO(n − 1) n − 1 irred.
(2) SU(n) SU(n − 1) 2n − 1 m = m1

1 ⊕ m2n−2
2

(3) U(n) U(n − 1) 2n − 1 m = m1
1 ⊕ m2n−2

2

(4) Sp(n) Sp(n − 1) 4n − 1 m = m3
1 ⊕ m4n−4

2

(5) Sp(n) × Sp(1) Sp(n − 1) × Sp(1) 4n − 1 m = m3
1 ⊕ m4n−4

2

(6) Sp(n) × U(1) Sp(n − 1) × U(1) 4n − 1 m = m1
1 ⊕ m2

2 ⊕ m4n−4
3

(7) Spin(9) Spin(7) 15 m = m7
1 ⊕ m8

2

(8) Spin(7) G2 7 irred.
(9) G2 SU(3) 6 irred.

Proposition 4.2. Tangent sphere bundles of compact rank-one symmetric s-
paces and their πT -homogeneous fibrations admit the following quotient ex-
pressions:

S
n−1 = SO(n)/SO(n − 1) → TrS

n = SO(n + 1)/SO(n − 1) → S
n,

S
n−1 = O(n)/O(n − 1) → TrRPn = SO(n + 1)/S(O(1) × O(n − 1)) → RPn,

S
2n−1 = SU(n)/SU(n − 1) → TrCPn = SU(n + 1)/S(U(1) × U(n − 1)) → CPn,

S
4n−1 = Sp(n) × Sp(1)/Sp(n − 1) × Sp(1) → TrHPn = Sp(n + 1)/Sp(n − 1) × Sp(1) → HPn,

S
15 = Spin(9)/Spin(7) → TrCaP2 = F4/Spin(7) → CaP2.

Proof. Applying Proposition 4.1, Table II and the cases studied in Sect. 3.2,
it is explicitly obtained the subgroup H in each compact rank-one symmetric
space:

Case 1: Sn and RPn (n ≥ 2). For Sn = G/K = SO(n+1)/SO(n), using (3.17),
the identity connected component H0 of H is I2 × SO(n − 1) ⊂ SO(n + 1).
Then, K/H0 = SO(n)/SO(n − 1) is the (n − 1)-sphere and hence, H = H0.

For RPn = G/K = SO(n + 1)/S(O(1) × O(n)), taking again X as A12,
we also have H0 = I2 × SO(n − 1). Since K has two connected components:
1 × SO(n) and −1 × O−(n), where O−(n) denotes the matrices in O(n)
with determinant −1, H is not connected. Consider the natural isomorphism
ψ : O(n) → S(O(1) × O(n)), ψ(A) = (det A) × A ∈ SO(n + 1), A ∈ O(n).
Then, from (4.22), Sn−1 = K/H = O(n)/O(n−1). Hence, H = ψ(O(n−1)) =
S(O(1) × O(n − 1)) ⊂ S(O(1) × O(n)).

Case 2: CPn (n ≥ 2). Here, K = S(U(1) × U(n)) ⊂ SU(n + 1). The center
z(k) of the Lie algebra k of K is one-dimensional and

Z0 = diag(ib0, i(b0 − 1), . . . , i(b0 − 1)), b0 =
n

n + 1
,

is a generator. From (3.19) it is obtained that H0 = {exp tZ1 : t ∈ R}·SU(n−
1), where Z1 is given in (3.18). Hence the matrix

diag(ib1, ib1, i(b1 − 1), . . . , i(b1 − 1)), b1 =
n − 1
n + 1

,
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is a generator of z(h) and

H0 =
{

eitb1I2 × eit(b1−1)A ∈ SU(n + 1): t ∈ R, A ∈ SU(n − 1)
}

.

Because ˜Z0 := diag(0, i˜b0, i(˜b0−1), . . . , i(˜b0−1)), with ˜b0 = b1
b0

= n−1
n , belongs

to the center of the Lie algebra of 1×S(U(1)×U(n−1)) ⊂ SU(n+1), H0 can be
identified with this subgroup via the isomorphism (exp tZ1)A �→ (exp t˜Z0)A,
A ∈ SU(n−1), or equivalently, with S(U(1)×U(n−1)) via the isomorphism

eitb1I2 × eit(b1−1)A �→ eit˜b0 × 1 × eit(˜b0−1)A, t ∈ R, A ∈ SU(n − 1).

Then K/H0 = SU(n)/SU(n − 1) = S
2n−1 and H = H0.

Case 3: HPn (n ≥ 1). According with Sect. 3.2, the centers of h and of k are
isomorphic to sp(1). They are given by

z(h) = R{itμ + itα̃22 , U
a
μ + Ua

α̃22
: a = 0, 1}, z(k) = R{itμ, Ua

μ : a = 0, 1}.

Hence, H0 = Sp(1)·Sp(n−1) and K/H0 = Sp(n)×Sp(1)/Sp(n−1)×Sp(1) =
S

4n−1. This means that H = H0.

Case 4: CaP2. In Sect. 3.2 it has been proven that h = so(7). Since K =
Spin(9), H0 = Spin(7). Then, K/H0 = S

15 and so, H = H0. �

Let K be the field of real or complex numbers or the algebra of quater-
nions. On K

n+1, n ≥ 0, consider its standard inner product. The Stiefel
manifold V2(Kn+1) of all orthonormal 2- frames in K

n+1 is a homogeneous
manifold with quotient expression: SO(n+1)/SO(n−1), SU(n+1)/SU(n−1)
or Sp(n + 1)/Sp(n − 1) depending on whether K = R, C or H, and the pro-
jective Stiefel manifold W2(Kn+1) is the quotient space of the free S-action
on V2(Kn+1), where S is the subset of unit vectors of K (S = S

0, S1 or S
3).

Clearly, the tangent sphere bundle TrS
n of S

n ⊂ R
n+1 is naturally

identified with V2(Rn+1), by considering each u = ux ∈ TrxS
n as the pair

(x, 1
r u) in R

n+1, and TrRPn with W2(Rn+1), by identification of u with its
opposite. As a direct consequence from Proposition 4.2, we have the following.

Corollary 4.3. TrKPn = W2(Kn+1), for K = R, C or H.

4.2. The set of all invariant metrics on Tr(G/K)
According with Proposition 4.1, the tangent sphere bundle Tr(G/K) can be
expressed as the homogeneous manifold G/H. Let πH : G → G/H be the
natural projection and put m = m ⊕ k+. Then g = m ⊕ h is a reductive
decomposition associated to G/H and ToH

G/H, oH = {H} being the origin
of G/H, is identified with m via (πH)∗e. As in Sect. 3.2, we choose the Ad(G)-
invariant inner product 〈·, ·〉 on g satisfying 〈X,X〉 = 1, where X ∈ a and
εR(X) = 1. Next, using the identification m ∼= ToH

G/H, all the G-invariant
metrics g̃ on Tr(G/K) = G/H are obtained.

Proposition 4.4. Any G-invariant metric on Tr(G/K) is determined by an
Ad(H)-invariant inner product 〈·, ·〉(a;aλ;bλ), λ ∈ Σ+, on m of the form
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〈·, ·〉(a,aε,aε/2,bε,bε/2) = a2〈·, ·〉a + aε〈·, ·〉mε
+ aε/2〈·, ·〉mε/2

+bε〈·, ·〉kε
+ bε/2〈·, ·〉kε/2 , (4.24)

where a, aε, aε/2, bε and bε/2 are positive constants.

Proof. By definition of H, the vector X ∈ a is Ad(H)-invariant and we get
ad2

X ◦ Adh = Adh ◦ ad2
X , for each h ∈ H. Hence the subspaces mε,mε/2, kε

and kε/2 are all Ad(H)-invariant. Now, using the isotropy representation of
spheres in Table 2, it follows from Proposition 4.2 that the subspaces kε and
kε/2 of k are Ad(H)-irreducible. Hence, applying (3.14), the representation
Ad(H) of H is also irreducible on mε and mε/2. This proves the result. �

In what follows we denote by g̃(a;aλ;bλ) the G-invariant metric g̃ in
(4.24). If ε/2 is not in Σ, the numbers aε/2 and bε/2 can take any value and
we will simply write g̃ = g̃(a,aε,bε).

Let U : m × m → m be the symmetric bilinear function defined in (2.5)
for the Euclidean space (m, 〈·, ·〉(a;aλ;bλ)). The following lemma is obtained
using (3.14), (3.16) and (4.24).

Lemma 4.5. We have:

U(a,a) = U(mε,mε) = U(kε, kε) = 0,

U(X, ξj
ε) = a2−aε

2bε
ζj
ε , U(X, ζj

ε) = bε−a2

2aε
ξj
ε, U(X, ξp

ε/2
) =

a2−aε/2
4bε/2

ζp
ε/2

,

U(X, ζp
ε/2

) =
bε/2−a2

4aε/2
ξp
ε/2

, U(ξj
ε, ζk

ε ) = aε−bε
2a

δjkX, U(ξj
ε, ξp

ε/2
) =

aε/2−aε

2bε/2
[ξj

ε, ξp
ε/2

],

U(ξj
ε, ζp

ε/2
) =

bε/2−aε

2aε/2
[ξj

ε, ζp
ε/2

], U(ξp
ε/2

, ζj
ε) =

bε−aε/2
2aε/2

[ξp
ε/2

, ζj
ε ],

U(ζj
ε , ζp

ε/2
) =

bε/2−bε

2bε/2
[ζj

ε , ζp
ε/2

], U(ξp
ε/2

, ζq
ε/2

) =
aε/2−bε/2

2

(

δpq

2a
X − 1

aε
[ξp

ε/2
, ζq

ε/2
]mε

)

,

for all j, k = 1, . . . , mε and p, q = 1, . . . , mε/2.

Since X is Ad(H)-invariant, it determines a G-invariant vector field on
Tr(G/K) that we also denote by X. As a direct consequence from this lemma,
the following is proved.

Proposition 4.6. We have:
(i) X on (Tr(G/K), g̃) is a Killing vector field if and only if aλ = bλ, for

all λ ∈ Σ+.
(ii) (Tr(G/K) = G/H, g̃) is naturally reductive (with associated reductive

decomposition g = m ⊕ h) if and only if g̃ is proportional to 〈·, ·〉m.
(iii) The projection πT : (Tr(G/K), g̃) → (G/K, g) is a Riemannian submer-

sion if and only if a = aε = aε/2 = 1.

4.3. The Standard Almost Contact Metric Structure

An affine connection ∇ on arbitrary smooth manifold M defines a distribution
H : u ∈ TM → Hu ⊂ TuTM, called the horizontal distribution, where Hu is
the space of all horizontal lifts of tangent vectors in TpM, p = πT (u), obtained
by parallel translation with respect to ∇. (See, for example [5, Ch. 9] and
references inside for more information). Then ∇ induces the direct decom-
position TuTM = Hu ⊕ Vu, where Vu is the vertical space Vu = Ker(πT )∗u.
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The standard almost complex structure J∇ on TM induced by ∇, is defined
by

J∇Xh = Xv, J∇Xv = −Xh, X ∈ X(M), (4.25)

where Xh and Xv are the horizontal and vertical lift of X,, respectively. Given
a Riemannian metric g on M, the Sasaki metric gS with respect to the pair
(g,∇) is given by

gS(η1, η2) = (g((πT )∗η1, (π
T )∗η2)+g(K(η1), K(η2))) ◦ πT ,

η1, η2 ∈ TT (M), (4.26)

where K is the connection map of ∇. Then gS(Xh, Y h) = gS(Xv, Y v) =
g(X,Y ) ◦ πT and gS(Xv, Y h) = 0, for all X,Y ∈ X(M). This implies that gS

is a Hermitian metric with respect to J∇. If ∇ is the Levi-Civita connection
of (M, g), the pair (J, gS), where J = J∇, known as the standard almost
Hermitian structure, is almost Kähler.

Now suppose that M is a compact rank-one symmetric space G/K, g
is the G-invariant Riemannian metric determined at the origin by the in-
ner product 〈·, ·〉 on m and ∇ is its Levi-Civita connection. Then (J, gS) is
defined on G/H × R

+ by its identification with D+(G/K) via φ ◦ f+, i.e.
J = (φ◦f+)−1

∗ J(φ◦f+)∗ and gS = (φ◦f+)∗gS . Moreover, the tangent space
T(oH ,t)(G/H × R

+) is taken as m × TtR, via (πH × id)∗(e,t), for each t ∈ R
+,

and the vectors
{

(X, 0),
(

0,
∂

∂t

)

, (ξj
ε , 0), (ξp

ε/2, 0), (ζj
ε , 0), (ζp

ε/2, 0);

j = 1, . . . , mε, p = 11, . . . , mε/2

}

(4.27)

is a basis of T(oH ,t)(G/H × R
+). From (4.21), using (2.7), we have

(f+)∗(oH ,t)

(

ξ,
∂

∂t

)

= π∗(e,tX)(ξ,XtX) = π∗(e,tX)(ξm,XtX + t[ξk,X]tX),

for all ξ ∈ m. Then from (3.14), for all s = 1, . . . , mλ, λ ∈ Σ+, we get

(f+)∗(oH ,t)(X, 0) = π∗(e,tX)(X, 0), (f+)∗(oH ,t)(0, ∂
∂t ) = π∗(e,tX)(0, XtX),

(f+)∗(oH ,t)(ξ
s
λ, 0) = π∗(e,tX)(ξ

s
λ, 0), (f+)∗(oH ,t)(ζ

s
λ, 0) = π∗(e,tX)(0, −λR(t)(ξs

λ)tX),

(4.28)

where λR is taken as the mapping λR : R+ → R
+, λR(t) = λR(tX). (Then,

εR = id|R+ .)

Proposition 4.7. The standard almost Hermitian structure (J, gS) on G/H ×
R

+ is G-invariant and it is determined at (oH , t), t ∈ R
+, by

J(oH ,t)(X, 0) = (0, ∂
∂t ), J(oH ,t)(0, ∂

∂t ) = (−X, 0),

J(oH ,t)(ξs
λ, 0) = (− 1

λR(t)ζ
s
λ, 0), J(oH ,t)(ζs

λ, 0) = (λR(t)ξs
λ, 0);

gS
(oH ,t)((X, 0), (X, 0)) = gS

(oH ,t)((0, ∂
∂t ), (0, ∂

∂t )) = 1,

gS
(oH ,t)((ξ

s
λ, 0), (ξs

λ, 0)) = 1
λ2
R
(t)

gS
(oH ,t)((ζ

s
λ, 0), (ζs

λ, 0)) = 1,
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where s = 1, . . . , mλ, λ ∈ Σ+, being zero the rest of components of gS .

Proof. Denote by π̃ the projection π̃ : G×K m → G/K. Then, π̃ = πT ◦φ. Let
˜V and ˜H be the distributions ˜V := (φ−1)∗(V) = Ker π̃∗ and ˜H := (φ−1)∗(H)
in T (G×K m). Taking into account that (π̃ ◦π)(a, x) = πK(a), for all (a, x) ∈
G × m, and using (2.8), we have

˜V[(a,x)] = {π∗(a,x)(0, ux) : u ∈ m}, (a, x) ∈ G × m. (4.29)

Because ∇ is G-invariant, V, ˜V, H and ˜H are G-invariant distributions. More-
over,

ξv[(e,x)] = π∗(e,x)(0, ξx), ξ ∈ m. (4.30)

For each η ∈ TuTM denote by ηver (resp., ηhor) the Vu-component (resp., Hu-
component) of η with respect to the decomposition TuT (G/K) = Hu ⊕ Vu.
Recall that the connection map K is defined by Ku(η) = ιu(ηver), where ιu is
the projection ιu : TuT (G/K) → Tp(G/K) such that ιu(η) = 0, for all η ∈ Hu

and ιu(vv
u) = v. This satisfies KXp

(X∗pu) = ∇uX, for all X ∈ X(G/K) and
u ∈ Tp(G/K).

For each x ∈ m, consider xτ as a local section of T (G/K). Then

(xτ )∗oξ =
d

dt |t=0
xτ (exp tξ) =

d

dt |t=0
(τexp tξ∗o )x = φ∗[(e,x)](π∗(e,x)(ξ, 0)), ξ ∈ m.

(4.31)

Since, using (2.4), Kx((xτ )∗oξ) = ∇ξx
τ = 0, we have ((xτ )∗oξ)ver = 0x ∈

TxToM. Then from (4.31), the vertical component (π∗(e,x)(ξ, 0))ver of π∗(e,x)

(ξ, 0) in the decomposition T[(e,x)]G ×K m = ˜H[(e,x)] ⊕ ˜V[(e,x)] is the zero
vector. Hence, applying (4.29),

(π∗(e,x)(ξ, ux))ver = (π∗(e,x)(0, ux))ver = π∗(e,x)(0, ux), forall (ξ, u) ∈ m × m.

Because π̃∗[(e,x)](π∗(e,x)(ξ, ux)) = ξ ∈ m ∼= ToM,

ξh[(e,x)] = (π∗(e,x)(ξ, ux))hor[(e,x)] = π∗(e,x)(ξ, 0x) (4.32)

and ˜H[(a,x)] = {π∗(a,x)(ξla, 0x) : ξ ∈ m}. Then, applying in (4.25) and (4.26),
(4.30) and (4.32), (J, gS) on G ×K m is determined by

J[(e,x)]π∗(e,x)(ξ, ux) = π∗(e,x)(−u, ξx),

gS(π∗(e,x)(ξ, ux), π∗(e,x)(η, vx)) = 〈ξ, η〉 + 〈u, v〉,
(4.33)

for all x, ξ, η, u, v ∈ m. Hence the result is proved using (4.28). �

From Proposition 4.7, (0, ∂
∂t ) is a G-invariant unit vector field on the

Riemannian manifold (G/H × R
+, gS) and it is normal to the submanifolds

ιr(G/H) = G/H × {r} of G/H × R
+, for each r > 0. Hence we have the

following.

Proposition 4.8. The standard almost contact metric structure (ϕ, ξ, η, g̃S =
ι∗rg

S) on the tangent sphere bundle Tr(G/K) = (φ◦f+)(G/H ×{r}), for each
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r > 0, is G-invariant and it is determined at oH by ξoH
= X, ηoH

= 〈X, ·〉,
ϕoH

X = 0 and

ϕoH
ξs

λ = − 1
λR(r) ζs

λ, ϕoH
ζs

λ = λR(r)ξs
λ, s = 1, . . . , mλ, λ ∈ Σ+;

g̃S
oH

=

⎧

⎪

⎨

⎪

⎩

g̃
(1,1,r2)
oH

= 〈·, ·〉m + r2〈·, ·〉kε
if G/K = Sn or RPn,

g̃
(1;1;λ2

R
(r))

oH
= 〈·, ·〉m + r2〈·, ·〉kε

+ r2

4 〈·, ·〉kε/2 if G/K = CPn, HPn or CaPn.

Moreover, the standard field ξ of T (G/K) is the G-invariant vector field
determined by ξ(oH ,t) = (X, 0), for all t ∈ R

+.

From Propositions 4.6 and 4.8, the projection πT : (Tr(G/K), g̃) →
(G/K,g) is a Riemannian submersion and the following is proved.

Corollary 4.9. The standard vector field ξ of (Tr(G/K), g̃S) is Killing if and
only if r = 1 and G/K = S

n or RPn. Then (G/H, g̃S) is naturally reductive.

5. Invariant Sasakian Structures on Tr(G/K)

We first consider all G-invariant Riemannian metrics g on G/H × R
+ ∼=

D+(G/K) such that the vector field (0, ∂
∂t ) on G/H × R

+ is orthogonal to
the hypersurface ιr(G/H) = G/H × {r} ∼= Tr(G/K), for each r > 0. From
Proposition 4.4, g is determined at the points (oH , t) ∈ G/H ×R

+ and with
respect to the basis given in (4.27), by

g(oH ,t)((X, 0), (X, 0)) = a2(t), g(oH ,t)((0, ∂
∂t ), (0, ∂

∂t )) = b2(t),

g(oH ,t)((ξs
λ, 0), (ξs

λ, 0)) = aλ(t), g(oH ,t)((ζs
λ, 0), (ζs

λ, 0)) = bλ(t),
(5.34)

where a, b, aλ, bλ : R+ → R
+ are smooth functions, for each λ ∈ Σ+, being

zero for the rest of components.
Next, we introduce a family of G-invariant almost complex structures

on D+(G/K) containing the standard structure J|D+(G/K). Let q : R+ → R
+

be a smooth function and let Jq
t be the (1, 1)-tensor on T(oH ,t)(G/H ×R

+) ∼=
m × TtR, for each t ∈ R

+, given by

J
q
t (X, 0) = (0, ∂

∂t ), J
q
t (0, ∂

∂t ) = (−X, 0),

J
q
t (ξs

λ, 0) = (− 1
qλ(t)ζ

s
λ, 0), J

q
t (ζs

λ, 0) = (qλ(t)ξs
λ, 0),

(5.35)

for all s = 1, . . . , mλ, λ ∈ Σ+, where qλ = q ◦ λR. Because the subspaces
mλ and kλ are Ad(H)-invariant, Jq on (m+ ⊕ k+) × {0} is Ad(H)-invariant
and Jq determines a (unique) G-invariant almost complex structure Jq on
G/H × R

+ such that Jq
(oH ,t) = J

q
t .

From Proposition 4.7, Jq, q being the identity map, is the standard
almost complex structure J on D+(G/K) and the Sasaki metric gS coincides
with g in (5.34), where the functions a, b and aλ are constant, with a = b =
aλ = 1, and bλ = λ2

R
.



227 Page 20 of 24 J. C. González-Dávila MJOM

Lemma 5.1. Jq := (f+)∗Jq(f+)−1
∗ on G ×K (m\{0}) is given by

Jq
[(a,x)]π∗(ξla, ux) = π∗(−〈u,AdkX〉Xl

ak −
∑

λ∈Σ+

qλ(t)
λR(t)

mλ
∑

s=1

〈u, Adkξs
λ〉(ξs

λ)lak,

×〈ξ,AdkX〉XtX +
∑

λ∈Σ+

λR(t)
qλ(t)

mλ
∑

s=1

〈ξ,Adkξs
λ〉(ξs

λ)tX),

for all a ∈ G, x = tAdkX, t ∈ R
+ and k ∈ K, and (ξ, u) ∈ m × m.

Proof. Using (2.7), (2.8) and (4.28), together with (5.35), we have

(Jq)[(a,tX)]π∗(Xl
a, 0) = π∗(0,XtX), (Jq)[(a,tX)]π∗(0,Xx) = π∗(−Xl

a, 0),
(Jq)[(a,tX)]π∗((ξs

λ)la, 0)
= π∗(0, λR(t)

qλ(t) (ξ
s
λ)tX), (Jq)[(a,tX)]π∗(0, (ξs

λ)tX)

= π∗(− qλ(t)
λR(t) (ξ

s
λ)la, 0).

Then, for each (ξ, u) ∈ m × m,

(Jq)[(a,tX)]π∗(ξla, utX) = π∗(−〈u,X〉Xl
a − ∑

λ∈Σ+

qλ(t)
λR(t)

mλ
∑

s=1
〈u, ξs

λ〉(ξs
λ)la,

〈ξ,X〉XtX +
∑

λ∈Σ+

λR(t)
qλ(t)

mλ
∑

s=1
〈ξ, ξs

λ〉(ξs
λ)tX).

(5.36)

On the other hand,

π∗(ξla, ux) = d
ds |s=0

π(a exp sξ, Adk(tX + sAdk−1u))

= d
ds |s=0

π(a(exp sξ)k, tX + sAdk−1u) = π∗((Adk−1ξ)lak, (Adk−1u)tX).

Hence, Jq
[(a,x)]π∗(ξla, ux) = Jq

[(ak,tX)]π∗((Adk−1ξ)lak, (Adk−1u)tX). Now the re-
sult follows from (5.36), taking into account that 〈·, ·〉 is Ad(K)-invariant.

�

Proposition 5.2. The almost complex structure Jq on D+(G/K) can be ex-
tended to a G-invariant almost complex structure on whole T (G/K) if and
only if

0 < lim
t→0+

q(t)
t

< +∞. (5.37)

Proof. From Lemma 5.1, since Ad(K)(R+) = m\{0}, the existence of an
extension of Jq is determined by the existence with (finite) positive value of
limt→0

qλ(t)
λR(t) = limt→0

q(t)
t . �

From (5.34) and (5.35), the following is immediate.

Lemma 5.3. The metric g on G/H × R
+ is Hermitian with respect to Jq if

and only if a = b and bλ = q2
λ · aλ, for λ ∈ Σ+.
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Moreover, the almost contact metric structure on G/H ∼= G/H × {r},
induced from the Hermitian structure (Jq,g), is the G-invariant structure
(ϕq, 1

a(r)ξ, a(r)η, g̃ = (ιr)∗g), such that at oH and with respect to the basis
{X, ξs

λ, ζs
λ; s = 1, . . . , mλ, λ ∈ Σ+} of m,

ϕq
oH

ξs
λ = − 1

qλ(r)ζ
s
λ, ϕq

oH
ζs
λ = qλ(r)ξs

λ, g̃oH
= g̃(a2(r);aλ(r);(qλ(r))2aλ(r))

oH .

(5.38)

Proposition 5.4. (ϕq, 1
a(r)ξ, a(r)η, g̃) on Tr(G/K), for each r > 0, is contact

metric if and only if

aλ(r) =
a(r)λR(r)
2rqλ(r)

.

Moreover, it is K-contact if and only if qλ(r) = 1, for all λ ∈ Σ+.

Proof. For u, v ∈ m, dηoH
(u, v) = − 1

2ηoH
([u, v]m) = − 1

2 〈[X,u], v〉. Then,
using (3.14),

dηoH
(ξs

λ, ζs
λ) =

λR(r)
2r

, s = 1, . . . , mλ, λ ∈ Σ+,

being zero the rest of components of dηoH
. On the other hand, from (5.38), the

fundamental 2-form Φ of (ϕq, 1
a(r)ξ, a(r)η, g̃) satisfies ΦoH

(ξs
λ, ζs

λ)=qλ(r)aλ(r).
Hence, using Proposition 4.6 (i), the result is proved. �

As a consequence from Propositions 4.8 and 5.4, we have the following
version of Tashiro’s Theorem [19] for tangent sphere bundles of any radius.

Corollary 5.5. The standard almost contact metric structure (ϕ, ξ, η, g̃S) on
Tr(G/K) is contact metric if and only if r = 1

2 . Moreover, for all r > 0,

the rectified almost contact metric structure (ϕ′ = ϕ, ξ′ = 2rξ, η′ = 1
2r η, g̃′ =

1
4r2 g̃S) is always contact metric and it is K-contact if and only if r = 1 and
G/K = S

n or RPn; in that case (ϕ′, ξ′, η′, g̃′) is Sasakian.

Remark 5.6. (Sn,g) and (RPn,g), described in Case 1, have constant cur-
vature 1.

We conclude with the proof of our main result.

Proof of Theorem 1.1. Denote by J1 the almost complex structure on
D+(G/K) such that J1

(oH ,t) = J
q
t , for all t ∈ R

+, q being the constant map
q = 1. Note that, from Proposition 5.2, such a structure cannot be extended
to an almost complex structure on whole T (G/K).

For each smooth function f : R+ → R
+, consider the compatible G-

invariant metric gf to J1, such that at (oH , t) ∈ G/H × R
+ it is given as in

(5.34) for a = b = f and aλ(t) = bλ(t) = f(t)λR(t)
2t , for all t ∈ R

+ and λ ∈ Σ+,
i.e.

gf
(oH ,t)((X, 0), (X, 0)) = gf

(oH ,t)((0, ∂
∂t ), (0, ∂

∂t )) = f2(t),

gf
(oH ,t)((ξ

s
λ, 0), (ξs

λ, 0)) = gf
(oH ,t)((ζ

s
λ, 0), (ζs

λ, 0)) = f(t)λR(t)
2t ,

s = 1, . . . , mλ, λ ∈ Σ+,



227 Page 22 of 24 J. C. González-Dávila MJOM

being zero for the rest of components. The induced metric g̃κ, κ = f(r), from
gf on Tr(G/K) = G/H, for each r > 0, is the G-invariant metric satisfying
(1.1) and, from Proposition 5.4, the pair (κ−1ξ, g̃κ) is a K-contact structure.

Next, we show that (κ−1ξ, g̃κ) is the unique G-invariant K-contact
structure on Tr(G/K) whose characteristic vector field is κ−1ξ. Let g̃ =
g̃(a;aλ;bλ) be a G-invariant Riemannian metric as in (4.24) such that (κ−1ξ, g̃)
is K-contact. Then, a = κ and, from Proposition 4.6, bλ = aλ, for al-
l λ ∈ Σ+. Moreover, there exists a G-invariant (1, 1)-tensor field ϕ such
that (ϕ, κ−1ξ, κη, g̃) is an almost contact metric structure verifying

g̃oH
(ϕu, v) = κdηoH

(u, v) = −κ

2
〈[X,u], v〉,

for all u, v ∈ m. Hence, using (3.14), ϕξs
λ = κλR(r)

2raλ
ζs
λ, for all s = 1, . . . , mλ,

λ ∈ Σ+. Then, aλ = κλR(r)
2r , because g̃ is a (ϕ, κ−1ξ, κη)-compatible metric.

Therefore, g̃ = g̃κ and ϕ = ϕ1. Applying (3.14) in (5.38), ϕ1 satisfies

ϕ1
oH |mλ⊕kλ

=
1

λR(X)
adX , λ ∈ Σ+. (5.39)

Now, we only need to show that (ϕ1, κ−1ξ, κη, g̃κ) is normal. By defi-
nition (2.2), the G-invariant tensor field N = [ϕ1, ϕ1] + 2dη ⊗ ξ on G/H is
given by

NoH
(u, v) = −[u, v]m + [ϕ1

oH
u, ϕ1

oH
v]m − ϕ1

oH
[ϕ1

oH
u, v]m − ϕ1

oH
[u, ϕ1

oH
v]m,

(5.40)

for all u, v ∈ m. Hence, using that by application of (5.39) we have

adX ◦ ϕ1
oH

= ϕ1
oH

◦ adX ,

we obtain that N1
oH

(X,u) = 0, for all u ∈ m, and

NoH
(u, ϕ1

oH
v) = NoH

(ϕ1
oH

u, v), u, v ∈ m. (5.41)

If u, v ∈ mε ⊕ kε then, from (3.16), [u, v]m ∈ a and so, ϕ1
oH

[u, v]m = 0.
Using (5.39), the Jacobi identity and taking into account that adXm ⊂ m, it
follows that

[ϕ1
oH

u, v]m + [u, ϕ1
oH

v]m = 0, [ϕ1
oH

u, ϕ1
oH

v]m = [u, v]m. (5.42)

Hence (5.40) implies that NoH
(u, v) = 0.

If u, v ∈ mε/2 ⊕ kε/2, from (3.16), [u, v]m ∈ a ⊕ mε ⊕ kε. Then, using
(5.39) and the Jacobi identity,

ϕ1
oH

[u, v]m = ϕ1
oH

[u, v]mε⊕kε
=

1
2
([ϕ1

oH
u, v]m + [u, ϕ1

oH
v]m).

Therefore, [u, v]mε⊕kε
= − 1

2ϕ1
oH

([ϕ1
oH

u, v]m + [u, ϕ1
oH

v]m) and we get

[u, v]mε⊕kε
= −[ϕ1

oH
u, ϕ1

oH
v]mε⊕kε

, [ϕ1
oH

u, v]mε⊕kε
= [u, ϕ1

oH
v]mε⊕kε

.

(5.43)

Because, applying (5.39) and (5.40),

〈NoH
(u, v),X〉 = 〈u, adXv〉 − 〈ϕ1

oH
u, adXϕ1

oH
v〉 = 0,

we have N(u, v) = N(u, v)|mε⊕kε
= 0.
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Finally, consider the case u ∈ mε⊕kε and v ∈ mε/2⊕kε/2 or, equivalently
using (5.41), the case u ∈ mε ⊕ kε and v ∈ mε/2. From (3.16), [u, v] ∈ kε/2 ⊕
mε/2 and then,

ϕ1
oH

[u, v] = 2adX [u, v].

Applying again the Jacobi identity, we obtain [u, v] = −ϕ1
oH

(2[ϕ1
oH

u, v] +
[u, ϕ1

oH
v]). Hence, (5.40) can be expressed as

NoH
(u, v) = ϕ1

oH
([ϕ1

oH
u, v] + [u, ϕ1

oH
v]).

Therefore, we have NoH
(u, v) = 0 if and only if

[ϕ1
oH

u, ϕ1
oH

v] = [u, v], for all u ∈ mε ⊕ kε, v ∈ mε/2. (5.44)

From (5.38), equality (5.44) is equivalent to (3.15) and the result follows from
Lemma 3.3. �
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[10] Gadea, P.M., González-Dávila, J.C., Mykytyuk, I.V.: Invariant Ricci-flat
Kähler metrics on tangent bundles of compact symmetric spaces, preprint.
arXiv:1903.00044v1

[11] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces (Pure
and Applied Mathematics, a Series of Monographs and Textbooks). Academic
Press, New York (1978)

[12] Kowalski, O., Sekizawa, M.: Geometry of tangent sphere bundles with arbi-
trary constant radius. In: Bokan, N. (ed.) Proceedings of the Symposium Con-
temporary Mathematics. Faculty of Mathematics, University of Belgrade, pp.
219–228 (2000)

[13] Kowalski, O., Sekizawa, M.: On tangent sphere bundles with small or large
constant radius. Ann. Glob. Anal. Geom. 18, 207–219 (2000)

[14] Kowalski, O., Sekizawa, M.: On the scalar curvature of tangent sphere bundles
with arbitrary constant radius. Bull. Greek Math. Soc. 44, 17–30 (2000)

[15] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles. Ann. Mat.
Pura Appl. 150, 1–20 (1988)

[16] Nomizu, K.: Invariant affine connections on homogeneous spaces. Am. J. Math.
76(1), 33–65 (1954)

[17] Onishchik, A.L.: Transitive compact transformation groups, Mat. Sb. 60,: 447–
485 [Russian]. Am. Math. Soc. Transl. 55(1966), 153–194 (1963)

[18] Tachibana, S., Okumura, M.: On the almost complex structure of tangent bun-
dles of Riemannian spaces. Tohoku Math. J. 14, 156–161 (1962)

[19] Tashiro, Y.: On contact structures of tangent sphere bundles. Tohoku Math.
J. 21, 117–143 (1969)

J. C. González-Dávila
Departamento de Matemáticas, Estad́ıstica e Investigación Operativa
University of La Laguna
38200 La Laguna Tenerife
Spain
e-mail: jcgonza@ull.es

Received: May 4, 2021.

Revised: January 4, 2022.

Accepted: August 3, 2022.

http://arxiv.org/abs/1903.00044v1

	Sasakian Structures on Tangent Sphere Bundles of Compact Rank-One Symmetric Spaces
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Almost Contact Metric Structures
	2.2. Homogeneous Manifolds
	2.3. Tangent Bundles

	3. Compact Rank-One Symmetric Spaces
	3.1. Restricted Roots of Symmetric Spaces of Compact Type
	3.2. Restricted Roots of Compact Rank-One Symmetric Spaces

	4. Tangent Sphere Bundles of Compact Rank-One Symmetric Spaces
	4.1. Tangent Sphere Bundles as Homogeneous Manifolds
	4.2. The set of all invariant metrics on Tr(G/K)
	4.3. The Standard Almost Contact Metric Structure

	5. Invariant Sasakian Structures on Tr(G/K)
	References




