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Sasakian Structures on Tangent Sphere
Bundles of Compact Rank-One Symmetric
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Abstract. A positive answer is given to the existence of Sasakian struc-
tures on the tangent sphere bundle of some Riemannian manifold whose
sectional curvature is not constant. Among other results, it is proved
that the tangent sphere bundle 7:.(G/K), for any r > 0, of a compact
rank-one symmetric space G/K, not necessarily of constant sectional
curvature, admits a unique G-invariant K-contact structure whose char-
acteristic vector field is the standard field of T'(G/K). Such a structure
is in fact Sasakian and it can be expressed as an induced structure
from an almost Hermitian structure on the punctured tangent bundle
T(G/K)\{zero section}.
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1. Introduction

The tangent sphere bundle of radius » > 0 over a Riemannian manifold
(M, g) is the hypersurface T, M = {u € TM: g(u,u) = r?} of the tangent
bundle T M. There is an extensive bibliography on the Riemannian geometry
of T.M equipped with the induced metric g° from the Sasaki metric g,
specially about the unit tangent sphere bundle 71 M. See E. Boeckx and L.
Vanhecke [6,7] and G. Calvaruso [9] for surveys of Ty M and O. Kowalski
and M. Sekizawa [12-14] of T,.M, for an arbitrary radius » > 0. The induced
metric on 73 M from a g-natural metric, which generalizes the Sasaki and the
Cheeger—Gromoll metric, has been treated by Abbassi, Calvaruso and Sarih
(see, for example, [1-3]).
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With respect to the standard almost complex structure J, the Sasaki
metric on TM is Hermitian, in fact it is almost Kéhler [18]. Then T,M,
as hypersurface of (T'M,.J,g%), inherits an almost contact metric structure
(p,€,1m,g%) and the unit vector field ¢ = —JN, where N is the outward
normal unit vector field to the singular foliation {T, M}, >0, is defined on
T M\{zerosection}. We say that £ is the standard vector field of T M.

On T1 M, the pair (%17, %ﬁs) becomes a contact metric structure and
Tashiro [19] proved it is K-contact if and only if the base manifold (M, g)
has constant sectional curvature 1. Moreover, in this case, T M is Sasakian.
For g-natural metrics, (M,g) must be of constant sectional curvature [1,
Theorem 2] and again the structure on T} M is Sasakian. Sasakian manifolds
can be considered in many respects as the class analogous to that of the
Kéhler manifolds for the odd dimensional case. Principal circle bundles over
Kahler manifolds, together with the standard structure on R2"*!, are the
best known examples (see, for example, [5, Ch. 6]).

The main objective of this paper is to find Sasakian structures on tan-
gent sphere bundles T,.M, for any radius > 0, over Riemannian manifolds
(M, g) with non-constant sectional curvature. As far as the author knows,
there are no examples satisfying these conditions in the literature.

The most natural Riemannian manifolds (M, g) in this search should
be complex or quaternionic projective spaces, or even the Cayley plane since
the tangent sphere bundle of any compact rank-one symmetric space G/K 1is,
among other properties, G-homogeneous (see [8,15]) and its standard vector
field ¢ is G-invariant. To achieve our objective, it is necessary to go further
and carry out a detailed study of compact rank-one symmetric spaces and
their tangent bundles and tangent sphere bundles. Such a study is included
in Sects. 3 and 4, while in Sect. 2 some basic concepts about almost contact
metric structures and homogeneous manifolds are exposed.

Given a compact rank-one symmetric space G/K, we set a Cartan de-
composition g = m @ £ and a Cartan subspace a = R{X} of m. Then the
punctured tangent bundle D' (G/K) := T(G/K)\{zero section} can be i-
dentified with G/H x Rt and T,(G/K), for each r > 0, with the quotient
G/H via G-equivariant diffeomorphisms, where H is the closed subgroup
H={ke K: Ad;yX = X} of K (Proposition 4.1).

The homogeneity of T,.(G/K) is discussed in Sect. 4, where the quotient
expressions G/H, for each compact rank-one symmetric space, together with
the sphere-homogeneous fibration associated to the projection 71 : T;.(G/K)
= G/H — G/K are given. As a direct consequence, a natural diffeomor-
phism is established between T, KP" and the K-projective Stiefel manifold
Wo(K"+1), K being the field of real or complex numbers or the algebra of
quaternions.

On the other hand, we consider the system X of restricted roots of
(9,€ a), which is either ¥ = {#+e} or ¥ = {+e,+¢/2}, where ¢ € (a®)*,
together with the subspaces

my = {£ em: ad%& = \(X)E}, = {C et adi( =N(X)(}, Aext.



MIOM Sasakian Structures on Tangent Sphere Page 3 of 24 227

Because the tangent space T,,, (G/H) at the origin oy = {H?} is identified
with m = (a ® m. ® m./5) @ (E. D €. /2) and this decomposition is Ad(H)-
irreducible, all the G-invariant metrics on T,(G/K) are obtained (Proposi-
tion 4.4). In particular, the induced metric §° of Sasaki metric is analyzed
in this context, which allows obtaining, among other results, a version of
Tashiro’s Theorem for tangent sphere bundles of any radius (Corollary 5.5).

In the last section, Sect. 5, we use all the material developed in the
previous sections to prove our main result.

Theorem 1.1. Let G/K be a compact rank-one symmetric space and let &
be the standard vector field of T(G/K). Then, for each smooth function
f: RT — RT, there ewists a G-invariant almost Hermitian structure on
T(G/K)\{zero section} such that its induced almost contact metric structure
on T.(G/K), for all r > 0, is K-contact and f(r)~1¢ is the characteristic
vector field.

Such K-contact structure on T,.(G/K), for each r > 0, is Sasakian and
it is given by (k~1&,8"), where k = f(r) and the G-invariant metric g~ is
determined by

~ K 2 K K

goH<'7 ) =K <'7 '>a + §<7 '>m5€BEs + Z<7 '>mg/2€BEE/2' (11)
Moreover, (k=1€,8") is the unique G-invariant K-contact structure on
T.(G/K) whose characteristic vector field is k™ 1€.

We must point out that, from Proposition 5.2, the G-invariant almost
Hermitian structure in Theorem 1.1 cannot be differentially extended to all
T(G/K) and, from Proposition 4.8, the standard contact structure (37, +5%)

on T1S™ or on T1RP™ is the Sasakian structure for kK = %

2. Preliminaries

2.1. Almost Contact Metric Structures

We briefly recall some basic concepts of almost contact metric structures. For
more information, see [5]. An odd-dimensional smooth manifold M is called
almost contact if it admits a (g, £, n)-structure, where ¢ is a tensor field of
type (1,1), £ is a vector field and 7 is a 1-form, such that

' =-T+neE nE) =1

Then @& = 0 and no ¢ = 0. If M is equipped with a Riemannian metric g
such that

9(pX, oY) = g(X,Y) = n(X)n(Y),
for all X,Y € X(M), where X(M) is the Lie algebra of the vector fields on M,
(M, p,&,m,g) is said to be an almost contact metric manifold and g is called a
compatible metric. We say it is contact metric if dn(X,Y) = g(X, ¢Y). Then
a contact metric structure is determined by the pair (&, g) (or (n,9)) and ¢
is known as its characteristic vector field. If, in addition, £ is a Killing vector
field, then the manifold is called K -contact.
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An almost contact structure (p,&,n) is said to be normal if the (1,1)-
tensor field N(X,Y) = [p, ¢|(X,Y) + 2dn(X,Y)¢ vanishes for all X, Y €
X(M), where [p, ¢| is the Nijenhuis torsion of ¢,

[0, (X, Y) = @*[X, Y] + [0X,0Y] — 0[pX, Y] — [ X, 0Y].  (2:2)

A contact metric structure (£, g) which is normal is called a Sasakian struc-
ture. A useful characterization for Sasakian manifolds is the following: An
almost contact metric manifold (p, &, n, g) is Sasakian if and only if

(Vx@)Y =g(X,Y)E—n(Y)X, XY eX(M), (2.3)

where V is the Levi-Civita connection of (M,g). Any Sasakian manifold is
always K-contact. The converse holds for the three-dimensional case, but it
may not true in higher dimension.

2.2. Homogeneous Manifolds

A connected homogeneous manifold M can be described as a quotient man-
ifold G/K, where G is a Lie group, which is supposed to be connected, act-
ing transitively and effectively on M and K is the isotropy subgroup of G
at some point o € M, the origin of G/K. Denote by mx the projection
mx: G — G/K, mx(a) = aK, and by 7, for each b € G, the translation
T: G/K — G/K, 1,(aK) = baK. If, moreover, g is a G-invariant Riemann-
ian metric on M = G/ K, then (M, g) is said to be a homogeneous Riemannian
manifold.

When G is compact, there exists a positive-definite Ad(G)-invariant 2-
form (-,-) on the Lie algebra g of G and we have the reductive decomposition
g = m®E m being the (-, -)-orthogonal complement of the Lie algebra € of K.
Then the restriction of (-,-) to m determines a G-invariant metric g on M.

The differential map (7 )« of i at the identity element e of G gives a
linear isomorphism of m onto 7,(G/K). Here and in what follows, T,(G/K)
is identified with m via (7x ). It is clear that there exists a sufficiently small
neighborhood O, C m of zero in m such that exp(Oy,) is a submanifold
of G and the mapping Tx/|exp(0,,) 15 @ diffeomorphism onto a neighborhood
U, of o. Then, for each £ € m, define £ as the vector field on U, such
that 7 .k = (Texpz)xo, for all z € On. Then {7 = (7k).&*, where &
denotes the left G-invariant vector field on G such that & = £. Under the
identification T,(G/K) = m, & = ¢ and [£],£3], = [&1,&2)m, where [ |
denotes the m-component of [, -] (see [16]).

Let @: m x m — m be the Ad(K)-invariant bilinear function that de-
termines V, given by «a(&1,&2) = V¢, &3, for all &1,& € m. Then, using the
Koszul formula, we have

o(61, &) = 5[61, ol + (61, ), (2.0
where 4 is the symmetric bilinear function on m x m such that
2(4(&1,€2),€3) = ([&3, E1)m, &2) + ([€35 E2lms &1)- (25)

When $4 =0, (G/K, g) is said to be naturally reductive. A G-invariant vector
field X on G/K is Killing if and only if («(&1,€), &2) +{a(&2,£), &) = 0, for all



MIOM Sasakian Structures on Tangent Sphere Page 5 of 24 227

&1,& € m, where £ = X, € m. But, from (2.4) and (2.5), we get {(a(&1,€), &)+
(a(&2,8),&1) = —2(U(&1,&2), ). Hence, X is a Killing vector field if and only
if (84(+,-), &) = 0. In particular, on naturally reductive homogeneous manifolds
any G-invariant vector field must be Killing.

2.3. Tangent Bundles

Let M = G/K be a homogeneous manifold. On the trivial vector bundle
G x m consider two Lie group actions which commute on it: the left G-action,
ly: (a,z) — (ba,z) and the right K-action ry: (a,z) — (ak, Adg-12).

Let 7: G xm — G xgm, (a,z) — [(a,2)], be the natural projection for
this right K-action. Then 7 is G-equivariant and, because the linear isotropy
group {(7)«0 : k € K} acting on T,(G/K) corresponds under (7g ). with
Ad(K) on m, the mapping ¢ given by

¢:Gxgm—T(G/K), [(a,2)]— (Ta)roT, (2.6)

is a G-equivariant diffeomorphism.
Next, we determine the tangent space Tj(, .G xx m for all (a,z) €
Gxm. Foreachfe€g, E=En+ & emBE,

d
W*(a,w)((gé)](;,vo) Tl'(anptﬁhl‘) =77 ﬂ-(aaAdexpt{yx)

e &ltZO dtlt:o
= Tu(a2) (0, [§e 2]a)-

Then, since m,(q,q) (f;,uw) = ﬂ*(a’z)(((fm)é,uw) + ((&)E,0)), it follows that
Ta(ase) (Ear Ua) = Ta(are) (Em)er e + [Ee, 7]2) (2.7)

and we have

T[(aym)]G Xgm= {W*(aym)(flll,ua:): (§7u) cm X m}, (a,x) € G xm.
(2.8)

3. Compact Rank-One Symmetric Spaces
3.1. Restricted Roots of Symmetric Spaces of Compact Type

We review a few facts about complex simple Lie algebras and symmetric
spaces. See [11, Ch. IIT and Ch. VII] for more details. Suppose that g is a
compact simple Lie algebra and denote by g€ its complexification. If € is a
Cartan subalgebra of g€, we have the root space decomposition

©=CeY o
ac€A

where A is the root system of g with respect to t© and g, = {¢ € ¢
ad,& = a(t)€, t € ().

Let T = {ay,...,a;} be a basis of A. Because the restriction of the
Killing form B of g© to t© x t© is nondegenerate, there exists a unique element
to € t€ such that B(t,t,) = a(t), for all t € t© and t* is expressed as
t€ =3 ca Cto. Put < o, 8 >=B(tqa, tg).
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Choose root vectors {E,}aea such that E, and Ej are orthogonal
under B, if a + 5 # 0, and B(E,, E_,) = 1 and define the number N, g by
[Eo,Eg] = NogEoip, if a+ € Aand Nog=0if a+ [ ¢ A. Then

Na,ﬁ = 7N—Oé,—5a Na,ﬁ = 7Nﬁ,o¢ (39)
and, if o, B,y € Aand a4+ B+~ =0,
Nog = Ngy = Nya- (3.10)
Moreover, given an a-series 3+ na (p < n < ¢) containing £,
1—
(Na,5)? = w <a,a>. (3.11)

Denote by AT the set of positive roots of A with respect to some lexicographic
order in II. Then each a € AT may be written as o = 22:1 ng (o) ag, where

nk(a) € Z, ny(a) > 0, for all k = 1,...,1, and g as subspace of g* is given
by
g=ta Y (RUI+RUY),
aeAt
where t = > Rito, Uy = E, — E_, and U, = i(E, + E_,). Using [11

Theorem 5.5, Ch. IH] we obtam the following.

Lemma 3.1. For all o, 8 € AT and a = 0,1, the following equalities hold:

(i) [Ug,itg] = (=1)"" <, B> UL
(i) [US,U}] = 2ity;
(iii) [US, US] = (1) NagUSLh + (1) N_o gUST), where o # (8 and
a <b.

If G/K is a symmetric spaces of compact type, then G is a compact
semisimple Lie group and there exists an involutive automorphism o: g — g
such that the corresponding +1-eigenspaces ¢ = {£ € g: o(¢) = &} and
m={ € g: o(§) = —¢} determine a reductive decomposition g = m &€ with
[m,m] C &

Let p = Zé:l m;a; be the mazimal root of A and consider t; € tC,
Jj =1,...,1, defined by as(t;) = (1/m;)dx, j,k = 1,...,1. Each inner au-
tomorphism of order 2 on g is conjugate in the inner automorphism group
of g¢ to some o = Adexparit, where t = (1/2)t, with m; = 1 (Hermit-
ian symmetric space) or t = t; with m; = 2 (non-Hermitian symmetric
space). Denote by AT (t) the positive root system generated by TI(t), where
II(t) = {aj € II: j # k}, if mg, =1, and II(¢) = {a; € II: j # k} U {—p}, if
my, = 2. Then, t C £, or equivalently rank g = rank ¢, and

t=te Y (RUY+RUY). (3.12)
aEA (1)
Because B(U(‘j,Uﬁb) = —28,80ap, it follows that the set {U%: a = 0,1; a €
AT\AT(t)} is an orthonormal basis for (m, —3By).

Suppose that G/K has rank r. Then, fixed a r-dimensional Cartan sub-
space a of m, there exists a o-invariant Cartan subalgebra t, of g containing
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a. This implies that t, = a & ty, where ty = t; N ¢, and the complexification
tg is a Cartan subalgebra of g©.

The set ¥ = {X € (a©)*: A = ajqc, @ € A\Ag} of non-vanishing restric-
tions of roots to a®, where Ag = {a € A: ajqc = 0}, is known as the set
of restricted roots of (g, a). Denote by X7 the subset of positive restricted
roots in ¥ determined AT and by m, the multiplicity of A € X7, that is,
my = card{a € A: aqc = A}. For each linear form A on a® put

my = {n €m:ad.(n) = X(w)n, Yw € a},
&y = {¢et:adl () =N (w)(, Yw € a}.

Then my =m_y, &\ =£_), mg = a and £y equals to the centralizer h of a in
¢, that is,

h={uet:[ua =0}

Clearly ty is a maximal abelian subalgebra of h and rank h = rank g —r. Put
h = ho & b1, where hy = ty and b is the orthogonal complement of hy in b.
By [11, Ch. VII, Lemma 11.3], the following decompositions are direct and
orthogonal:

m=a® » my, ELEDIY (3.13)
ezt PYS s
Define the linear function Ag: @ — R, A € 7, by the relation iAg = .
Note that, since the Lie algebra g is compact, A(a) C iR. From [10, Lemma
4.2] we have that for any vector £, € my, A € ¥, there exists a unique vector
(x € &) such that

[u, €] = =Ar(W)Cn, [u, (0] = Ar(w)ér, for all u € a. (3.14)

3.2. Restricted Roots of Compact Rank-One Symmetric Spaces

Compact rank-one Riemannian symmetric spaces can be characterized as
those symmetric spaces with strictly positive curvature. They are Euclidean
spheres, real, complex and quaternionic projective spaces and the Cayley
plane [4, Ch. 3]. Their quotient expressions GG/ K as symmetric spaces appear
in Table 1.

Except for odd-dimensional spheres S?"~! = G/K = SO(2n)/SO(2n —
1) (n > 2), where rankg = n > rank® = n — 1, the rest of all compact
rank-one symmetric spaces admit inner automorphisms. Note that dima =1

Table 1. Compact rank-one symmetric spaces

G/K dim m. m., b

S*", (n>2) SO(n+1)/SO(n) n el 0 so(n—1)
RP™, (n >2) SO(n+1)/S(0O(1) x O(n))

CP",(n>2) SU(n+1)/S(U(1)xU(n)) 2n 1 2n—2 R @ su(n—1)
HP™, (n > 1) Sp(n+1)/Sp(1)xSp(n) dn 3 4n—4 sp(1) ®sp(n—1)
CaP? F,/Spin(9) 6 7 8  so(7)
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and, from Lemma 3.1 and (3.12), a compact symmetric space G/K has rank

one if and only if a + 8 # 0 or « — 3 # 0, for all o, 8 € AT\AT(¢), o # 3.
Each compact rank-one symmetric space is described in detail below.

As a consequence, the following lemmas, Lemmas 3.2 and 3.3, are proven.

Lemma 3.2. The restricted root system ¥ of (g,¢,a) is either ¥ = {£e} or
Y = {+e, i%e}, where € € (a©)*. The corresponding multiplicities m., Me /s
of these roots and the Lie algebra by are listed in Table 1.

Denote by X the unique (basis) vector X € a such that eg(X) = 1,
where € = ieg. Multiplying the inner product (-, ) by a positive constant, we
can assume that (X, X) = 1.

To simplify notations we put m* = m. @m, /5 and € = £. &£, /5, where
m./, = 0 and £/ = 0 if £/2 is not in ¥. Then fixing in m. and m,/, some
(-,-)-orthonormal basis {£} and {55/2}, j=1...,me, p=1,...,m., we
take the unique bases {¢/} and {Cf/z} of & and £/, satisfying (3.14) for
A =¢e and A = /2. Clearly these last two basis are also (-, -)-orthonormal.

Lemma 3.3. We have
[ ;7 :/2] = [ ;7 5/2]3 [Cg7 5/2] = 7[55745/2]? (315)

forallj=1,....mc andp=1,...,mg/s.

Applying [11, Ch. VII, Lemma 11.4, p. 335]), it is immediate the fol-
lowing.

Lemma 3.4. We have:
[f)7m,\] C my, [f),?)\] C &y, [Cl7m/\] C .y, [Cl7é)\} C my, )\26,8/2,
[m67m6] - b7 [m€7m5/2] - EE/Za [m€7EE] Ca, [mmEe/Z} C ms/2a
[me/Qams/2] Chaot., [me/%ka] C mg/2, [me/%Ee/Z] Cadme,
[Esves] ch, [éeaée/ﬂ c E5/27 [E5/2aka/2] c b & ..
(3.16)

Case 1: S", RP" (n > 2). Denote by Ej;, the (n+ 1) x (n + 1)-matrix with 1
in the entry of the jth row and the kth column and 0 elsewhere. Then the set
of matrices {A;x = Eji — Ey;: 1 < j <k <n+1} is an orthonormal basis of
the Lie algebra so(n+1) of SO(n+1) with respect to the invariant trace form
(A,B) = —%traceAB, for all A, B € so(n+1). Here, £ = R{A; }o<jck<nyt1 is
isomorphic to so(n) and m = R{A1;}o<k<n+1 is its orthogonal complement
in so(n + 1). We take as Cartan subspace to a = RX, where X = Aj5. Then
the centralizer b of a in € is given by

b =R{Ajk}s<j<k<nt1- (3.17)
Because adg(Alk = —Ayp, for k =3,...,n+1, it follows that m, = R{A1x }x=3,
...,n+ 1. This implies that X% = {e}, m. =n — 1 and m./, = 0.

Case 2: CP™ (n > 2). Consider g = su(n + 1) as compact real form of the
complex simple Lie algebra a, = sl(n + 1,C). Let IT = {ay,...,a,} be a
system of simple roots. Then the set AT of positive roots is expressed as

AT ={ap,=ap+-+a,:1<p<qg<n}.



MIOM Sasakian Structures on Tangent Sphere Page 9 of 24 227

We get (a1, a1) =+ = (ay, ) = —3{ag, ), forall k =1,...,n—1
being zero the rest of the products of basic elements.

The complex projective space CP"™ is obtained for the inner automor-
phism ¢ = Adexporit, where ¢ = %tl (or, equivalently, ¢ = %tn) Then
II(t) = {ag,...,an}t, AT({H) = {ap: 2 < p < ¢ < n} and AT\AT(¢) =
{anq: 1 < g < n}. We choose as Cartan subspace to a = RUY, .

From Lemma 3.1 it follows that [UY ,its, + ita,) = 0 and [UY, ,ita,] =
0, for all £k = 3,...,n. Therefore, the Cartan subalgebra t$ of a, is the
complexification of ta = adty, where tg = R{ity, +2ita,, ita, (k: =3,...,n)}

Put X = SUY , where 3 = (2(aq, 1))~ ". Then, using Lemma 3.1 and
(3.9), (3.10) and (3.11), we have

)

1
adiUs, = ~UL, adkUS =—-U¢

a1’ Q1(j+1) 4G+’
for allaf()landjzl ,n — 1. Hence, mszU1 and m_/, =
R{UZ a0 =01 1< < n — 1}. Since dimm,/, = 2(n — 1), it fol-
lows that E+ = {e, e}
We choose the inner product (-,-) such that on m it is proportional to
Bjm and (X, X) = 1. Then, (-,-) = —(a1,01)B(:,-). Hence & = US| is a
unit vector of m, and the set of vectors
{5/2 ﬂal(ﬂ) a=0,1,7=1,....,n—1}
forms an orthonormal basis for m. /5. Applying Lemma 3.1 and (3.14), £&. =
R, and{% e/2 = R{(Z’/‘;: a=0,1,j=1,...,n—1}, where (. = —i(ay, 1) ta,
and 5/2 = pUs Q2(j41)°
Let Af(t) = {a € AT(t): ata; € A} = {ay,: 3 < p < q<n}. Then
h = bho ® b1, where hg = to and bh; = ZaeA{r(t)(RUg + RU}). From Lemma
3.1, the vector Z; given by

Z1 = (n—1)(ita, + 2ite,) +2((n — 2)ita, + (n — 3)ite, + - + iy, )

(3.18)

belongs to the center 3(h) of h and
h=RZ, @b, (3.19)
where hy = R{itn, : £k =3,...,n} Dh; = su(n—1) is the maximal semisimple

ideal [, b] of h. By direct calculation, using (3.14) and (3.16), the nonzero
brackets of basic elements of m™ @ €T satisfy the following equalities:

(€. €255 =[G, 5/2] SRR, 6 23] = e E23] = St
[55/27 5/2] =& 2’ 5/2] = %X’ €2 /21 5/2] [58/2’63/2] = 555,
(e, ) = =X, (€295 €0 00m = = (¢ s (il = — 3¢
(3.20)
Case 3: HP™ (n > 1). The Lie algebra g = sp(n+1) of Sp(n+1) is a compact
2 2 2 1

o]

real form of ¢,,41 = sp(n+1,C), 0?1 Qa9 . aon — a,fﬂ
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and
AT ={ap, (1<p<qg<n+1),0p 1<p<g<n)}

is a set of positive roots, where oy = ap + -+ + 204 + - - + 20, + a1,
for 1 <p<q<mn,and ap =20, + -+ 2, + @py1, for 1 < p < n. The

maximal root is 1 = a7 and the inner product (-,-) on I = {aq,...,an41}
satisfies
(a1, 0) = = (an, an) = §<an+1,an+1>7
1
<0417041> = —<Oén,06n+1> = —§<Oéj76¥j+1>;
1 < j <n—1, being zero the rest of products of basic elements.
The quaternionic projective space HP"™ appears for ¢ = Adexp 2nits

where t = t;. Then, II(t) = {—p, a2, ..., an41}. Hence, AT () = {a, 4 (2 <
P<qg<n+1), apg (2<p<qg<n)ptand ANAT(E) = {ay, (1 <q<
n+1),a1, (2<¢g<n)}

From (3.12), ¢ = sp(1) ® sp(n), where sp(1) = Rfita,,U., U} By
Lemma 3.1, because p 4+« ¢ A and (u,a) = 0, for all « € AT (t), this
subalgebra is the center 3() of €.

We choose as Cartan subalgebra to a = RUY . From Lemma 3.1, it
follows that the Cartan subalgebra t$ of ¢, 41 containing a is the complexifi-
cation of ta = a @ tg, where tg = R{ity, + 2itq,,its, (k=3,...,n+1)}. Put
X = pUY , where § = (2(a1,a1))” 2. Applying again Lemma 3.1 and using

ay?
(3.9), (3.10) and (3.11), we have
27171 _ 1 a _ a
adiUL,  =-UL,  adUs = =-U%
2 a _ _177a 2 a — _ 1770
ad Ual(JJrl) B Ua1(1+1)’ adXUam> - 4U04T(—,?:2)’

fora=0,1,5=1,...,nand k=1,...,n — 2. We choose the inner product
(-,-) = —(a1,a1)B(:,-). Then {£!,£2,£3} is an (-, -)-orthonormal basis of m.,
where ¢ = BUO{1 and £27¢ = pUS-., a= 0,1, and the set of vectors

. n+k,a
6/2 =AUy G=Lim), £ = BUS

form an orthonormal basis for m. /5. From Lemma 3.1 and (3.14), we have
that the vectors

1 fﬂ
1 . 2+a a
= e any e €=y Wan U, (@=01)

form an orthonormal basis of . and, of ./, the following set of vectors

J.a a n+k,a U
e/2 6Ua2(j+1)’ CE/2 =hU 2 (k42)

(k=1,...,n—2)

a1(k+2)

Let Af(t) ={a e At(t):ata; €A} ={ay, B<p<qg<n+1), ap, (3<
p < q<mn)}. Then h = ho @ by, where ho = t; and by is the subspace

e > (RU+RUY).
acAT(t)

1 1
U, +Uss;,

b1 =R{U) + U,

agz?
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Hence, h = R{ita, + 2ita,, U + US s a = 0,1} @ sp(n — 1). By Lemma 3.1
and since p + age ¢ A, (p,a92) = 0 and (u, ) = (o2, a22) = 2(a1,0q),
R{it,, + itay, Uy + Ug.} is a subalgebra isomorphic to sp(1), which using
that (u,a) = (agz,a) =0, p+a ¢ Aand ag +a ¢ A for all a € AT (1),
it is the center 3(h) of . On the other hand, it,, + it5;; = 2((ita, + 2ita,) +
2(ita, + - - +ita, ) +ita, ). This implies that b = sp(1) @ sp(n — 1).

Using (3.9), (3.10), (3.11) and Lemma 3.1, we obtain

[ 1 gl,a} _ [ 1 Cl,a] _ (=1)*° Cl,a+1

€15¢/2 €7 5¢/2 2 Se/2
[CL, €] = —[el, ¢l = Y gbenet,
(€20, €85] = [+, (Bl = SR i,
[€240, €0 bRe) = (240, o) = G et
(G2 €ba] = —[e2+, gl = Cgrhiett,
[y, €0 hhe) = —[e2+h, Ui = SGE b,
(€240, €251 = (G2, ¢t = S,
[€2+0, €8] = [0, (T = (oot
(20,6051 = —[E2+0, ¢, ] = S et
[C2H0,¢l9) = —[€270, (g = S ler e,

where 1 <1 <2n—-2,1<k<n—-2,a,0=0,1and c=a(b+1).

2 3 4 2
Case 4: CaP?. On {4, 02’1 o(z)g — 0?3 cﬁ4 , a set of positive roots
is given by

AT ={ap, (1<p<q<4), ags+as,on,
+ap,3 (p=2,3; g=3,4),004 + 34 (¢ =3,4),
arat+ops (p=2,3), 014+ q+a3(g=3,4),c14+ a2
+op s +as (p=2,3),u},

where ;1 = 2014 + a23 + a3 is the maximal root. We get the following
relationships for the nonzero products on IT = {ay, ag, oz, as} :

2
= —(a1,a2) = —(az,a3) = —2(az, ay4).

1= <Oé3,043> = <Oé4,0é4> = %<0¢1,Oz1> = <042,042>

The Cayley plane CaP? = F,/Spin(9) is obtained for 0 = Adexp 2xit, Where
t = ty. Then II(t) = {—p, o1, s, a3}. Putting S1 = —p, fo = an, B3 = a2
and (4 = a3, we have

AT() ={Bps (1<p<q<4), Bpg=PBp+ 42844 +260 (1<p<q<4)},
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1

2 2 2
o o] o
B2 B3 == [,

which coincides with a positive root set for by : ﬂl

and

A+\AJr(t) ={a4, 034,024, 14,014 +0p3 (p=2,3),a2,4 + a3, 014 + @23 + as}.
We choose as Cartan subalgebra to a = RU24. Then, from Lemma 3.1, tg is
the complexification of t; = a @ tg, where tg = R{ita,,ita,,ita, + 2itas} =
R{itg,,its,,its, }. Note that 2(as + 2a3) = —(81 + 262 + 303).

Put X = gU& and take (-,-) = —B. Then applying again Lemma 3.1
and (3.9), (3.10) and (3.11), the following basis is orthonormal for m. and
m, /2,, Tespectively:

(el = 2y} ere = L2pe

a14taps3

( =2 3) 6?7(1 = IU324+063}

{65/2 fUa (q = 1 2 3) 58/2 IU314+Q23+a3}

The corresponding orthonormal basis for €. is {¢1, (P (p = 2,3),¢(>%} and,
for €. /o, { g/‘; (¢g=1,2,3), 5/2} where

Ce = g = %(itﬁl + 2itg, + 3itg, + 4it54)’
457 = %(Ungrap% U314+0‘p4) - %( i, T (—1)“U;N )7
4.a a a 1 a ) arra e
e = (Uot23+043 - Ua24+0634) = 7(UV + (_1) U51v2)7
a _ 2710 _ V2770 V2rja — V2 atlya
g/g - an3 T 2 Y Bg+1)a’ CE/Q Ua14+ozz4+0t3 - 7(_1) - Uﬁ14'
The subalgebra h C £ is of type bs, given by h = ho @ bh1, where hy = g
and
= R{U} 1)y 2,3),Us—
hl { 2(p+1) + ( ) Bl(ﬁfp) (p ) Baa

+(— )“+1U“ UG, (1<s<t<3)}

This proves Lemma 3.2 and, by direct calculation, also Lemma 3.3 for this
case.

4. Tangent Sphere Bundles of Compact Rank-One Symmetric
Spaces

4.1. Tangent Sphere Bundles as Homogeneous Manifolds

Let (M = G/K, g) be a compact rank-one Riemannian symmetric space and
let @ = R{X} be a Cartan subspace of m = T,M, where X is the unique
vector in a such that er(X) = 1 and the G-invariant Riemannian metric g
is determined by the inner product (-,-) such that (X, X) = 1. Consider the
Weyl chamber W in a containing X given by

Wt ={wéea:ep(w) >0} ={tX : te R},
which is naturally identified with RT. Since each nonzero Ad(K)-orbit in

m intersects a and also W, the open dense subset of regular points m? :=
Ad(K)(WT) of mis m\{0} and ¢(G x g m®?) is the punctured tangent bundle
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DT (G/K). This means that the action of the subgroup Ad(K) on the unit
sphere 8,,(1) of m is transitive. Such property characterizes the class of com-
pact rank-one symmetric spaces. In fact, if rank G/K > 2, the hyperplane
Aw) = 0 for each restricted root A intersects Sy, (1) and it implies that the
Ad(K)-action cannot be transitive on Sy (1).

Let H be the closed subgroup of K defined by

H={keK:AdX =X}

Then H = G, N K, where G is the centralizer of a, and b is the Lie alge-
bra of H. Moreover, 8,(1), under the K-action determined by the isotropy
representation, is expressed as the quotient manifold K/H.

Consider the projection 7y xid : GXRT — G/H xR* | (a,t) — (aH,1t),
and the mapping

f+: G/H xRY - G XK (m\{()}), ((IH, t) = [(aatX)]a (421)

which is a well-defined G-equivariant diffeomorphism and ()~ ([(a, Adsw)])
= (akH,t), for all a € G, k € K and w = tX € WT. Then, G/H x RT is
identified via ¢ o fT with D*(G/K).

Proposition 4.1. The natural action of G on T(G/K) = G X g m is of coho-
mogeneity one. The principal orbits are the tangent sphere bundles T,.(G/K)
of radius v > 0, which are diffeomorphic to the quotient manifold G/H. The
zero section is the unique singular orbit. Moreover, the natural projection
7l T.(G/K) — G/K determines the homogeneous fibration

Sw(r)=K/H — T.(G/K)=G/H — G/K, aH —aK. (4.22)

Proof. From the transitivity of the isotropy action on 8y(1), for each u €
m\{0} there exists k € K such that u = rAd;, X, where (u,u) = r?, and the
G-orbit G - [(a,u)] = G Xk {u} of [(a,u)] in G x x m can be expressed as

G- [(a,u)] ={[(a,rAdxX)]: a € G} = G Xk Sy (T).

Let t.: G/H — G/H x RY be the imbedding given by ¢.(aH) = (aH,7).
Then f* o, is a G-equivariant diffeomorphism from G/H onto G - [(a,u)].
Taking into account that for each (a,z) € G x m, we get (x,x) =
Iry(0) (Ta) x0T, (Ta)x0®) = Gr, (o) (Pl(a, 7)], ¢[(a, z)]), the tangent sphere bundle

T,(G/K) is given by
TL(G/K) = 6(G x i Sm(r). (4.23)

Hence, using that ¢ is G-equivariant, the G-orbit of (7,)«ou is ¢(G - [(a, u)] =
T,(G/K) and the orbit ¢(G-[(a,0)]) of the zero vector in T,k (G/K) is clearly
the zero section in T(G/K). Therefore, the first part of the proposition is
proved. For the second, note that by definition, H is the isotropy subgroup
of the Ad(K)-action on 8y (r) at rX. O

The compact Lie groups acting effectively and transitively on some
sphere S" C R"*! have been classified by Montgomery and Samelson and
Borel (see [17] for more information). They are given, together with their
isotropy subgroups and isotropy representations in Table 2, where the super-
script indicates the dimension of the corresponding irreducible subspace.
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Table 2. Compact transitive groups on spheres

G K dimG/K  Isotropy repr.

(1) SO(n) SO(n — 1) n—1 irred.

(2) SU(n) SU(n — 1) 2n — 1 m=m} omy"?

(3) U(n) Un —1) on —1 m=m &my"?

(4) Sp(n) Sp(n — 1) dn —1 m=m}pmi"*

(5) Sp(n) x Sp(1)  Sp(n—1) x Sp(1) 4n—1 m=m$ omy"?

(6) Sp(n) x U(1)  Sp(n—1)x U1) 4n—1 m=m{ &m3Smz"*
(7) Spin(9) Spin(7) 15 m=m! & m

(8) Spin(7) Gy 7 irred.

9) G2 SU(3) 6 irred.

Proposition 4.2. Tangent sphere bundles of compact rank-one symmetric s-
paces and their w7 -homogeneous fibrations admit the following quotient ea-
PTressions:

S = 80(n)/SO(n — 1) — T.8™ = SO(n + 1)/SO(n — 1) — S",

§"7! = 0(n)/O(n — 1) — T,RP™ = SO(n + 1)/S(0(1) x O(n — 1)) — RP",

§?"=1 = SU(n)/SU(n — 1) — T,.CP™ = SU(n + 1)/S(U(1) x U(n — 1)) — CP™,

§*" 71 = Sp(n) x Sp(1)/Sp(n — 1) x Sp(1) — T.HP™ = Sp(n +1)/Sp(n — 1) x Sp(1) — HP",
S'® = Spin(9)/Spin(7) — T,CaP? = F4/Spin(7) — CaP?.

Proof. Applying Proposition 4.1, Table II and the cases studied in Sect. 3.2,

it is explicitly obtained the subgroup H in each compact rank-one symmetric
space:

Case 1: S™ and RP" (n > 2). For S = G/K = SO(n+1)/SO(n), using (3.17),
the identity connected component Hy of H is Iy x SO(n — 1) C SO(n + 1).
Then, K/Hy = SO(n)/SO(n — 1) is the (n — 1)-sphere and hence, H = H.

For RP" = G/K = SO(n+1)/S(0(1) x O(n)), taking again X as Aja,
we also have Hy = I x SO(n — 1). Since K has two connected components:
1 x SO(n) and —1 x O~ (n), where O~ (n) denotes the matrices in O(n)
with determinant —1, H is not connected. Consider the natural isomorphism
¥: O(n) — S(O(1) x O(n)), P(A) = (det A) x A € SO(n+ 1), A € O(n).
Then, from (4.22), S"™! = K/H = O(n)/O(n—1). Hence, H = ¢(O(n—1)) =
S(O(1) x O(n —1)) € S(O(1) x O(n)).
Case 2: CP" (n > 2). Here, K = S(U(1) x U(n)) C SU(n + 1). The center
3(€) of the Lie algebra ¢ of K is one-dimensional and

Zy = diag(ibo. i(by — 1).....i(bo — 1), by = g

is a generator. From (3.19) it is obtained that Hy = {exptZ;: t € R}-SU(n—
1), where Z; is given in (3.18). Hence the matrix

n—1
diag(iby,ib1,i(by — 1),...,i(b1 — 1 by = ——
1ag(1 1711,1(1 )» ,1(1 )), 1 ntl
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is a generator of 3(h) and
Hy = {eitblzg x et =DA e SUm+1):teR, Ae SUn— 1)} :

Because Zg = diag(0, il;), i(b~0—1), .. ,1(5{)—1)), with by = g—; = =1 helongs

n

to the center of the Lie algebra of 1xS(U(1)x U(n—1)) C SU(n+1), Hy can be
identified with this subgroup via the isomorphism (exptZ;)A — (exptZp)A,
A € SU(n—1), or equivalently, with S(U(1) x U(n —1)) via the isomorphism

L PR C il eitho 5 1 x eit(g‘;_l)A, teR, Ae SUn-1).
Then K/Hg = SU(n)/SU(n — 1) = S*"~! and H = Hy.

Case 3: HIP™ (n > 1). According with Sect. 3.2, the centers of h and of ¢ are
isomorphic to sp(1). They are given by

3(h) =R{it, +its;, Ul‘f +Ug,, a=0, 1}, 3(8) = R{it,, Ul‘f: a=0,1}.

Hence, Hy = Sp(1)-Sp(n—1) and K/Hy = Sp(n) x Sp(1)/Sp(n—1) x Sp(1)
S*~1. This means that H = Hj.

Case 4: CaP?. In Sect. 3.2 it has been proven that h = s0(7). Since K =
Spin(9), Hy = Spin(7). Then, K/Hy = S'® and so, H = H,. O

Let K be the field of real or complex numbers or the algebra of quater-
nions. On K"*!, n > 0, consider its standard inner product. The Stiefel
manifold Vo(K"*1) of all orthonormal 2- frames in K"*! is a homogeneous
manifold with quotient expression: SO(n+1)/SO(n—1), SU(n+1)/SU(n—1)
or Sp(n+ 1)/Sp(n — 1) depending on whether K = R, C or H, and the pro-
jective Stiefel manifold Wy (IK"1) is the quotient space of the free S-action
on Vo(K"*1), where S is the subset of unit vectors of K (S = S°, St or §3).

Clearly, the tangent sphere bundle T,.S™ of S” C R™*! is naturally
identified with Vo(R™*!), by considering each u = u, € T}.,S™ as the pair
(z, Lu) in R"™, and T,RP™ with W(R"), by identification of u with its
opposite. As a direct consequence from Proposition 4.2, we have the following.

Corollary 4.3. T, KP" = W5 (K"*1), for K=R, C or H.

4.2. The set of all invariant metrics on T, (G/K)

According with Proposition 4.1, the tangent sphere bundle T,.(G/K) can be
expressed as the homogeneous manifold G/H. Let mg: G — G/H be the
natural projection and put m = m @ £, Then g = m @ b is a reductive
decomposition associated to G/H and T,,,G/H, oy = {H} being the origin
of G/H, is identified with W via (7). As in Sect. 3.2, we choose the Ad(G)-
invariant inner product (-,-) on g satisfying (X, X) = 1, where X € a and
er(X) = 1. Next, using the identification m = T, G/H, all the G-invariant
metrics g on T,.(G/K) = G/H are obtained.

Proposition 4.4. Any G-invariant metric on T,,(G/K) is determined by an
Ad(H)-invariant inner product ()@ X € S+ on m of the form
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{ .>(a,as,as/2,bs,b5/2) —a < Yo+ acly Vm. + a8/2<.7 ‘>m5/2
+bs<'»'>és +b5/2<'a'>{’5/27 (424)

where a, ac, az2,be and b /o are positive constants.

Proof. By definition of H, the vector X € a is Ad(H)-invariant and we get
ad§( oAdy, = Ady, o adif, for each h € H. Hence the subspaces m., m /s, £
and €./, are all Ad(H )-invariant. Now, using the isotropy representation of
spheres in Table 2, it follows from Proposition 4.2 that the subspaces €. and
t./o of £ are Ad(H)-irreducible. Hence, applying (3.14), the representation
Ad(H) of H is also irreducible on m. and m, /. This proves the result. [

In what follows we denote by g(®%®2) the G-invariant metric g in
(4.24). If £/2 is not in X, the numbers a./ and b, /, can take any value and
we will simply write g = g(@a<:b<),

Let {: m x m — m be the symmetric bilinear function defined in (2.5)
for the Euclidean space (m, (-,-)(#%x2)). The following lemma is obtained

using (3.14), (3.16) and (4.24).

Lemma 4.5. We have:
U(a,a) = U(me, me) = U(k, ) =0,

. ) a%—a,
U(X,e) = Tt ux )=t w(X,€,) = i

(X)) = z/f;f L u@é\c?):az;bfsjkx, e €L)p) = "I €,
c/2—0¢ ; ; be—a,. ;
e, CTy) = S Pl WD o 6E) = P2 51 ),

’ be jo—be ag/o—b, s
W CP)y) = I Pl D 0 Cl) = 222 (B X = IR 5 ¢l ),

forall j,k=1,...,mc and p,q=1,...,mc/3.

Since X is Ad(H)-invariant, it determines a G-invariant vector field on
T, (G/K) that we also denote by X. As a direct consequence from this lemma,
the following is proved.

Proposition 4.6. We have:
(i) X on (T.(G/K),g) is a Killing vector field if and only if ay = by, for
all e BT,
(ii) (T.(G/K) = G/H,g) is naturally reductive (with associated reductive
decomposition g =m @ b) if and only if g is proportional to (-, ).
(iii) The projection 71 : (T.(G/K),g) — (G/K,g) is a Riemannian submer-
sion if and only zfa =a. =agp = L.

4.3. The Standard Almost Contact Metric Structure

An affine connection V on arbitrary smooth manifold M defines a distribution
HiueTM — H, C T, TM, called the horizontal distribution, where 3, is
the space of all horizontal lifts of tangent vectors in T, M, p = ' (u), obtained
by parallel translation with respect to V. (See, for example [5, Ch. 9] and
references inside for more information). Then V induces the direct decom-
position T,TM = H, & V,, where V, is the vertical space V,, = Ker(nT).,
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The standard almost complex structure J¥ on T'M induced by V, is defined
by

JVXP=X", JVX'"=-X" X cX(M), (4.25)
where X® and X" are the horizontal and vertical lift of X, respectively. Given

a Riemannian metric g on M, the Sasaki metric ¢° with respect to the pair
(g, V) is given by

g% (m,m2) = (g((x" ), (1) em2) +9(K (m), K (n2))) o 7
m,na2 € TT(M), (4.26)
where K is the connection map of V. Then ¢g%(X® Y®) = ¢5(X",Y") =
g(X,Y)orT and g% (X7, Y®) =0, for all X,Y € X(M). This implies that g
is a Hermitian metric with respect to JV. If V is the Levi-Civita connection
of (M,g), the pair (J,g%), where J = JV, known as the standard almost
Hermitian structure, is almost Kéhler.

Now suppose that M is a compact rank-one symmetric space G/K, g
is the G-invariant Riemannian metric determined at the origin by the in-
ner product (-,-) on m and V is its Levi-Civita connection. Then (J, g) is
defined on G/H x R* by its identification with DT (G/K) via ¢ o f¥, i.e.

= (po fH) 1 J(po fT). and g° = (¢o fT)*g”. Moreover, the tangent space
Tioy1)(G/H x RT) is taken as m x TyR, via (mg X id),(c ), for each t € RY,
and the vectors

{000 (0.55).(€.0).(€20.0(0). (0,00

j:L...,me,p:ll,...7m€/2} (4.27)

is a basis of T(,, ) (G/H x Rt). From (4.21), using (2.7), we have

7
(f+)*(01.1,t) <£a 815) = Tx(e,tX) (gaXtX) = Tx(e,tX) (fmaXtX + t[ng]tX)v

for all £ € m. Then from (3.14), for all s = 1,...,my, A € X1, we get
(F D)o (X,0) = mo(e,ex) (X, 0), (F D) w(on,0)(0, &) = a(e,ex)(0, Xiex),

(f+)*(oH,t) (5;\7 0) = W*(c,tX)(fiv O)a (f+)*(oH,t)(<;7 0) = 7r*(c,tX)(Ov _AR(t)(gi)tX)v
(4.28)

where Ag is taken as the mapping A\g: RT — R*, Ag(t) = Ag(tX). (Then,
ER = id|R+ )

Proposition 4.7. The standard almost Hermitian structure (J,g%) on G/H x
R™ is G-invariant and it is determined at (op,t), t € RT, by

J(OH t)(X7O) (Oa ,98,5) J(OH,)(Ov aat) ( X,O),
Jon1)(E5:0) = (3@ 0)s Jon 5(C5,0) = (Or()E5, 0);
g(oH t) ((X,0),(X,0)) = gzgoH7t)((07 gt) (0, gt)) =1,

( )

g(oH t) (g)\y )7(5;\’0)) = ,\Dél(t)gg)H,t)((Ci\vo ,(C;,O)) =
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where s = 1,...,mx, A\ € £, being zero the rest of components of g°.

Proof. Denote by 7 the projection 7: G xgm — G/K. Then, 7 = 77 o ¢. Let
V and H be the distributions V := (¢1), (V) = Ker 7, and H = (¢~1), (H)
in T(G x g m). Taking into account that (7o7)(a,x) = 7k (a), for all (a,z) €
G x m, and using (2.8), we have

\~7[(a’z)] = {T(ae)(0,uz) : wemM}, (a,2) € G xm. (4.29)

Because V is G-invariant, V, V, H and H are G-invariant distributions. More-
over,

fE’(e,x)] = T(e,x) (0,535), 5 cm. (4.30)

For each € T,,TM denote by 7% (resp., 7*°%) the V,,-component (resp., H,-
component) of n with respect to the decomposition T,,7(G/K) = H,, @ V..
Recall that the connection map K is defined by K, (1) = ¢, ("), where ¢,, is
the projection ¢, : T,T(G/K) — T,(G/K) such that ¢, (n) = 0, for all n € H,,
and ¢, (vy,) = v. This satisfies Kx, (X.pu) = V. X, for all X € X(G/K) and
u e T,(G/K).

For each x € m, consider 27 as a local section of T(G/K). Then

(@Yot = L 7 (expte) = 2

-, ex; = Px * 70 ) .
& oo dt\t:O(T P60 )T = Duf(e,2)] (Tu(e,2)(€,0)), £€m

(4.31)

Since, using (2.4), K;((27).0&) = Vex™ = 0, we have ((27).08)" = 0, €
T, T,M. Then from (4.31), the vertical component (7, (e,q)(&,0))" of T, (e )
(£,0) in the decomposition Tje G xx M = Hj(ez)] © Vi(e,z) is the zero
vector. Hence, applying (4.29),

(W*(e,x) (gvuz))ver = (’/T*(e,x) (Ovul’))ver = Tx(e,) (Ovuﬂi)a forall (guu) cmXxm.
Because Ty[(e,0)] (Ts(e,a) (5 Uz)) = § €M =T, M,
é-fl(e’z)] = (W*(e,z) (67 um))l[](o;x)] = 71—>|<(e,ac) (5; Oa:) (432)

and UN{[(WC)] = {Tu(a,2) (&, 02): € € m}. Then, applying in (4.25) and (4.26),
(4.30) and (4.32), (J,¢°) on G xx m is determined by

J[(e,m)]ﬂ—*(e,r) (57 ua:) = Tx(e,x) (_u7 fz)v
gS(ﬂ-*(e,w) (ga uw)v Tx(e,x) (777 Ul)) = <§7 77> + <ua U>,
for all x, &, n,u,v € m. Hence the result is proved using (4.28). O

(4.33)

From Proposition 4.7, (0, %) is a G-invariant unit vector field on the
Riemannian manifold (G/H x R*,¢®) and it is normal to the submanifolds
1-(G/H) = G/H x {r} of G/H x RT, for each r > 0. Hence we have the
following.

Proposition 4.8. The standard almost contact metric structure (p,&,n,§° =
15g%) on the tangent sphere bundle T,.(G/K) = (¢po f+)(G/H x {r}), for each
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r > 0, is G-invariant and it is determined at o by &0, = X, Moy = (X, ),
You X =0 and

LPOH’);:;\:_%(T)C?7 @oHGZ)\R(T)fiy S:L'“?m>n )‘GE+;
*‘(17177‘2) — 2 ; —_Qn n

< oy =(y9m + 720, e, if G/ K =S™ or RP™,

gOH = 2
~(1;1;X T . n n n
g ) e 412 (e + (e, if G/K = CP™, HP™ or CaP™.

Moreover, the standard field & of T(G/K) is the G-invariant vector field
determined by &, +) = (X,0), for allt € R*.

From Propositions 4.6 and 4.8, the projection 77: (T}.(G/K),g) —
(G/K,g) is a Riemannian submersion and the following is proved.

Corollary 4.9. The standard vector field & of (T,(G/K),§°) is Killing if and
only ifr =1 and G/K = S™ or RP". Then (G/H,§") is naturally reductive.

5. Invariant Sasakian Structures on T, (G/K)

~

We first consider all G-invariant Riemannian metrics g on G/H x Rt =
D*(G/K) such that the vector field (0, &) on G/H x R is orthogonal to
the hypersurface ¢,.(G/H) = G/H x {r} = T,(G/K), for each r > 0. From
Proposition 4.4, g is determined at the points (o,t) € G/H x RT and with
respect to the basis given in (4.27), by

g(OH,t)((X7 0)7 (X, 0)) = a2(t)7 g(OH,t)((07 %)7 (07 %)) = b2(t)v
8(ou.)((€3,0), (£3,0)) = ax(t), 8(om.1 (€3, 0), (C3,0)) = ba(?),

where a,b,ay,by: RT — RT are smooth functions, for each A € T, being
zero for the rest of components.

(5.34)

Next, we introduce a family of G-invariant almost complex structures
on D*(G/K) containing the standard structure Jip+ (g k). Let ¢: Rt — R*
be a smooth function and let g7 be the (1,1)-tensor on T{,,, ,(G/H x RT) =
m x T;R, for each t € RT, given by

Hg(ﬁiao) = (7q%(t)<§\a0)v 3g(<§70) = (QA(t)g/S\vo)a
for all s = 1,...,my, A € 1, where ¢y = ¢ o \g. Because the subspaces

m, and €y are Ad(H)-invariant, J7 on (m™ & €+) x {0} is Ad(H)-invariant
and J? determines a (unique) G-invariant almost complex structure J¢ on
G/H x R* such that J! = =3

om,t
From Proposition 4.77) J1, g being the identity map, is the standard
almost complex structure J on D¥(G/K) and the Sasaki metric g° coincides
with g in (5.34), where the functions a, b and a) are constant, with a = b =
ay) = 1, and b,\ = >‘D2§
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Lemma 5.1. J7:= (f7).J9(fT);! on G xx (m\{0}) is given by

> (u, Ad€3) (E)5k

s=1

~—

(1
J[q(a,:c)]ﬂ-*(fia u;v) = 77*(—<U7Ade>X;k _ Z 3 (t
res+ B

~—

my
r(t)

x (€, AdpX) Xix + Z NG Z&Adk@ (€3)ex);
s=1

A€2+

foralla e G, x =tAdp X, t e RT and k € K, and (£,u) € m X m.

Proof. Using (2.7), (2.8) and (4.28), together with
(Jq)[(a,tX)]Tr*(XiaO) = W*((),XtX)v (J ) (a,tX)] T«
(V)((a. t)f)]’ir*((g/\)aa 0)
= (0, 223 (€3)1x) (JD) (e (0, (63)1x)

= m (2 (&)1, 0).

.35), we have

(®
(0, X)) = m. (= X3,0),

Then, for each (§,u) € m x m,

(T (€6 ) = e X)X = 32 205 32 65) (€)%
(€ X)Xex + 3 2l Z< ED(E)ex)-

(5.36)
On the other hand,

T (6, uz) = %‘S:Ow(aexp s&, Adk(tX + sAdy,-1u))
= %‘Szow(a(exp &k, tX + sAdy—1u) = T ((Adp-18) bk, (Ad—1u)ix).

Hence, Ji(, .17+ (8a: ta) = T, x0T (Adg-18)Gy; (Adg-1u)ex ). Now the re-
sult follows from (5.36), taking into account that (-,-) is Ad(K)-invariant.
U

Proposition 5.2. The almost complez structure J¢ on D (G/K) can be ex-
tended to a G-invariant almost complex structure on whole T(G/K) if and
only if
t
0 < lim at) < 4o00. (5.37)
t—0+ t
Proof. From Lemma 5.1, since Ad(K)(R") = m\{0}, the existence of an
extension of JY is determined by the existence with (finite) positive value of

lim; g £ 3 8 = lim;_.g @. O

From (5.34) and (5.35), the following is immediate.

Lemma 5.3. The metric g on G/H x Rt is Hermitian with respect to J9 if
and only if a ="b and by = ¢3 - ay, for A € XT.
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Moreover, the almost contact metric structure on G/H = G/H x {r},
induced from the Hermitian structure (J9,g), is the G-invariant structure
(o1, ﬁf,a(r)n, g = (tr)*g), such that at oy and with respect to the basis

{X,83,¢55 s=1,...,my,A\€ X} of m,

a2'r;a )5 ) 2ax(r
Pl = —mm @ PG =08, By =& OO0,

(5.38)

Proposition 5.4. (¢, G §, a(r)n,g) on T.(G/K), for each r > 0, is contact
metric if and only if

_ a(r)Ae(r)
ar(r) = 2rgx(r)
Moreover, it is K -contact if and only if g\(r) =1, for all A\ € X+,
Proof. For u,v € M, dnoy (u,v) = =310, ([u,v]w) = —3([X,u],v). Then,
using (3.14),
Ar(r
dnoy (€3, CR) = D;E,)a 5:1,~--am/\a/\62+>

being zero the rest of components of dn,,,. On the other hand, from (5.38), the
fundamental 2-form ® of (¢4, ﬁg, a(r)n, &) satisfies @, ,, (£5,C5) =ax(r)ax(r).
Hence, using Proposition 4.6 (i), the result is proved. O

As a consequence from Propositions 4.8 and 5.4, we have the following
version of Tashiro’s Theorem [19] for tangent sphere bundles of any radius.

Corollary 5.5. The standard almost contact metric structure (o,€,1,3°) on
T.(G/K) is contact metric if and only if r = % Moreover, for all r > 0,
the rectified almost contact metric structure (¢’ = ¢, & =2r&,n = 3-n,8 =
ﬁf]s) 18 always contact metric and it is K-contact if and only if r =1 and
G/K =S" or RP"™; in that case (¢',&',n,g) is Sasakian.

Remark 5.6. (S™,g) and (RP™,g), described in Case 1, have constant cur-
vature 1.

We conclude with the proof of our main result.

Proof of Theorem 1.1. Denote by J! the almost complex structure on
DT (G/K) such that J(10H7t) =g}, for all t € RT, ¢ being the constant map
q = 1. Note that, from Proposition 5.2, such a structure cannot be extended
to an almost complex structure on whole T'(G/K).

For each smooth function f: R™ — R¥, consider the compatible G-
invariant metric g/ to J', such that at (oy,t) € G/H x RY it is given as in
'(5.34) fora=0= f and ay)(t) = bx(t) = W, forall t € R* and A € ©7F,
ie.

g{OH,t)((Xv O)a (Xa 0)) = g{oH,t)((()’ %) ( ’ Bt)) f2( )
g{oH,t)((fivo)’ (gi’())) = g{oH7t)((C§’O)7 (Civo)) = Wv

s=1,...,my, A€ XT,
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being zero for the rest of components. The induced metric g%, k = f(r), from
g/ on T,(G/K) = G/H, for each r > 0, is the G-invariant metric satisfying
(1.1) and, from Proposition 5.4, the pair (k~1£, ") is a K-contact structure.

Next, we show that (k= '£,8") is the unique G-invariant K-contact
structure on T,(G/K) whose characteristic vector field is k!¢, Let g =
g(®ax0) he a G-invariant Riemannian metric as in (4.24) such that (1€, g)
is K-contact. Then, a = k and, from Proposition 4.6, by = a), for al-
1 A € X+, Moreover, there exists a G-invariant (1,1)-tensor field ¢ such
that (¢, k1€, kn, g) is an almost contact metric structure verifying

Bon (1, 0) = Koy (u,v) = =5 (X, ], v),

for all u,v € m. Hence, using (3.14), &3 = ”;‘f;:) (5, forall s = 1,...,my,
A € XF. Then, a) = “’\ff’”), because g is a (¢, k1€, kn)-compatible metric.
Therefore, g = g~ and ¢ = ¢'. Applying (3.14) in (5.38), ! satisfies
1
1 _ +
Phamen, = o) AT (5.39)

Now, we only need to show that (¢!, k71, kn, &%) is normal. By defi-
nition (2.2), the G-invariant tensor field N = [p!, '] + 2dn ® £ on G/H is
given by

NOH ('U;, U) = —[’ll/, /U]ﬁ + [gpfl)Hu’? ()0(1)1.1 U]ﬁ - 90(1)1.1 [@é;{u? U]ﬁ - <)0(1)H ['U,, <)0(1)H U]ﬁa

(5.40)
for all u,v € m. Hence, using that by application of (5.39) we have
adx o gp(l)H = <p})H oady,
we obtain that N} (X, u) =0, for all v € m, and
N, (u, 05, v) = No,, (o) u,v), u,ve€m (5.41)

If u,v € m. @ £ then, from (3.16), [u,v]w € a and so, ¢} [u,v]w = 0.
Using (5.39), the Jacobi identity and taking into account that adxm C m, it
follows that

[oo, u, V) + [u, b vlm =0, [p) u, 00 vlw=[u,v]m. (5.42)
Hence (5.40) implies that N,,, (u,v) = 0.

If u,v € mzjg @ £ g, from (3.16), [u,v]w € a © m. @ E. Then, using
(5.39) and the Jacobi identity,

1
o [t V] = 00, [ V]m.er. = 5 ([0, vl + [, 95, Vlm)-
Therefore, [u, V]m_ge. = —395,, (0L, u, v]w + [u, ¢}, v]w) and we get
[uv U]mEEB{’E = _[QOS)HU’? @iHU]mEEBesv [Lp})H'lh v]msEBes = ['LL, SD(IJHU]meEB{’s .

(5.43)
Because, applying (5.39) and (5.40),
(N, (u,v), X) = (u,adxv) — (goz;Hu,adxnpiHU) =0,

we have N(u,v) = N(u, V) jm_ge. = 0.
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Finally, consider the case u € m &t and v € m, ;o DE, /5 or, equivalently
using (5.41), the case u € m. @ & and v € m /5. From (3.16), [u,v] € €&/ @
m, /o and then,

oo [u,v] = 2adx[u, ).

Applying again the Jacobi identity, we obtain [u,v] = —} (2[p}, u,v] +
[u, o}, v]). Hence, (5.40) can be expressed as

Noj (u,0) = @g,, (90,1, 0] + [, 05, v]).

Therefore, we have N, (u,v) = 0 if and only if

[l u, 0 v] = [u,v], forallu€m. &, vEm, . (5.44)
From (5.38), equality (5.44) is equivalent to (3.15) and the result follows from
Lemma 3.3. O
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