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Abstract. This paper deals with the existence of bounded and locally
Hölder continuous weak solutions of a homogeneous Dirichlet prob-
lem related to a class of nonlinear fourth-order elliptic equations with
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1. Introduction

In this paper, we prove the existence of bounded and locally Hölder contin-
uous weak solutions of the homogeneous Dirichlet problem related to a class
of nonlinear fourth-order elliptic equations whose model is

∑

|α|=1,2

(−1)|α|Dα

[ |Dαu|pα−2Dαu

(1 + |u|)θ(pα−1)

]
= f in Ω, (1.1)

where Ω ⊂ R
N , N ≥ 3, is an open-bounded set, α = (α1, . . . , αN ) is a multi-

index with nonnegative integer components and length |α| = α1 + · · · + αN

and Dαu(x) =
∂|α|u(x)

∂xα1
1 ∂xα2

2 . . . ∂xαN

N

. Here, θ and pα are real numbers, such

that 0 ≤ θ < 1 and

pα =

{
q if |α| = 1
p if |α| = 2

(1.2)

with 1 < p < N
2 , 2p < q < N , and f ∈ Lt(Ω) with t > N

q .
In the case θ = 0, Eq. (1.1) is the fourth-order prototype of a class of

nonlinear higher order elliptic equations introduced by I. V. Skrypnik in [42].
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It is well known that for the 2m-order equation
∑

|α|≤m

(−1)|α|DαAα(x, u,D1u, . . . ,Dmu) = 0 (1.3)

the ellipticity condition
∑

|α|=m

Aα(x, ξ)ξα ≥ C1

∑

|α|=m

|ξα|p − C2

∑

|β|<m

|ξβ |p

does not ensure the boundedness of a solution u ∈ Wm,p(Ω), unless mp > N
(as a consequence of Sobolev’s embedding theorem) or mp = N (see [20])
or N − mp is sufficiently small (see [49]), while in the case where N > mp,
examples of equations with unbounded weak solutions are available.

In [42], I. V. Skrypnik has selected a subclass of (1.3) imposing a
strengthened ellipticity condition which, in the model case, takes the fol-
lowing form:

∑

1≤|α|≤m

Aα(x, η, ξ)ξα ≥ C1

( ∑

|α|=m

|ξα|p +
∑

|α|=1

|ξα|q
)
,

where C1 > 0, p ≥ 2, and mp < q < N .
This condition allowed reaching Hölder continuity of any generalized

solution u ∈ W 1,q(Ω) ∩ Wm,p(Ω) without any further relation on N , m, p.
Here, we consider a degenerate version of Skrypnik’s fourth-order oper-

ator in the sense that the differential operator

u → A(u) =
∑

|α|=1,2

(−1)|α|Dα

[ |Dαu|pα−2Dαu

(1 + |u|)θ(pα−1)

]
, 0 < θ < 1,

though well defined, is not coercive on W 1,q
0 (Ω) ∩ W 2,p

0 (Ω) when u is large.
Due to this lack of coercivity, standard existence theorems for solu-

tions of nonlinear equations cannot be applied. We overcome this difficulty
by approximating our problem with a sequence of homogeneous nondegen-
erate Dirichlet problems and we will prove an L∞—a priori estimate on the
approximating solutions which, in turn, implies an a priori estimate in the
energy space. Once this has been accomplished, a compactness result for the
approximating solutions allows us to find a bounded weak solution of the
problem (1.1) which is, as well, locally Hölder continuous.

It is worthwhile to note that in the case of second-order equations, the
existence of solutions of the Dirichlet problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div
[ |∇u|q−2∇u

(1 + |u|)θ(q−1)

]
= f in Ω

u = 0 on ∂Ω

under various assumptions on f , has been studied in the papers [1,2].
We point out that the equation we are dealing with presents two more

difficulties: it involves a fourth-order operator which behaves like a system of
PDEs, and moreover, it has non smooth coefficients. Many of the well-known
techniques which work for one single equation of second order do not hold
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anymore in the framework of high-order equations and we need to find a
suitable method to overcome the issues.

This article is organized as follows. In Sect. 2, we formulate the hypothe-
ses and state the results. In Sect. 3, we prove two a priori estimates will be
used in the proof of the main theorem. At last, in Sect. 4, we give the proofs
of the existence of bounded solutions as well as their Hölder’s continuity.

2. Preliminaries and Statement of the Results

Let Ω be an open-bounded set in R
N with N ≥ 3. We denote by N(2) the

number of different multi-indices α, such that |α| = 1, 2.
Let Aα(x, η, ξ) : Ω × R × R

N(2) → R, with |α| = 1, 2, be Carathéodory
functions (i.e., Aα(·, η, ξ) are measurable on Ω for every (η, ξ) ∈ R × R

N(2)

and Aα(x, ·, ·) are continuous on R×R
N(2) for almost every x ∈ Ω) satisfying

the following structural conditions, for almost every x ∈ Ω, every η ∈ R and
ξ, ξ′ ∈ R

N(2), ξ 	= ξ′:
∑

|α|=1,2

Aα(x, η, ξ)ξα ≥ ν1

∑

|α|=1,2

|ξα|pα

(1 + |η|)θ(pα−1)
, (2.1)

∑

|α|=1,2

|Aα(x, η, ξ)| pα
pα−1 ≤ ν2

[ ∑

|α|=1

|ξα|q +
∑

|α|=2

|ξα|p
]
, (2.2)

∑

|α|=1,2

[
Aα(x, η, ξ) − Aα(x, η, ξ′)

]
(ξα − ξ′

α) > 0, (2.3)

where ν1, ν2 are positive constants, the numbers pα, |α| = 1, 2 are de-
fined by (1.2), and

f ∈ Lt(Ω) with t > N/q. (2.4)

We set

W 1,q
2,p (Ω) = W 1,q(Ω) ∩ W 2,p(Ω),

and

W̊ 1,q
2,p (Ω) = W 1,q

0 (Ω) ∩ W 2,p
0 (Ω).

The assumptions (2.1)–(2.4) allow us to give the following:

Definition 2.1. A weak solution of the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

|α|=1,2

(−1)|α|DαAα(x, u,D1u,D2u) = f in Ω

Dαu = 0, |α| = 0, 1 on ∂Ω

(2.5)

is a function u : Ω → R, such that
⎧
⎪⎪⎨

⎪⎪⎩

u ∈ W̊ 1,q
2,p (Ω),

∑

|α|=1,2

∫

Ω

Aα(x, u,D1u,D2u)Dαv dx =
∫

Ω

fv dx
(2.6)
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for every v ∈ W̊ 1,q
2,p (Ω).

Our first result states the existence of a bounded weak solution of (2.5).

Theorem 2.2. Let us suppose that conditions (2.1)–(2.4) are satisfied and

0 ≤ θ <
q − p

p(q − 1)
. (2.7)

Then, there exists a weak solution u of the problem (2.5), in the sense
of Definition 2.1,

such that

||u||∞ ≤ M (2.8)

where M > 0 is a constant depending on θ, N , q, p, ν1, ν2, |Ω| and ||f ||Lt(Ω).

Under the same assumptions, as in the nondegenerate case, it can be
readily proved the local Hölder continuity of any weak solution u ∈ W̊ 1,q

2,p (Ω)∩
L∞(Ω). Namely

Theorem 2.3. Let us suppose that conditions (2.1)–(2.4) and (2.7) are sat-
isfied. Let u ∈ W̊ 1,q

2,p (Ω) be a bounded solution of the problem (2.5). Then,
there exists ρ ∈ (0, 1), depending on the data and on ||u||L∞(Ω), such that
u ∈ C0,ρ

loc (Ω) and for any domain Ω′ ⊂⊂ Ω, we have

|u(x) − u(y)| ≤ C|x − y|ρ for any x, y ∈ Ω′,

where C is a positive constant depending on the same parameters of ρ and
d′ = dist(Ω′, ∂Ω).

Remark 2.4. In the case θ = 0, operators satisfying condition (2.1) have been
studied in connection with many other questions such as homogenization
problems, L1-theory, qualitative properties of the solutions, and removable
singularities in the degenerate and nondegenerate case (see [4,5,16–18,26,40,
43]). Moreover, a class of nonlinear fourth-order equation with principal part
satisfying (2.1) and lower order term having the so-called ”natural growth”
or a convection term has been studied in [8,12,45–47].

In the framework of second-order elliptic equations with a lower order
term having natural growth with respect to Du, the existence of bounded
solutions has been studied in [3] assuming f in Lt(Ω), with t > N

q , and in
[6,7,10,11,14,15] assuming f in a suitable Morrey space.

For related arguments on elliptic systems with special structural condi-
tions, see also [9,13,19,22–24,28–38].

Remark 2.5. We point out that the assumption (2.4) on f required in The-
orems 2.2 and 2.3 is the same which yields to the existence of bounded and
Hölder continuous solutions for nondegenerate (i.e., θ = 0) fourth-order equa-
tions. In this last case, examples of unbounded solutions of equation (1.1),
with f ∈ L

N
q (Ω) and f /∈ L

N
q +ε(Ω), for any ε > 0, are constructed in [48].
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3. A Priori Estimates

We begin this section recalling an algebraic lemma due to Serrin (see Lemma
2 in [41]).

Lemma 3.1. Let χ be a positive exponent and ai, βi, i = 1, . . . , N , be two sets
of N real numbers, such that 0 < ai < +∞ and 0 < βi < χ. Suppose that z
is a positive number satisfying the inequality

zχ ≤
N∑

i=1

aiz
βi .

Then

z ≤ C
N∑

i=1

aγi

i ,

where C depends only on N , χ, βi, and γi = 1
χ−βi

, i = 1, . . . , N .

Given n ∈ N, let Tn(s) be the truncation function defined by

Tn(s) =

⎧
⎨

⎩

s if |s| ≤ n

n sign(s) if |s| > n.

Following the technique already used in [1] and [2] in the framework of
second-order elliptic equations, let us define the following Dirichlet problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un ∈ W̊ 1,q
2,p (Ω),

∑

|α|=1,2

∫

Ω

Aα(x, Tn(un),D1un,D2un)Dαv dx =
∫

Ω

fv dx

for every v ∈ W̊ 1,q
2,p (Ω).

(3.1)

Since
∑

|α|=1,2

Aα(x, Tn(η), ξ)ξα ≥ ν1

∑

|α|=1,2

|ξα|pα

(1 + |n|)θ(pα−1)
,

for almost every x ∈ Ω and for every (η, ξ) ∈ R × R
N(2), by Leray–Lions

existence theorem (see [39]), there exists a solution un ∈ W̊ 1,q
2,p (Ω) of problem

(3.1). Moreover, every un is bounded thanks to the boundedness result of [25]
(see also [45]). Now, we are going to prove the following.

Lemma 3.2. Assume that conditions (2.1)–(2.4) are satisfied. Let un be a
solution of the problem (3.1) for every n ∈ N. Then, there exists a positive
constant M , depending only on θ, N , q, p, ν1, ν2, |Ω| and ||f ||Lt(Ω), such
that

||un||∞ ≤ M for every n ∈ N. (3.2)

Next lemma deals with the boundedness of un in the energy space.



182 Page 6 of 17 G. R. Cirmi et al. MJOM

Lemma 3.3. Let hypotheses (2.1)–(2.4) be satisfied. Then, there exists a posi-
tive constant C, depending only on θ, N , q, p, ν1, ν2, |Ω| and ||f ||Lt(Ω), such
that

||un||W̊ 1,q
2,p (Ω) ≤ C for every n ∈ N. (3.3)

To prove the previous two lemmas, we have to state some auxiliary
propositions. First of all, we need to ensure that the composition of a suitable
function ζ(s) with a function u ∈ W̊ 1,q

2,p (Ω) belongs to W̊ 1,q
2,p (Ω).

Lemma 3.4. Let ζ ∈ C2(R) be a function with bounded derivatives ζ ′ and ζ ′′,
such that ζ(0) = 0. If u ∈ W̊ 1,q

2,p (Ω), then

ζ(u) ∈ W̊ 1,q
2,p (Ω),

and for each multi-index α, such that |α| = 1, 2, the following assertion holds:

Dαζ(u) = ζ ′(u)Dαu + R|α|(u), (3.4)

where

R|α|(u) =

⎧
⎨

⎩

0 if |α| = 1
ζ ′′(u)

∑

|β|=|γ|=1

DβuDγu if |α| = 2.

Next, we present a slightly modified version of a well-known Stampac-
chia’s lemma (see [44]), whose proof is contained in [2,25]. See also [21] for
new generalizations.

Lemma 3.5. Let φ : R
+ → R

+ be a nonincreasing function, such that

φ(h) ≤ c0

(h − k)ν
kθν [φ(k)]1+μ, for all h > k ≥ k0 > 0,

for some positive constants c0 and k0, with ν > 0, 0 ≤ θ < 1 and μ > 0.
Then, there exists k∗ > 0, depending on c0, θ, ν, μ and k0, such that

φ(k∗) = 0.

Proof of Lemma 3.2. Given k ≥ 1 and σ > 1 + pq
q−2p (note that σ > 2), let

us consider the function v = ζ(un) with

ζ(s) =
[|s| − k

]σ

+
sign(s).

Due to the boundedness of un, as a consequence of Lemma 3.4, v is an
admissible test function in (3.1), and it holds

Dαv = σ
[|un| − k

]σ−1

+
Dαun + R|α|(un) a.e. in Ω, (3.5)

with R|α|(un) ≡ 0 if |α| = 1 and

|R|α|(un)| ≤ σ2
[|un| − k

]σ−2

+

∑

|β|=1

|Dβun|2, (3.6)

if |α| = 2. �
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Choosing v = ζ(un) in (3.1), we obtain
∑

|α|=1,2

∫

Ω

Aα(x, Tn(un),D1un,D2un)
[
σ
[|un| − k

]σ−1

+
Dαun + R|α|(un)

]
dx

=
∫

Ω

f
[|un| − k

]σ

+
sign(un) dx. (3.7)

Using the ellipticity condition (2.1), from the above relation, we get

ν1σ

∫

Ω

∑

|α|=1,2

|Dαun|pα

(1 + |Tn(un)|)θ(pα−1)

[|un| − k
]σ−1

+
dx

≤ c

{ ∑

|α|=2

∫

Ω

|Aα(x, Tn(un),D1un,D2un)||R|α|(un)| dx

+
∫

Ω

|f |[|un| − k
]σ

+
dx

}
. (3.8)

From now on, we will denote by c a positive constant not depending on
n (namely, it may depend on N , |Ω|, p, q, ν1, ν2, ||f ||t) and whose value may
vary from line to line.

We are going to evaluate the integrals on the right-hand side of (3.8).
Due to the growth condition (2.2) and the estimate (3.6), we get

I ≡
∑

|α|=2

∫

Ω

|Aα(x, Tn(un), D
1
un, D

2
un)||R|α|(un)| dx

≤ c

∫

Ω

[ ∑

|α|=2

|Dα
un|p +

∑

|α|=1

|Dα
un|q

] p−1
p

[|un| − k
]σ−2
+

∑

|α|=1

|Dα
un|2 dx. (3.9)

Taking into account the inequality

1 ≤ 1 + |Tn(un)| ≤ 1 + |un|
and using Young’s inequality with exponents p

p−1 , q
2 and pq

q−2p , for all τ > 0,
we obtain

I ≤ cτ

∫

Ω

∑

|α|=1,2

|Dαun|pα

(1 + |Tn(un)|)θ(pα−1)

[|un| − k
]σ−1

+
dx

+C(τ)
[ ∫

Ω

(
1 + |un|)θ(q−1)

(
pq

q−2p −1
)[|un| − k

]σ−1− pq
q−2p

+
dx

]
. (3.10)

From (3.8)–(3.10), it results
[
ν1σ − cτ

] ∫

Ω

∑

|α|=1,2

|Dαun|pα

(1 + |Tn(un)|)θ(pα−1)

[|un| − k
]σ−1

+
dx

≤ c
[ ∫

Ω

(
1 + |un|)θ(q−1)

(
pq

q−2p −1
)[|un| − k

]σ−1− pq
q−2p

+
dx

]
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+
∫

Ω

|f |[|un| − k
]σ

+
dx. (3.11)

Now, we set δ = pq
q−2p . Choosing a suitable τ > 0 and observing that

1 + |un| ≤ 2
(
k +

[|un| − k
]
+

)
if k ≥, 1,

we obtain∫

Ω

∑

|α|=1,2

|Dαun|pα

(1 + |Tn(un)|)θ(pα−1)

[|un| − k
]σ−1

+
dx

≤ c

{
kθ(q−1)(δ−1)

∫

Ω

[|un| − k
]σ−1−δ

+
dx

+
∫

Ω

[|un| − k
]σ−1−δ+θ(q−1)(δ−1)

+
dx +

∫

Ω

|f |[|un| − k
]σ

+
dx

}
. (3.12)

We denote by An(k) the level set of |un|, that is

An(k) =
{
x ∈ Ω : |un(x)| > k

}

and by |An(k)| the n-dimensional Lebesgue measure of An(k).
Let σ > max

{ θ(q−1)(δ−1)−δ−1
t′−1 , 1 + δ

}
. Using hypothesis (2.4) and

Hölder’s inequality, we evaluate terms on the right-hand side of the above
inequality, as follows:

∫

Ω

|f |[|un| − k
]σ

+
dx ≤ ||f ||Lt(Ω)

(∫

Ω

[|un| − k
]σt′

+
dx

) 1
t′

(3.13)

∫

Ω

[|un| − k
]σ−1−δ

+
dx ≤ c

( ∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ
σt′ |An(k)|1− σ−1−δ

σt′

(3.14)

and ∫

Ω

[|un| − k
]σ−1−δ+θ(q−1)(δ−1)

+
dx

≤ c
(∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ+θ(q−1)(δ−1)
σt′ |An(k)|1− σ−1−δ+θ(q−1)(δ−1)

σt′ ,

(3.15)

where t′ is the conjugate exponent of t. From (3.12)–(3.15) and dropping
the integrals involving second derivatives in the left-hand side of (3.12), we
deduce∫

Ω

∑

|α|=1

|Dαun|q
(1 + Tn(un))θ(q−1)

[|un| − k
]σ−1

+
dx

≤ c
{

kθ(q−1)(δ−1)
( ∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ
σt′ |An(k)|1− σ−1−δ

σt′
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+
( ∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ+θ(q−1)(δ−1)
σt′ |An(k)|1− σ−1−δ+θ(q−1)(δ−1)

σt′
}

+
( ∫

Ω

[|un| − k
]σt′

+
dx

) σ
σt′

. (3.16)

Let 0 < γ < q and choose σ > max
{ γ

q−γ θ(q−1)−1

t′−1 , θ(q−1)(δ−1)−δ−1
t′−1 , 1 + δ

}
.

The use of Hölder’s inequality, together with relations

1 + |Tn(un)| ≤ 1 + |un| ≤ 2
(
k +

[|un| − k
]
+

)
,

yields to
∫

Ω

|D1u|γ[|un| − k
]σ−1
+ dx

≤ c
[ ∫

Ω

∑

|α|=1

|Dαun|q
(1 + |Tn(un)|)θ(q−1)

[|un| − k
]σ−1
+ dx

] γ

q

×
[
k

γ

q−γ
θ(q−1)

( ∫

Ω

[|un| − k
]σt′

+ dx
) σ−1

σt′ |An(k)|1− σ−1
σt′

+
( ∫

Ω

[|un| − k
]σt′

+ dx
) σ−1+ γ

q−γ
θ(q−1)

σt′ |An(k)|1− σ−1+ γ
q−γ

θ(q−1)

σt′

] q−γ

q

. (3.17)

Using (3.17) in (3.16) and Sobolev’s embedding theorem, we obtain
[ ∫

Ω

[|un| − k
](σ−1

γ +1
)
γ∗

+
dx

] γ
γ∗

≤ c

{( ∫

Ω

[|un| − k
]σt′

+
dx

) σ
σt′

γ
q

+kθ(q−1)(δ−1) γ
q

( ∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ
σt′

γ
q |An(k)|

(
1− σ−1−δ

σt′
)

γ
q

+
(∫

Ω

[|un| − k
]σt′

+
dx

)σ−1−δ+θ(q−1)(δ−1)
σt′

γ
q |An(k)| γ

q

[
1− σ−1−δ+θ(q−1)(δ−1)

σt′
]}

×
{

k
γ
q θ(q−1)

(∫

Ω

[|un| − k
]σt′

+
dx

)σ−1
σt′

q−γ
q |An(k)|

(
1− σ−1

σt′
)

q−γ
q

+
(∫

Ω

[|un| − k
]σt′

+
dx

)σ−1+ γ
q−γ

θ(q−1)

σt′
q−γ

q |An(k)|
[
1− σ−1+ γ

q−γ
θ(q−1)

σt′
]

q−γ
q

}
,

(3.18)

where γ∗ = Nγ
N−γ .
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Now, we choose γ, such that

σt′ =
(
σ − 1 + γ

)γ∗

γ
. (3.19)

Note that 0 < γ < q if σ > N(t−1)(1−q)
tq−N and, in turn, this inequality is

satisfied, because σ > 0, 1 − q < 0 and t > N/q.
Now, we set

ϕσ(un) =
(∫

Ω

[|un| − k
]σt′

+
dx

) 1
σt′

and

χ = γ
γ∗ σt′, λ = γ

q θ(q − 1),

β1 = σ − 1 + γ
q , β2 = σ − 1 + γ

q + γ
q θ(q − 1),

β3 = σ − 1 − γ
q δ, β4 = σ − 1 + γ

q [θ(q − 1) − δ],

β5 = σ − 1 + γ
q [θ(q − 1)(δ − 1) − δ], β6 = σ − 1 + γ

q δ[θ(q − 1) − 1].

Then, the inequality (3.18) becomes

[
ϕσ(un)

]χ ≤ c

{
kλ

[
ϕσ(un)

]β1 |An(k)|
(
1− σ−1

σt′
)

q−γ
q

+
[
ϕσ(un)

]β2 |An(k)|
[
1− σ−1+ γ

q−γ
θ(q−1)

σt′
]

q−γ
q

+kλδ
[
ϕσ(un)

]β3 |An(k)|1− σ−1− γ
q

δ

σt′

+kλ(δ−1)
[
ϕσ(un)

]β4 |An(k)|1− σ−1+ γ
q

[θ(q−1)−δ]

σt′

+kλ
[
ϕσ(un)

]β5 |An(k)|1− σ−1+ γ
q

[θ(q−1)(δ−1)−δ]

σt′

+
[
ϕσ(un)

]β6 |An(k)|1− σ−1+ γ
q

δ[θ(q−1)−1]

σt′

}
.

(3.20)

Note that the exponents β1, β2, β3, β4 are less than χ for any 0 ≤ θ < 1,
while β5, β6 are less than χ thanks to the assumption (2.7). As a consequence,
we can apply Lemma 3.1 to the previous inequality with

a1 = kλ|An(k)|
(
1− σ−1

σt′
)

q−γ
q , a2 = |An(k)|

{
1− 1

σt′
[
σ−1+ γ

q−γ θ(q−1)
]}

q−γ
q ,

a3 = kλδ|An(k)|1− β3
σt′ , a4 = kλ(δ−1)|An(k)|1− β4

σt′ ,

a5 = kλ|An(k)|1− β5
σt′ , a6 = |An(k)|1− β6

σt′ ,
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obtaining
∫

Ω

[|un| − k
]σt′

+
dx ≤ c

6∑

i=1

kτiσt′ |An(k)|γi , (3.21)

where

γ1 = q−γ
q

(
1 − σ−1

σt′

)
σt′

χ−β1
= q−γ

γ(q−1)

(
1 − σ−1

σt′

)
σt′,

γ2 = q−γ
q

[
1 − σ−1+ γ

q−γ θ(q−1)

σt′

]
σt′

χ−β2

= q−γ
γ(q−1)(1−θ)

[
1 − σ−1+ γ

q−γ θ(q−1)

σt′

]
σt′,

γ3 =
(
1 − β3

σt′

)
σt′

χ−β3
= q

γ(q+δ)

(
1 − σ−1− γ

q δ

σt′

)
σt′,

γ4 =
(
1 − β4

σt′

)
σt′

χ−β4
= q

γ(q+δ−θ(q−1))

(
1 − σ−1+ γ

q [θ(q−1)−δ]

σt′

)
σt′

γ5 =
(
1 − β5

σt′

)
σt′

χ−β5

= q
γ(q+δ−θ(q−1)(δ−1))

(
1 − σ−1+ γ

q [θ(q−1)(δ−1)−δ]

σt′

)
σt′

γ6 =
(
1 − β6

σt′

)
σt′

χ−β6

= q
γ[q+δ−θ(q−1)δ]

(
1 − σ−1+ γ

q δ[θ(q−1)−1]

σt′

)
σt′

and

τ1 =
λ

χ − β1
, τ2 = 0, τ3 =

λδ

χ − β3
,

τ4 =
λ(δ − 1)
χ − β4

, τ5 =
λ

χ − β5
, τ6 = 0.

We observe that under condition 0 ≤ θ < q−p
p(q−1) every number τi,

i = 1, . . . , 6, is less than 1.
Moreover, the function γ = γ(σ), defined through (3.19), is positive and

bounded and

lim
σ→+∞ γ(σ) =

N

t
< q,

whence every γi, i = 1, . . . , 6, goes to +∞ as σ → +∞.
Finally, choosing σ sufficiently large, we deduce γi > 1 for i = 1, . . . , 6.
Now, for every h > k ≥ 1, being

[|un|−k
]
+

≥ h−k on An(h), we have

|An(h)| ≤
6∑

i=1

c kτiσt′

(h − k)σt′ |An(k)|γi ;

hence, there exists i, i = 1, . . . , 6, such that

1
6
|An(h)| ≤ c kτiσt′

(h − k)σt′ |An(k)|γi .
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Therefore, using Lemma 3.5, we conclude that there exist two positive
constants k∗ and d0 (independent of n), such that

|An(k)| = 0 for every k ≥ k∗ + d0.

Hence

||un||∞ ≤ M for every n ∈ N (3.22)

with M = k∗ + d0.

Proof of Lemma 3.3. Using v = un as test function in the integral identity
(3.1), applying the ellipticity condition (2.1), the growth condition (2.2), and
Young’s inequality, we have

ν1

∫

Ω

∑

|α|=1,2

|Dαun|pα

(1 + |Tn(un)|)θ(pα−1)
dx ≤

∫

Ω

|f | |un| dx.

Now, taking into account (3.22), from the above inequality, we obtain
∫

Ω

∑

|α|=1,2

|Dαun|pα dx ≤ c(M + 1)q

∫

Ω

|f | dx, (3.23)

and the Lemma follows. �

4. Proofs of the Results

Before proving Theorem 2.2, we have to premise a compactness result for the
approximating solutions un which, together with the a priori estimates proved
in the previous section, will allow us to pass to the limit in the approximate
problems (3.1).

As a consequence of Lemma 3.2 and Lemma 3.3, there exist a subse-
quence, still denoted by {un}, and a function u ∈ W̊ 1,q

2,p (Ω) ∩ L∞(Ω), such
that {un} is bounded in L∞(Ω) and

un → u weakly in W̊ 1,q
2,p (Ω)

un → u almost everywhere in Ω.

We need to prove that the sequences
{
Dαun

}
, |α| = 1, 2 are almost ev-

erywhere convergent in Ω. To this aim, we exploit the following compactness
result whose proof is in [12].

Lemma 4.1. Assume that hypotheses (2.1), (2.2), and (2.3) hold, and let
{
zn

}

be a sequence of functions, such that

zn → z in W̊ 1,q
2,p (Ω)weakly and a.e. in Ω (4.1)

and

lim
n→+∞

∑

|α|=1,2

∫

Ω

[
Aα(x, zn,D1zn,D2zn)

−Aα(x, z,D1z,D2z)
]
Dα[zn − z] dx = 0. (4.2)

Then,
{
zn

}
is relatively compact in the strong topology of W̊ 1,q

2,p (Ω).
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We are now in the position to prove the (relatively) compactness of
{un}. We take un − u as test function in the weak formulation of Problem
(3.1), and we obtain

∑

|α|=1,2

∫

Ω

Aα(x, Tn(un),D1un,D2un)Dα[un − u] dx

=
∫

Ω

f(un − u) dx.

From the above equality, it follows:
∑

|α|=1,2

∫

Ω

[
Aα(x, Tn(un),D1un,D2un) − Aα(x, u,D1u,D2u)

]
Dα[un − u] dx

=
∫

Ω

f (un − u) dx −
∑

|α|=1,2

∫

Ω

Aα(x, u,D1u,D2u)Dα[un − u] dx. (4.3)

The right-hand side of (4.3) tends to zero as n tends to +∞, since
{
un

}

converges to u weakly∗ in L∞(Ω), weakly in W̊ 1,q
2,p (Ω) and Aα(x, u,D1u,D2u)

belongs to Lp′
α(Ω), |α| = 1, 2 thanks to (2.2). Due to the boundedness of

‖un‖L∞ , Tn(un) = un for sufficiently large n and using Lemma 4.1, we con-
clude, up to a subsequence, that

un → u strongly in W̊ 1,q
2,p (Ω).

Proof of Theorem 2.2. For any fixed function v ∈ W̊ 1,q
2,p (Ω), we can pass to

the limit as n → +∞ in the weak formulation (3.1) and we get that u is a
weak solution of the problem (2.5), in the sense of the Definition 2.1. �

Proof of Theorem 2.3. Let u ∈ W̊ 1,q
2,p (Ω) ∩ L∞(Ω) be a weak solution of the

problem (2.5) and let Ω′ be any strictly interior subregion of Ω.
Set M = ||u||L∞(Ω), and Theorem 2.2 gives us

|u(x)| ≤ M for a.e. x ∈ Ω. (4.4)

We fix x0 ∈ Ω′, 0 < R <
d′

4
and let be r, such that

|α|pα + r(q − pα) ≤ q, |α| = 1, 2, r
(
q +

pq

q − 2p

)
≤ q,

r < min
{

1 − N

qt
,
q − 2p

q − p

}
. (4.5)

We define

ω1(R) = ess infBR(x0)u(x), ω2(R) = ess supBR(x0)u(x),

ω(R) = ω2(R) − ω1(R).

From now on, thanks to the boundedness of the solution u and following
the outlines of the proof of [8] [Theorem 1.4] or [42], we can prove that there
exists 0 < μ < 1, such that

ω(R) ≤ μω(2R) + Rr.
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Once the previous inequality is acquired, Theorem 2.3 follows by virtue
of [27] [Lemma 4.8, chap. 2]. �
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MJOM Existence of Hölder Continuous Solutions Page 15 of 17 182

[5] Bonafede, S.: On the boundedness of minimizers of some integral functionals
with degenerate anisotropic integrands. Rocky Mount. J. Math. 48(6), 1781–
1797 (2018)

[6] Cianci, P., Cirmi, G.R., D’Asero, S., Leonardi, S.: Morrey estimates for solu-
tions of singular quadratic nonlinear equations. Ann. Mat. Pura e Appl. 4(196),
1739–1758 (2017)

[7] Cirmi, G.R.: Nonlinear elliptic equations with lower order term and L1,λ-data.
Nonlinear Anal. 68(9), 2741–2749 (2008)

[8] Cirmi, G.R., D’Asero, S.: Bounded solutions of fourth-order nonlinear elliptic
equations with convection terms. Appl. Anal. 100(12), 2581–2605 (2021)

[9] Cirmi, G.R., Leonardi, S.: Regularity results for the gradient of solutions of
linear elliptic equations with L1,λ data, Ann. Mat. Pura e Appl. (4), 185(4),
537–553 (2006)

[10] Cirmi, G.R., Leonardi, S.: Regularity results for solutions of nonlinear elliptic
equations with L1,λ data. Nonlinear Anal. 69(1), 230–244 (2008)

[11] Cirmi,G.R., Leonardi, S. Higher differentiability for the solutions of nonlinear
elliptic systems with lower order terms and L1,θ–data, Ann. Mat. Pura e Appl.
(4), 193(1), 115–131 (2014)

[12] Cirmi, G.R., D’Asero, S., Leonardi, S.: Fourth-order nonlinear elliptic equations
with lower order term and natural growth conditions. Nonlinear Anal. 108, 66–
86 (2014)
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