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1. Introduction and Preliminaries

All groups considered are finite.
One of the fundamentals facts in the theory of finite soluble groups is the

theorem of B. Fischer, W. Gaschütz and B. Hartley, which states the existence
and conjugacy of F-injectors in finite soluble groups for Fitting classes F ([6],
[5, VIII. Theorem (2.9), IX. Theorem (1.4)]). An important stream of research
has considered the extent of the validity of this result to all finite groups. We
refer to [4,5] for background on classes of groups and for accounts about
the development of this topic; we shall adhere to their notations. We recall
that if F is a class of groups, an F-injector of a group G is a subgroup V
of G with the property that V ∩ K is an F-maximal subgroup of K (i.e.
maximal as a subgroup of K in F) for all subnormal subgroups K of G. The
existence of F-injectors in all groups implies that F is a Fitting class, which is
defined as a non-empty class of groups closed under taking normal subgroups
and products of normal subgroups. The existence and properties of Carter
subgroups, i.e. self-normalizing nilpotent subgroups, in soluble groups are the
cornerstone in the proof of the above-mentioned theorem of Fischer, Gaschütz
and Hartley. In a previous paper [1] we initiated the study of an extension
of the theory of soluble groups to the universe of π-separable groups, π a
set of primes. We analyzed the reach of π-separability further from soluble
groups, by means of complement and Sylow bases and Hall systems, based
on the remarkable property that π-separable groups have Hall π-subgroups,
and every π-subgroup is contained in a conjugate of any Hall π-subgroup.
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We also proved that π-separable groups have a conjugacy class of subgroups
which specialize in Carter subgroups within the universe of soluble groups.
The main results in the present paper, namely Lemma 2.9, Theorem 2.10
and Corollary 2.11 below, show that these Carter-like subgroups enable an
extension of the existence and conjugacy of injectors to π-separable groups.

If π is a set of primes, let us recall that a group G is π-separable if every
composition factor of G is either a π-group or a π′-group, where π′ stands for
the complement of π in the set P of all prime numbers. Clearly, π-separability
is equivalent to π′-separability, so that by the Feit-Thompson theorem, every
π-separable group is either π-soluble or π′-soluble, where for any set of primes
ρ, a group is ρ-soluble if it is ρ-separable with every ρ-composition factor a
p-group for some prime p ∈ ρ. Also Burnside’s paqb-theorem implies that
π-separable groups are π-soluble if |π| ≤ 2. We refer to [7] for basic results
on π-separable groups.

These remarks about ρ-solubility clarify the reach of our main results,
which apply to π′-soluble groups once the set of primes π is fixed.

More precisely, our study of π-separable groups relies on convenient
extensions of the class N of nilpotent groups as well as of normal subgroups,
according to the set of primes π, as follows.

Let π be a set of primes. Let

Nπ = Eπ × Nπ′ = (G = H × K | H ∈ Eπ, K ∈ Nπ′),

where Eπ denotes the class of all π-groups and Nπ′ the class of all nilpotent
π′-groups. In the particular cases when either π = ∅ or π = {p}, p a prime,
(|π| ≤ 1), then Nπ = N is the class of all nilpotent groups.

We observe that Nπ is a saturated formation and appeal to the concept
of Nπ-Dnormal subgroup. We refer to [1,2] for the concept of G-Dnormal
subgroup for general saturated formations G, and specialize this definition
to our particular saturated formation Nπ next. For notation, if ρ is a set of
primes and G is a group, Hallρ(G) denotes the set of all Hall ρ-subgroups of
G. If p is a prime, then Sylp(G) stands for the set of all Sylow p-subgroups of
G. If Gρ ∈ Hallρ(G) and H ≤ G, we write Gρ ↘ H to mean that Gρ reduces
into H, i.e. Gρ ∩ H ∈ Hallρ(H).

Definition 1.1 ([2, Definition 3.1], [1]). A subgroup H of a group G is said to
be Nπ-Dnormal in G if it satisfies the following conditions:

1. whenever p ∈ π′ and Gp ∈ Sylp(G), Gp ↘ H, then Gp ≤ NG(H);
2. whenever p ∈ π and Gp ∈ Sylp(G), Gp ↘ H, then

• Gp ≤ NG(H) if π = {p}, or
• Gp ≤ NG(Oπ(H)) if |π| ≥ 2.

Hence, for Nπ = N, N-Dnormal subgroups are exactly normal sub-
groups. Note also that normal subgroups are Nπ-Dnormal for any set of
primes π.
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Nπ-Dnormal subgroups are nicely characterized as follows.

Proposition 1.2 [1, Proposition 3.7]. Let H be a subgroup of a group G. Then:

1. Assume that |π| ≤ 1. Then Nπ = N and H is N-Dnormal in G if and
only if H is normal in G.

2. Assume that |π| ≥ 2. Then the following statements are equivalent:
(i) H is Nπ-Dnormal in G;
(ii) Oπ(H) � G and Oπ(G) ≤ NG(H).

For our study of Fitting classes it is useful to introduce a corresponding
extension of subnormality.

Definition 1.3. A subgroup S of a group G is said to be Nπ-Dsubnormal in
G if there is a chain of subgroups

S = S0 ≤ S1 ≤ · · · ≤ Sk = G,

such that Si is Nπ-Dnormal in Si+1 if 0 ≤ i ≤ k − 1.

As for Nπ-Dnormal subgroups, if Nπ = N, then N-Dsubnormal sub-
groups are exactly subnormal subgroups; also subnormal subgroups are Nπ-
Dsubnormal for any set of primes π.

To prove our main results we will need some properties of Nπ-Dnormal
and Nπ-Dsubnormal subgroups that we gather in the next lemmas.

Lemma 1.4. Let H be a subgroup of a group G, N � G and g ∈ G. Then:

1. If H is Nπ-Dnormal in G, then Hg is Nπ-Dnormal in G.
2. If H is Nπ-Dnormal in G and H ≤ L ≤ G, then H is Nπ-Dnormal in

L.
3. If H is Nπ-Dnormal in G, then HN/N is Nπ-Dnormal in G/N .
4. If N ≤ H and H/N is Nπ-Dnormal in G/N , then H is Nπ-Dnormal

in G.
5. If N ≤ H and H/N is Nπ-Dsubnormal in G/N , then H is Nπ-

Dsubnormal in G.
6. If G ∈ Nπ, then H is Nπ-Dsubnormal in G.

Proof. If |π| ≤ 1, the result refers to normal and subnormal subgroups and
it is clear. Assume that |π| ≥ 2. Then:

(1) and (2) are easily proven.
(3) By Proposition 1.2, assuming that Oπ(H)�G and Oπ(G) ≤ NG(H),

we need to prove that Oπ(HN/N)�G/N and Oπ(G/N) ≤ NG(HN/N). But
this is clear since for any L ≤ G, Oπ(LN/N) = Oπ(L)N/N .

(4) Again by Proposition 1.2, we assume that Oπ(H/N) = Oπ(H)N/N�
G/N and Oπ(G/N) = Oπ(G)N/N ≤ NG(H/N), and need to prove that
Oπ(H) � G and Oπ(G) ≤ NG(H). The second property follows clearly, and
also that [G,Oπ(H)] ≤ Oπ(H)N ≤ H. Then [G,Oπ(H)] ≤ H, which is
equivalent to [G,Oπ(H)] ≤ Oπ(H) (see [1, Remark 3.6]). Therefore, G ≤
NG(Oπ(H)), and we are done.
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(5) It follows from the definition of Nπ-Dsubnormal subgroup together
with part 4.

(6) If G ∈ Nπ then G = Gπ×Gπ′ , Gπ = Oπ(G), and Gπ′ = Oπ′(G) ∈ N.
Also H ∈ Nπ so that H = Hπ × Hπ′ , Hπ = Oπ(H), and Hπ′ = Oπ′(H) ∈ N.
Then we deduce easily that H is Nπ-Dnormal in Gπ × Hπ′ . Since Gπ′ is
nilpotent, Hπ′ is subnormal in Gπ′ . Hence Gπ × Hπ′ is subnormal in G,
and so also Nπ-Dsubnormal. Therefore, H is Nπ-Dsubnormal in G,
as desired. �

Lemma 1.5. Let H be an Nπ-Dnormal subgroup of a group G. Then:

1. H/Oπ(H) ≤ Oπ(G/Oπ(H)).
2. Let C = CoreG(H) and 〈HG〉 be the normal closure of H in G. Then

〈HG〉/C ≤ Oπ(G/C); equivalently, 〈HG〉/C ∈ Eπ.
3. If V ≤ G, then H ∩ V is Nπ-Dnormal in V .

Proof. 1. By Proposition 1.2 we know that Oπ(H) � G, and we aim to prove
that H/Oπ(H) ≤ Oπ(G/Oπ(H)). We argue by induction on |G|. If Oπ(H) 
=
1, the result is clear by Lemma 1.4(3) and inductive hypothesis. We may then
assume that Oπ(H) = 1, i.e. H is a π-group, and we need to prove that H ≤
Oπ(G). If Oπ(G) = 1, then H ≤ G = Oπ(G), and we are done. Consider now
the case when Oπ(G) 
= 1. Note that Oπ(G) ≤ NG(H) by Proposition 1.2,
because H is Nπ-Dnormal in G. Then H ∩ Oπ(G) ≤ Oπ(Oπ(G)) ≤ Oπ(G).
If H ∩ Oπ(G) 
= 1, again by Lemma 1.4(3) and inductive hypotesis it follows
that HOπ(G)/Oπ(G) ≤ Oπ(G/Oπ(G)) = Oπ(G)/Oπ(G), and so H ≤ Oπ(G)
as desired. If H ∩ Oπ(G) = 1, then [H,Oπ(G)] = H ∩ Oπ(G) = 1 and so
H ≤ CG(Oπ(G)). In the case when CG(Oπ(G)) < G, by Lemma 1.4(2) and
inductive hypothesis we deduce that H ≤ Oπ(CG(Oπ(G))) ≤ Oπ(G). Assume
finally that CG(Oπ(G)) = G. Then Oπ(G) = Oπ′(G) and, by the Schur-
Zassenhaus theorem and the fact that Oπ(G) ≤ Z(G), there is a unique Hall
π-subgroup of G, which is Oπ(G), and also H ≤ Oπ(G), which concludes the
proof.

2. This is clear from part 1.
3. If |π| ≤ 1, then H � G and the result is clear. Assume that |π| ≥ 2.

Then, by Proposition 1.2, assuming that Oπ(G) ≤ NG(H) and Oπ(H) � G,
we need to prove that Oπ(V ) ≤ NV (V ∩ H) and Oπ(V ∩ H) � V . Since
Oπ(V ) ≤ Oπ(G), it is clear that Oπ(V ) ≤ NV (V ∩ H). We consider Oπ(V ∩
H) = 〈X | X π′-subgroup of V ∩ H〉. Let x ∈ V . If X is a π′-subgroup of
V ∩ H, then Xx ≤ V ∩ Oπ(H)x = V ∩ Oπ(H) ≤ V ∩ H, which implies that
Xx ≤ Oπ(V ∩H). Hence, Oπ(V ∩H)x ≤ Oπ(V ∩H), and so Oπ(V ∩H)�V ,
which concludes the proof. �

Lemma 1.6. If M is a maximal Nπ-Dnormal proper subgroup of a π′-soluble
group G, then GNπ ≤ M , where GNπ

denotes the Nπ-residual of G, i.e. the
smallest normal subgroup in G with quotient group an Nπ-group.

Proof. By Lemma 1.5(2) we know that 〈MG〉/CoreG(M) ∈ Eπ. Since M is a
maximal Nπ-Dnormal proper subgroup of G we deduce that either 〈MG〉 =
M , i.e. M � G, or 〈MG〉 = G. In the first case, since G is π′-soluble, either
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Oπ(G) ≤ M or Op(G) ≤ M for some p ∈ π′, which imply that GNπ ≤ M . If
〈MG〉 = G, then G/CoreG(M) ∈ Eπ, and so also GNπ ≤ M . �

2. Injectors in π-Separable Groups

This section is devoted to proving our main results. We fix a set of primes π
and introduce suitable Fitting classes, which we will call Nπ-Fitting classes, as
defined below in this section. They appear to be Fitting classes with stronger
closure properties involving Nπ-Dnormal subgroups. Then we prove the ex-
istence and conjugacy of associated injectors in π′-soluble groups. (See The-
orem 2.10, Corollary 2.11, below).

Our treatment adheres to the approach in [5, Chapter VIII], and we
present our study within the framework of Fitting sets, instead of general
Fitting classes. As mentioned in [5, VIII.1], it does not cause any additional
difficulty and has important advantages, both in terms of scope of results and
working techniques.

We extend the concept of Fitting set [5, VIII. Definition (2.1)] to Nπ-
Fitting set as follows, by replacing the terms “normal subgroup” and “subnor-
mal subgroup” by “Nπ-Dnormal subgroup” and “Nπ-Dsubnormal subgroup”,
respectively, in the original definition.

Definition 2.1. A non-empty set F of subgroups of a group G is called an
Nπ-Fitting set of G if the following conditions are satisfied:
FS1: If T is an Nπ-Dsubnormal subgroup of S ∈ F , then T ∈ F ;
FS2: If S, T ∈ F and S, T are Nπ-Dnormal subgroups in 〈S, T 〉, then

〈S, T 〉 ∈ F ;
FS3: If S ∈ F and x ∈ G, then Sx ∈ F .

Since normal subgroups are Nπ-Dnormal, so subnormal subgroups are
Nπ-Dsubnormal, it is clear that an Nπ-Fitting set is a Fitting set. Also,
Fitting sets are exactly N-Fitting sets, for Nπ = N with |π| ≤ 1.

For the basic results about Fitting sets, we refer to [5, VIII.2].
We recall in particular that for a Fitting set F of a group G, the F-

radical of G, denoted GF is the join of all normal F-subgroups of G; or
equivalently, the join of all subnormal F-subgroups of G. For a subgroup H
of G, we set HF for the radical of H associated to its Fitting set FH = {S ≤
H | S ∈ F} which we shall denote simply as F . (See [5, VIII. Definitions
(2.3), Proposition (2.4)].)

The following property is often useful:

Lemma 2.2 [5, VIII. Proposition (2.4)(b)]. Let F be a Fitting set of a group
G, and let H ≤ G and x ∈ G. Then (HF )x = (Hx)F . In particular, NG(H) ≤
NG(HF ).

Our first aim is to prove that if F is an Nπ-Fitting set, the F-radical is
equally described as the join of all Nπ-Dnormal F-subgroups, and also as the
join of all Nπ-Dsubnormal F-subgroups. (Proposition 2.5 below.) The next
lemma supplies a basic fact about the join of Nπ-Dnormal subgroups.
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Lemma 2.3. If H,K are Nπ-Dnormal subgroups of a group G, then 〈H,K〉
is Nπ-Dnormal in G.

Proof. If |π| ≤ 1, then Nπ-Dnormal subgroups are exactly normal subgroups
and the result is clear. Assume that |π| ≥ 2. We argue by induction on |G|.
By Proposition 1.2 we have that Oπ(H) and Oπ(K) are normal subgroups of
G. If either Oπ(H) 
= 1 or Oπ(K) 
= 1, then the result is easily deduced by
Lemma 1.4, parts (3), (4), and inductive hypothesis. Assume that Oπ(H) =
Oπ(K) = 1. By Lemma 1.5(1), H,K ≤ Oπ(G). Consequently, 〈H,K〉 is a
π-group, and Oπ(〈H,K〉) = 1 is a normal subgroup of G. On the other hand,
by Proposition 1.2, Oπ(G) ≤ NG(H)∩NG(K), and so Oπ(G) ≤ NG(〈H,K〉).
Again Proposition 1.2 implies finally that 〈H,K〉 is Nπ-Dnormal in G. �
Lemma 2.4. Let F be an Nπ-Fitting set of a group G. If H is an Nπ-Dnormal
subgroup of G, then HF is Nπ-Dnormal in G.

Proof. If |π| ≤ 1, then again Nπ-Dnormal subgroups are exactly normal
subgroups and the result follows from Lemma 2.2. Assume that |π| ≥ 2. By
Proposition 1.2 we need to prove that Oπ(G) ≤ NG(HF ) and Oπ(HF ) � G.

Since H is Nπ-Dnormal in G, again Proposition 1.2 and Lemma 2.2
imply that Oπ(G) ≤ NG(HF ). We claim now that Oπ(HF ) = Oπ(Oπ(H)F ).
This will imply that Oπ(HF ) � G by Proposition 1.2 and Lemma 2.2, as
above, and we will be done.

It is not difficult to check that Oπ(HF ) ≤ Oπ(H)F ≤ HF . Then
Oπ(Oπ(H)F ) ≤ Oπ(HF ), Oπ(Oπ(H)F ) � HF and HF/Oπ(Oπ(H)F ) is a
π-group. Hence Oπ(HF ) = Oπ(Oπ(H)F ) and the claim is proven. �
Proposition 2.5. If F is an Nπ-Fitting set of a group G, then

GF = 〈H ≤ G | H � G, H ∈ F〉 = 〈H ≤ G | H �� G, H ∈ F〉
= 〈H ≤ G | H Nπ-Dnormal in G, H ∈ F〉
= 〈H ≤ G | H Nπ-Dsubnormal in G, H ∈ F〉.

Proof. Set R = 〈H ≤ G | H Nπ-Dnormal in G, H ∈ F〉. Since normal
subgroups are Nπ-Dnormal, it is clear that GF ≤ R. Moreover, it follows
from the definition of Nπ-Fitting set and Lemmas 1.4(1) and 2.3, that R is
a normal subgroup of G in F , which implies that R ≤ GF . Consequently,
GF = R.

Let now S = 〈H ≤ G | H Nπ-Dsubnormal in G, H ∈ F〉. It is clear
that GF ≤ S. Let H be an Nπ-Dsubnormal subgroup of G. We claim that
HF ≤ GF . Hence, if in addition H ∈ F , then H ≤ GF . It will follow that
S ≤ GF , which will conclude the proof.

If H is an Nπ-Dsubnormal subgroup of G, there is a chain of subgroups
H = H0 ≤ H1 ≤ · · · ≤ Hk = G, such that Hi is Nπ-Dnormal in Hi+1 if
0 ≤ i ≤ k − 1. For each i = 0, . . . , k − 1, Lemma 2.4 implies that (Hi)F is
Nπ-Dnormal in Hi+1, and then (Hi)F ≤ (Hi+1)F . Therefore, HF = (H0)F ≤
(H1)F ≤ · · · ≤ (Hk)F = GF , which proves the claim. �
Remark. As it might be expected, as a consequence of Proposition 2.5, in the
definition of Nπ-Fitting set (Definition 2.1), Nπ-Dnormal subgroups can be
equivalently replaced by Nπ-Dsubnormal subgroups in condition (FS2).
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• Let F be an Nπ-Fitting set of a group G. Then:
If S, T ∈ F and S, T are Nπ-Dsubnormal subgroups in 〈S, T 〉, then

〈S, T 〉 ∈ F
Proof. By Proposition 2.5 we deduce that S, T ≤ 〈S, T 〉F , and then 〈S, T 〉 =
〈S, T 〉F ∈ F . �

We recall also the concept of X -injector of a group for a set of subgroups
X of the group.

Definition 2.6 [5, VIII. Definition (2.5)(b)]. Let X be a set of subgroups of a
group G. An X -injector of G is a subgroup V of G with the property that
V ∩K is an X -maximal subgroup of K (i.e. maximal as subgroup of K in X )
for every subnormal subgroup K of G. We shall denote the (possibly empty)
set of X -injectors of G by InjX (G).

The following results about the existence and properties of Nπ-
projectors in π′-soluble groups are essential for our purposes.

Let us recall that given a class of groups X, a subgroup U of a group
G is called an X-projector of G if UK/K is an X-maximal subgroup of G/K
for all K � G. The (possibly empty) set of X-projectors of G will be denoted
by ProjX(G).

In addition, an X-covering subgroup of G is a subgroup E of G with the
property that E ∈ ProjX(H) whenever E ≤ H ≤ G. The set of X-covering
subgroups of G will be denoted by CovX(G).

We refer to [4,5] for convenient background about projectors and cov-
ering subgroups.

As in [1, Definition 4.7], we say that a subgroup H of a group G is
self-Nπ-Dnormalizing in G if whenever H ≤ K ≤ G and H is Nπ-Dnormal
in K, then H = K.

Lemma 2.7 ([1, Theorem 4.5]). For all π′-soluble groups G, ∅ 
= ProjNπ (G) =
CovNπ (G) and it is a conjugacy class of G.

Lemma 2.8 ([1, Theorem 4.14]). For a subgroup H of a π′-soluble group G
the following statements are pairwise equivalent:

1. H is an Nπ-projector of G.
2. H is an Nπ-covering subgroup of G.
3. H ∈ Nπ is a self-Nπ-Dnormalizing subgroup of G and H satisfies the

following property:

If H ≤ X ≤ G, then H ∩ XNπ ≤ (XNπ

)′ . (∗)

The next result extends Hartley’s result [5, VIII. Lemma (2.8)] for Nπ-
Fitting sets and π′-soluble groups.

Lemma 2.9. Let F be an Nπ-Fitting set of a π′-soluble group G. Let K be
a normal subgroup of G containing the Nπ-residual GNπ

of G, let W be an
F-maximal subgroup of K, and let V and V1 be F-maximal subgroups of G
which contain W .
(a) If W � K, then V = (WP )F , where P is a suitable Nπ-projector of G.
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(b) In any case V and V1 are conjugate in 〈V, V1〉. More precisely, there
exists x ∈ 〈V, V1〉Nπ

such that V x
1 = V .

Proof. We mimic the proof of [5, VIII. Lemma (2.8)]. The arguments get a bit
more involved mainly by the fact that Nπ-projectors are not characterized
as self-Nπ-Dnormalizing Nπ-subgroups, in order to play the role of Carter
subgroups in the original proof, but the characterization of Nπ-projectors in
Lemma 2.8 can be instead used to prove the result.

(a) We argue by induction on |G|. If W �K, then W = KF , and so also
W � G by Lemma 2.2. We gather the following facts which will be useful in
the proof, where L denotes any subgroup of G containing W and U denotes
an F-maximal subgroup of L containing W :

1. L satisfies the hypotheses of the statement by considering K ∩ L and U
playing the role of K and V , respectively.

It is clear that W is an F-maximal subgroup of K∩L�L. Moreover,
since Nπ is closed under taking subgroups, LNπ ≤ GNπ ∩ L ≤ K ∩ L.

2. If W ≤ X ≤ G, X ∈ F , then X ∩ K = W .
We have that W ≤ X ∩K ≤ K, and X ∩K ∈ F , because X ∩K �

X ∈ F . Since W is F-maximal in K we deduce that W = X ∩ K.
3. Whenever U/W is Nπ-Dsubnormal in R∗/W ≤ L/W , then U = R∗

F
and R∗ ≤ NL(U). In particular, this holds if U/W ≤ R∗/W ∈ Nπ,
R∗/W ≤ L/W . Also, if H/W ≤ L/W and R∗/W is Nπ-Dnormal in
H/W , then H ≤ NL(U). Moreover, NG(R∗) ≤ NG(U).

By Lemma 1.4(5) we deduce that U is Nπ-Dsubnormal in R∗ ≤ L.
Since U is F-maximal in L, Proposition 2.5 implies that U = R∗

F .
If U/W ≤ R∗/W ∈ Nπ, Lemma 1.4(6) implies that U/W is Nπ-
Dsubnormal in R∗/W . Obviously, if R∗/W is Nπ-Dnormal in H/W ,
then U/W is Nπ-Dsubnormal in H/W and H ≤ NL(U), as above.
Moreover, by Lemma 2.2 it follows that NG(R∗) ≤ NG(R∗

F ) = NG(U).
4. The following statements are pairwise equivalent:

(i) There exists R ∈ ProjNπ (L) such that U = (RW )F .
(ii) There exists W ≤ R∗ ≤ L such that R∗/W ∈ ProjNπ (L/W ) and

U = R∗
F .

(iii) There exists W ≤ R∗ ≤ L such that U/W ≤ R∗/W ∈ ProjNπ

(L/W ).
In this case, ProjNπ (NL(U)/W ) ⊆ ProjNπ (L/W ).
The equivalence (i) ⇔ (ii) is clear by [5, III. Proposition (3.7)].

The equivalence (ii) ⇔ (iii) is a consequence of the fact 3. Finally, if we
assume (ii), R∗/W ∈ ProjNπ (L/W ) and U = R∗

F , then R∗ ≤ NL(U). By
Lemma 2.7, R∗/W ∈ ProjNπ (NL(U)/W ), and also ProjNπ (NL(U)/W )
= {(R∗/W )x | x ∈ NL(U)} ⊆ ProjNπ (L/W ).
By fact 2, V ∩K = W . We claim that V/W ≤ ZNπ (NG(V )/W ) the Nπ-

hypercentre of NG(V )/W (see [5, IV. Notation and Definitions (6.8)]). Set
N = NG(V ). Since N/(N∩K) ∼= NK/K ≤ G/K ∈ Nπ, we have that N/(N∩
K) ∈ Nπ, since Nπ is closed under taking subgroups, and we can deduce that
N acts Nπ-hypercentrally on N/(N ∩ K). Then N acts Nπ-hypercentrally
on V (N ∩ K)/(N ∩ K) which is N -isomorphic to V/(V ∩ N ∩ K) = V/(K ∩
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V ) = V/W . It follows that V/W ≤ ZNπ (N/W ), which proves the claim.
Consequently, V/W ≤ P ∗/W ∈ ProjNπ (NG(V )/W ) (see [5, IV. Theorem
(6.14)]).

We aim to prove that V/W ≤ P ∗/W ∈ ProjNπ (G/W ), which will con-
clude the proof by fact 4.

We prove next that P ∗/W is self-Nπ-Dnormalizing in G/W ; in partic-
ular we will have that P ∗/W is an Nπ-maximal subgroup of G/W by [1,
Corollary 4.11]. Assume that P ∗/W is Nπ-Dnormal in H/W ≤ G/W . By
fact 3, H ≤ NG(V ). Since P ∗/W ∈ ProjNπ (NG(V )/W ), Lemma 2.8 implies
that P ∗/W = H/W , and P ∗/W is self-Nπ-Dnormalizing in G/W .

For any H ≤ G, we denote H = HW/W . We distinguish next the
following cases:

Case 1: G = G
Nπ

NG(V ).

Case 2: G
Nπ

NG(V ) < G.

Case 1: G = G
Nπ

NG(V ).

In this case, G = G
Nπ

NG(V )
Nπ

P* = G
Nπ

P*, because Nπ is closed

under taking subgroups and so NG(V )
Nπ

≤ G
Nπ

. Then

G/
(
G

Nπ)′
=

(
G

Nπ

/
(
G

Nπ)′)(
P*

(
G

Nπ)′
/
(
G

Nπ)′)

=
(
G/

(
G

Nπ)′)Nπ (
P*

(
G

Nπ)′
/
(
G

Nπ)′)
.

Let Q /
(
G

Nπ)′
be an Nπ-maximal subgroup of G/

(
G

Nπ)′
such that

P*
(
G

Nπ)′
/
(
G

Nπ)′
≤ Q /

(
G

Nπ)′
.

Then Q /
(
G

Nπ)′
∈ ProjNπ

(
G/

(
G

Nπ)′)
by [5, III. Lemma (3.14)].

We consider the following two possibilities for Q :

Case 1.1: Q < G .
Let W ≤ Q ≤ G such that Q = Q/W . Then W ≤ V ≤ P ∗ ≤

Q < G. In particular, P ∗/W ≤ NQ(V )/W ≤ NG(V )/W , which implies
that P ∗/W ∈ ProjNπ (NQ(V )/W ) because P ∗/W ∈ ProjNπ (NG(V )/W ) =
CovNπ (NG(V )/W ) by Lemma 2.7. By inductive hypothesis (fact 1) and
fact 4, we deduce that P* = P ∗/W ∈ ProjNπ (Q/W ) = ProjNπ (Q). But

Q /
(
G

Nπ)′
∈ ProjNπ

(
G/

(
G

Nπ)′)
, which implies that P* ∈ ProjNπ (G),

by [5, III. Proposition (3.7)], and we are done.
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Case 1.2: Q = G .

If Q = G , then G/
(
G

Nπ)′
∈ Nπ and so G

Nπ

=
(
G

Nπ)′
.

Consequently,

P* ∩GNπ

= P* ∩
(
G

Nπ)′
≤

(
G

Nπ)′
.

Assume that P* ≤ X < G . We may argue as above, in Case 1.1,
to deduce by inductive hypothesis that P* ∈ ProjNπ (X). Therefore, by
Lemma 2.8, it follows that

P* ∩X
Nπ

≤
(
X

Nπ)′
.

Since P* is self-Nπ-Dnormalizing in G , again Lemma 2.8 implies that
P* ∈ ProjNπ (G), which concludes the proof.

It remains to consider Case 2.

Case 2: G
Nπ

NG(V ) < G.
Since V ∈ Nπ, we can write V = V π ×V π′ where V π = Oπ(V )

and V π′ = Oπ′(V ) ∈ N. Moreover, if Gπ is a Hall π-subgroup of G , then
G

Nπ

Gπ � G , and we can form the subgroup G
Nπ

Gπ V π′ , which clearly
contains V . Assume that G

Nπ

Gπ V π′ < G , and let L be a maximal sub-
group of G containing G

Nπ

Gπ V π′ . Since G/G
Nπ

Gπ ∈ N, we have that
L�G . By inductive hypothesis, V ≤ R* for some R∗ ∈ ProjNπ (L). Hence,
by the Frattini Argument (see [5, A.(5.13)]) and fact 3, G = LNG(R*) =
L
Nπ

R* NG(V ) = G
Nπ

NG(V ), which is not the considered case. Therefore,
G

Nπ

Gπ V π′ = G . In particular, Oπ(G) = G
Nπ

V π′ ≤ G
Nπ

NG(V ) < G ,
and Oπ(G)W = GNπ

Vπ′W < G, where Vπ′ ≤ V such that V π′ = Vπ′W/W .
Denote L = Oπ(G)W = GNπ

Vπ′W < G. We prove next that Vπ′W is
an F-maximal subgroup of L. Since Vπ′W � V ∈ F , we have that Vπ′W ∈
F . Assume that Vπ′W ≤ X ≤ L with X ∈ F . By fact 2, W = X ∩ K;
in particular, X ∩ GNπ ≤ W . Hence X = Vπ′W (GNπ ∩ X) = Vπ′W . We
deduce by inductive hypothesis (fact 1) and fact 3 that V π′ ≤ R* for some
R* ∈ ProjNπ (L), and NG(R∗) ≤ NG(V π′). Consequently, G = LNG(R*) =
G

Nπ

NG(V π′).
If NG(V π′) < G , since V ≤ NG(V π′), by inductive hypothesis (fact

1) and fact 3 we have that V ≤ R* ∈ ProjNπ (NG(V π′)) and R* ≤ NG(V ).
Then G = G

Nπ

NG(V π′) = G
Nπ

R* = G
Nπ

NG(V ), which is not the case.
Assume finally that V π′ �G . Then V π

∼= V /V π′ ≤ Gπ V π′ /V π′

for some Hall π-subgroup Gπ of G. But then V /V π′ is Nπ-Dnormal in
Gπ V π′ /V π′ , which implies by Lemma 1.4(4) that V is Nπ-Dnormal in
Gπ V π′ , and so V = (GπVπ′W )F by fact 3. Consequently, V �Gπ V π′ , and
so G = G

Nπ

NG(V ), the final contradiction.
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(b) Let G∗ = 〈V, V1〉, K∗ = K ∩ G∗ � G∗. Hence, G∗/K∗ ∼= G∗K/K ≤
G/K ∈ Nπ, which implies that G∗/K∗ ∈ Nπ, since Nπ is closed under taking
subgroups, and so (G∗)N

π ≤ K∗. Also, W is F-maximal in K∗, because
W ≤ K ∩ G∗ = K∗ and W is F-maximal in K. As in Part (a), fact 2, we
can deduce that K∗ ∩ V = K∗ ∩ V1 = W . Consequently, W � 〈V, V1〉 = G∗.
By Part (a) there exist Nπ-projectors P and Q of G∗ such that V = (WP )F
and V1 = (WQ)F . By Lemma 2.7 there exists x ∈ G∗ such that Qx =
P . Moreover, note that G∗ = (G∗)N

π

Q, so that we can take x ∈ (G∗)N
π

.
Consequently, by Lemma 2.2, it follows that

V x
1 = ((WQ)F )x = ((WQ)x)F = (WQx)F = (WP )F = V,

with x ∈ (G∗)N
π

. �

Theorem 2.10. If F is an Nπ-Fitting set of a π′-soluble group G, then G
possesses exactly one conjugacy class of F-injectors. Moreover, if V and V ∗

are F-injectors of G, there exists g ∈ GNπ

such that (V ∗)g = V .
In addition, if I is an F-injector of G and N is an Nπ-Dnormal subgroup

of G, then I ∩ N is an F-injector of N .

Proof. We argue by induction on |G|. We may assume that |G| 
= 1 and that
the result holds for all proper subgroups of G. Since G is π′-soluble, K = GNπ

is a normal proper subgroup of G. Let W ∈ InjF (K) and V be an F-maximal
subgroup of G containing W . We aim to prove first that V ∩ N ∈ InjF (N)
whenever N is an Nπ-Dnormal subgroup of G; in particular, V ∈ InjF (G)
and V satisfies the property stated in the last part of the statement. Let
M be a maximal Nπ-Dnormal proper subgroup of G. It is enough to prove
that V ∩ M ∈ InjF (M). Note that K = GNπ ≤ M , by Lemma 1.6. Let
V0 ∈ InjF (M). Then V0∩K ∈ InjF (K) and by inductive hypothesis we deduce
that W = (V0 ∩ K)g = V g

0 ∩ K for some g ∈ K. We may replace V0 by V g
0 , if

necessary, and suppose that V0 ∩K = W . Let V1 be an F-maximal subgroup
of G such that V0 ≤ V1. By Lemma 2.9(b) and taking into account that Nπ is
closed under taking subgroups, there exists x ∈ 〈V, V1〉Nπ ≤ GNπ

= K ≤ M
such that V x

1 = V . Consequently, V x
0 = V x

0 ∩ M ≤ V x
1 ∩ M = V ∩ M . By

Lemma 1.5(3), V ∩ M is Nπ-Dnormal in V ∈ F , so that V ∩ M ∈ F . But
also V x

0 ∈ InjF (Mx) = InjF (M), which implies that V x
0 = V ∩M ∈ InjF (M)

as claimed.
We prove finally the conjugacy of F-injectors, i.e. assume that V ∗ ∈

InjF (G) and prove that there exists g ∈ GNπ

= K such that (V ∗)g = V . It
holds that V ∗ ∩ K ∈ InjF (K). Then the inductive hypothesis implies that
(V ∗ ∩ K)k = W for some k ∈ KNπ ≤ K. We consider now V and (V ∗)k,
which are F-maximal subgroups of G containing W . By Lemma 2.9(b), there
exists t ∈ 〈V, (V ∗)k〉Nπ ≤ GNπ

such that (V ∗)kt = V , with kt ∈ GNπ

, which
concludes the proof. �
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As in [5, IX.1] we state now corresponding concepts and results for
general Fitting classes from the theory of Fitting sets.

In a natural way, we define a non-empty class F to be an Nπ-Fitting
class if the following conditions are satisfied:

(i) If G ∈ F and N is an Nπ-Dnormal subgroup of G, then N ∈ F.
(ii) If M,N are Nπ-Dnormal subgroups of G = 〈M,N〉 with M,N ∈ F,

then G ∈ F.
Now we have that an Nπ-Fitting class is a Fitting class, and also Fitting

classes are exactly N-Fitting classes, for Nπ = N with |π| ≤ 1. As we show
in the remarks below, if |π| ≥ 2, not every Fitting class is an Nπ-Fitting
class, and Nπ is the smallest Nπ-Fitting class of full characteristic (cf. [5, IX.
Theorem (1.9)]).

If F is an Nπ-Fitting class and G a group, then the trace of F in G,
that is the set TrF(G) = {H ≤ G | H ∈ F}, is a Nπ-Fitting set of G, and
F-injectors of G are exactly TrF(G)-injectors.

From Theorem 2.10 we can derive now the following result for Nπ-
Fitting classes and π′-soluble groups.

Corollary 2.11. Let F be an Nπ-Fitting class and G be a π′-soluble group,
then G possesses exactly one conjugacy class of F-injectors. Moreover, if V
and V ∗ are F-injectors of G, there exists g ∈ GNπ

such that (V ∗)g = V .
In addition, if I is an F-injector of G and N is an Nπ-Dnormal subgroup

of G, then I ∩ N is an F-injector of N .

Remarks. 1. The class Nπ is a particular case of the so-called lattice forma-
tions, which are classes of groups whose elements are direct product of Hall
subgroups corresponding to pairwise disjoint sets of primes. With the same
flavour as Nπ-Fitting classes, though within the universe of finite soluble
groups, L-Fitting classes, for general lattice formations L of soluble groups,
were already defined in [3].

2. If F is an Nπ-Fitting class of characteristic τ , then Nπ ∩Eτ ⊆ F. In
particular, if |π| ≥ 2, then N or also Nm, for any integer m > 1, are never
Nπ-Fitting classes.

Proof. ([3, Proposition 3.6]) Assume that G is a group of minimal order in
Nπ ∩Eτ \ F. By Lemma 1.4(6), a maximal subgroup of G is Nπ-Dnormal
in G. By the choice of G, there is a unique maximal subgroup of G, which
implies that G is a cyclic p-group for some prime p ∈ τ . Then G ∈ F by [5,
IX. Lemma (1.8)]), a contradiction. �

3. Nπ is an Nπ-Fitting class.

Proof. Since Nπ is closed under taking subgroups, condition (i) of the defi-
nition of Nπ-Fitting class is satisfied.

Assume now that M,N are Nπ-Dnormal subgroups of G = 〈M,N〉
with M,N ∈ Nπ, and we aim to prove that G ∈ Nπ. For any X ∈ {M,N},
let X = Xπ × Xπ′ with Xπ = Oπ(X), Xπ′ = Oπ′(X) = Oπ(X) ∈ N.
Since X is Nπ-Dnormal in G, by Proposition 1.2 and Lemma 1.5(1), we have
that Xπ′ � G, Mπ′Nπ′ ≤ Oπ(G) ≤ NG(X) ≤ NG(Xπ) and 〈XG〉/Xπ′ is
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a π-group. Hence G = Mπ′Nπ′〈Mπ, Nπ〉 with Mπ′Nπ′ a normal nilpotent
π′-subgroup of G and [Mπ′Nπ′ , 〈Mπ, Nπ〉] = 1. Moreover 〈MG〉Nπ′/Mπ′Nπ′

and 〈NG〉Mπ′/Mπ′Nπ′ are π-groups, which implies that G/Mπ′Nπ′ is a π-
group, and so G = Mπ′Nπ′Gπ with Gπ a Hall π-subgroup of G, by the
Schur-Zassenhaus theorem. Moreover, there exist x, y ∈ Mπ′Nπ′ such that
Mπ ≤ Gx

π and Nπ ≤ Gy
π, which implies that Mπ = Mx−1

π ≤ Gπ and also
Nπ = Ny−1

π ≤ Gπ. Therefore, 〈Mπ, Nπ〉 ≤ Gπ, and then 〈Mπ, Nπ〉 = Gπ. It
follows that G = Mπ′Nπ′ × Gπ ∈ Nπ, which concludes the proof. �
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