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Relating the Outer-Independent Total
Roman Domination Number with Some
Classical Parameters of Graphs
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Abstract. For a given graph G without isolated vertex we consider a
function f : V (G) → {0, 1, 2}. For every i ∈ {0, 1, 2}, let Vi = {v ∈
V (G) : f(v) = i}. The function f is known to be an outer-independent
total Roman dominating function for the graph G if it is satisfied that;
(i) every vertex in V0 is adjacent to at least one vertex in V2; (ii) V0

is an independent set; and (iii) the subgraph induced by V1 ∪ V2 has
no isolated vertex. The minimum possible weight ω(f) =

∑
v∈V (G) f(v)

among all outer-independent total Roman dominating functions for G
is called the outer-independent total Roman domination number of G.
In this article we obtain new tight bounds for this parameter that im-
prove some well-known results. Such bounds can also be seen as rela-
tionships between this parameter and several other classical parameters
in graph theory like the domination, total domination, Roman domina-
tion, independence, and vertex cover numbers. In addition, we compute
the outer-independent total Roman domination number of Sierpiński
graphs, circulant graphs, and the Cartesian and direct products of com-
plete graphs.
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1. Introduction and Preliminaries

This work mainly deals with showing some existent interconnections between
several classical graph theory topics like domination, independence, covers,
and Roman domination. These topics have attracted the attention of several
researches in the last few decades, and a high number of significant contribu-
tions are nowadays well known. Each new topic or parameter that is described
naturally gives more insight into the classical ones, and it is usually welcome
by the research community. A quick search in databases like MathSciNet or
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similar ones will show a large number of works, both theoretical and applied,
and a wide number of researchers that have dealt with them, and are indeed
still making so. Our goal is to making some new remarkable contributions
to these topics through mixing some of them, or relating or bounding some
ones with the others.

We begin by stating the main basic terminology which shall be used
in the whole exposition. We first consider a non-directed graph G without
loops or multiple edges. For a vertex x ∈ V (G), by NG(x) we mean the open
neighborhood of x, i.e., the set of vertices of G adjacent to x. The closed
neighborhood of x is then NG[x] = NG(x) ∪ {x}. If the graph G is clear
from the context, then we remove the subindexes in the notations above.
The minimum and maximum degrees of G are δ(G) and Δ(G), respectively
(or δ and Δ if G is clear from the context). A vertex of degree one in G is a
leaf, and a vertex adjacent to a leaf is a support vertex. The set of leaves and
support vertices of G are denoted by L(G) and S(G), respectively.

A set of vertices is an independent set of G, if it induces a subgraph
without edges. The maximum possible cardinality of an independent set of
G is the independence number of G, and is denoted by β(G). In some kind of
“oposed” side of an independent set, we find a vertex cover set, which is a set
of vertices of G such that every edge of G is incident to at least one vertex of
such set. The minimum possible cardinality of a vertex cover set is the vertex
cover number of G, denoted by α(G). It is well-known that for any graph G
of order n it follows that α(G) + β(G) = n (Gallai’s theorem).

A set of vertices D ⊂ V (G) is a dominating set of G, if every vertex
v ∈ V (G) \ D satisfies that N(v) ∩ D �= ∅. The minimum possible cardinal-
ity among all dominating sets of G is the domination number of G, which
is denoted by γ(G). Similarly, the set D is a total dominating set of G, if
every vertex v ∈ V (G) satisfies that N(v) ∩ D �= ∅. The total domination
number, γt(G), of G is analogously defined. Studies on domination and total
domination in graphs are two of the most commonly found in the literature.
The books [11–13] represent fairly complete compendiums of results in these
topics (although the first two of them are not much updated by now). A
variant of domination (and indeed of total domination also) is that one mix-
ing total domination properties with vertex independence. That is, a total
dominating set D is called an outer-independent total dominating set of G,
if V (G) \ D is an independent set. The outer-independent total domination
number of G is also analogously to the domination number defined, and is
denoted by γt,oi(G). This parameter was introduced and barely studied in
[21], and further well studied in [4,6].

An important variant of domination in graphs is that of Roman dom-
ination, which saw its formal birthday in [8], due to some kind of histori-
cal reasons arising from the ancient Roman Empire, that were described in
the works [20,22]. We consider a function f : V (G) → {0, 1, 2}. For a set
S ⊆ V (G), the weight of S under f is f(S) =

∑
v∈S f(v). If S = V (G),

then the weight of S is indeed called the weight of f , and denoted by ω(f),
i.e., ω(f) = f(V (G)) =

∑
v∈V (G) f(v). Clearly, any such function determines

three sets of vertices that we denote by V0, V1, V2. That is, Vi = {v ∈ V (G) :
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f(v) = i}. Since there is a one-to-one relation between f and the sets it
determines, from now on we shall write f(V0, V1, V2) to better refer to our
function f . With these concepts in mind, a function f(V0, V1, V2) is called a
Roman dominating function on G, if every v ∈ V0 has a neighbor u ∈ V2.
The Roman domination number of G is then the minimum possible weight
among all Roman dominating functions on G, and is denoted by γR(G). To
see the relationship between this concept and the historical situation of the
Roman Empire, we suggest the seminal article [8], although there are nowa-
days several interesting references on this topic that also explain and improve
this relationship by making some specifications.

One of the attempts on improving the ideas of Roman domination in
graphs was first presented in [18] through some more general settings, and
after formally, specifically and better studied in [2,3]. The main idea of such
improvement comes with the addition of a total domination property. That
is, a Roman dominating function f(V0, V1, V2) is called a total Roman dom-
inating function on G, if the subgraph induced by V1 ∪ V2 has no isolated
vertices, i.e., V1 ∪ V2 is a total dominating set of G. The total Roman domi-
nation number of G is analogously defined, and denoted by γtR(G).

Another improvements of the Roman domination concept are that ones
connecting them with independent sets, and thereby, with vertex cover sets. A
(total) Roman dominating function f(V0, V1, V2) is called an outer-independent
(total) Roman dominating function (OIRDF and OITRDF for short) if V0 is
an independent set of G. Notice that, this is equivalent to say that V1∪V2 is a
vertex cover set of G. In connection with this last fact, it would be even more
natural to call such function a covering (total) Roman dominating function
instead of outer-independent (total) Roman dominating function. However,
to keep the already stated terminology, we prefer to use that on OIRD and
OITRD functions. The outer-independent (total) Roman domination number
of G is the minimum possible weight among all outer-independent (total) Ro-
man dominating functions on G, and is denoted by (γoitR(G)) γoiR(G). The
parameter γoiR(G) was introduced in [1], while γoitR(G) was first presented
in [7].

Once defined all the concepts above, we are prepared to begin with our
exposition. Our main objective is then to present several relationships be-
tween all the parameters mentioned above, by making emphasis on γoitR(G),
which is the center of our investigation. We must remark that this parameter
has also been recently studied in [17,19]. For instance, in [17], some com-
putational and approximation results on this parameter were presented, and
in [19], some Nordhauss-Gaddum results for it were proved. In our work, we
bound γoitR(G) in terms of the other above mentioned parameters, give sev-
eral chains of inequalities involving many of these parameters, and finally, we
present exact values of it for a number of remarkable families of graphs G
which have been recently attracting the attention of several researchers. From
now on, for a parameter p(G) of a graph G, by a p(G)-set, or a p(G)-function,
we mean a set of cardinality p(G) or a function of weight p(G), respectively.
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1.1. Some Primary and Basic Results

To be used as examples in several places, for showing the tightness or not
of several bounds and relationships, we give some preliminary results in this
subsection concerning a few basic families of graphs. Some of them are clas-
sical ones in studies of domination in graphs, although in such cases, the
computations are straightforward to see, and thus left to the reader.

Remark 1.1. For any complete bipartite graph Kr,s, with 3 ≤ r ≤ s, the
following observations hold.

• γR(Kr,s) = γtR(Kr,s) = 4.
• γoiR(Kr,s) = γt,oi(Kr,s) = r + 1.
• γoitR(Kr,s) = r + 2.

The wheel graph Wn is a graph of order n formed by connecting a single
universal vertex to all vertices of a cycle of order n − 1.

Remark 1.2. For any wheel graph Wn, with n ≥ 4, the following observations
hold.

• α(Wn) =
⌈

n−1
2

⌉
+ 1.

• γoiR(Wn) =
⌈

n−1
2

⌉
+ 2.

• γt,oi(Wn) =
⌈

n−1
2

⌉
+ 1.

• γoitR(Wn) =
⌈

n−1
2

⌉
+ 2.

The family Fp,q of graphs, which we next construct, shall also be useful
for our purposes. We begin with p star graphs S1,t1 , . . . , S1,tp , with centers
c1, . . . , cp, respectively, such that t1, . . . , tp ≥ 3; and q complete bipartite
graphs Kr1,r′

1
, . . . , Krq,r′

q
with 4 ≤ ri ≤ r′

i/2 for every i ∈ {1, . . . , q}. Next,
for every i ∈ {1, . . . , q}, we add ri pendant vertices to exactly two vertices,
say xi, yi, of each complete bipartite graph Kri,r′

i
belonging to the bipartition

set of cardinality ri. Finally, to obtain a graph G ∈ Fp,q, we add an extra
vertex w, and join w with an edge to exactly one leaf, say zi, of each star
S1,ti , and to exactly one vertex, say wi, of the bipartition set of cardinality r′

i

of each complete bipartite graph Kri,r′
i
. Figure 1 shows a fairly representative

example of a graph in F2,2.
The following remark gives the values of some domination parameters

of a graph in Fp,q. Some of these values can be straightforwardly computed,
and thus left to the reader’s discretion.

z1 z2 w1 w2

c1 c2
x1 y1 x2 y2

w

Figure 1. A graph of the family F2,2
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Remark 1.3. For any graph G ∈ Fp,q the following claims hold.
(a) γ(G) = p + 3q.
(b) γt(G) = 2p + 3q.
(c) γR(G) = 2p + 6q.
(d) γtR(G) = 3p + 6q.
(e) γt,oi(G) = 2p + q +

∑q
i=1 ri.

(f) γoiR(G) = 2p + 2q + 1 +
∑q

i=1 ri.
(g) γoitR(G) = 3p + 3q +

∑q
i=1 ri.

Proof. (a) and (b) can be easily observed. For (c), we note that the function
f3 defined as follows,

f3(u) =
{

2, if u ∈ {c1, . . . , cp} ∪ {w1, . . . , wq} ∪ {xi, yi : 1 ≤ i ≤ q},
0, otherwise,

is a γR(G)-function with weight 2p + 6q. To observe (d), we use the function
f4 defined by

f4(u) =

⎧
⎨

⎩

2, if u ∈ {c1, . . . , cp} ∪ {w1, . . . , wq} ∪ {xi, yi : 1 ≤ i ≤ q},
1, if u ∈ {z1, . . . , zp},
0, otherwise,

to get a γtR(G)-function with weight 3p + 6q. For item (e), we first note
that the set S = {c1, . . . , cp} ∪ {z1, . . . , zp} ∪ {w1, . . . , wq}, together with the
bipartition set of cardinality ri of each complete bipartite graph Kri,r′

i
, forms

a γt,oi(G)-set of cardinality 2p + q +
∑q

i=1 ri. Now, for (f), we observe that
the function f6 given as,

f6(u) =

⎧
⎨

⎩

2, if u ∈ {c1, . . . , cp} ∪ {xi, yi : 1 ≤ i ≤ q},
1, if u = w or if u ∈ W,
0, otherwise,

where W is the union of all bipartition sets of cardinality ri of each complete
bipartite graph Kri,r′

i
minus the vertices xi, yi, is a γoiR(G)-function of weight

2p+2q+1+
∑q

i=1 ri. Finally, for item (g), we consider the function f7 defined
as

f7(u) =

⎧
⎨

⎩

2, if u ∈ {c1, . . . , cp} ∪ {xi, yi : 1 ≤ i ≤ q},
1, if u ∈ {z1, . . . , zp} ∪ {w1, . . . , wq} ∪ W,
0, otherwise,

with W as defined above. With some not so hard arguments, we note that
such function f7 is a γoitR(G)-function of weight 3p + 3q +

∑q
i=1 ri. �

2. Bounds and Relationships with Other Parameters

Cabrera Mart́ınez, Kuziak and Yero [7] in 2019, established the following
result for any connected nontrivial graph, although it also holds for any graph
with no isolated vertex.
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Theorem 2.1. [7] For any graph G with no isolated vertex,

α(G) + 1 ≤ γoitR(G) ≤ 3α(G).

In addition, they characterized the families of connected graphs G that
satisfy the equalities γoitR(G) = 3α(G) and γoitR(G) = 3α(G) − 1.

To improve these bounds above, we need to introduce the next results.
Also, we recall that a graph is claw-free if it does not contain K1,3 as an
induced subgraph.

Observation 2.2. For any graph G with no isolated vertex, order n and max-
imum degree Δ ≥ 2,

(i) 1 ≤
⌈

n−α(G)
Δ−1

⌉
.

(ii) γt(G) ≤ γR(G) ≤ 2γ(G) ≤ 2α(G) (from [10], [8] and [11]).

Lemma 2.3. Let G be a claw-free graph of minimum degree δ ≥ 3. If S is a
vertex cover of G, then S is also a total dominating set of G.

Proof. Let S be a vertex cover of G. Hence, S is also a dominating set.
If the subgraph induced by S has an isolated vertex v, then since G has
minimum degree three, the vertex v has at least three neighbors not in S.
Since V (G) \ S is an independent set, we have that v together with these
three neighbors induce a K1,3, which is not possible. Therefore, the subgraph
induced by S has no isolated vertices or equivalently, S is a total dominating
set of G. �

With the results above in mind, we state the following theorem, which
improves the bounds given in Theorem 2.1.

Theorem 2.4. For any graph G with no isolated vertex, order n and maximum
degree Δ ≥ 2,

α(G) + max
{

|S(G)|,
⌈

n − α(G)
Δ − 1

⌉}

≤ γoitR(G) ≤ α(G) + γt(G).

Moreover, for any claw-free graph G of minimum degree δ ≥ 3,

γoitR(G) ≤ α(G) + γ(G).

Proof. We first proceed to prove the first upper bound. Let D be a γt(G)-set
and S an α(G)-set. Let f(V0, V1, V2) be a function defined by V0 = V (G) \
(D ∪ S), V1 = (D ∪ S) \ (D ∩ S) and V2 = D ∩ S. We claim that f is an
OITRDF on G.

It is straightforward that V0 = V (G) \ (D ∪ S) is an independent set
and V1 ∪ V2 = D ∪ S is a total dominating set. We only need to prove that
every vertex in V0 has a neighbor in V2. Let x ∈ V0 = V (G) \ (D ∪ S).
Since S is a vertex cover and D is a total dominating set, we deduce that
N(x) ⊆ S and N(x) ∩ D �= ∅, respectively. Hence N(x) ∩ D ∩ S �= ∅, or
equivalently, N(x)∩V2 �= ∅. Thus, f is an OITRDF on G, as desired, and so,
γoitR(G) ≤ ω(f) ≤ |(D ∪S) \ (D ∩S)|+2|D ∩S| = α(G)+ γt(G), as desired.



MJOM Relating the Outer-Independent Total Roman domination Page 7 of 17 144

Next, we proceed to prove the lower bound. Let f(V0, V1, V2) be a
γoitR(G)-function. Notice first that (V1 \ L(G)) ∪ V2 is a vertex cover. More-
over, S(G) ⊆ V1 ∪ V2 and |V1 ∩ S(G)| ≤ |V1 ∩ L(G)|. Therefore,

γoitR(G) = |V1| + 2|V2|
= |V1 \ L(G)| + |V1 ∩ L(G)| + 2|V2|
= (|V1 \ L(G)| + |V2|) + (|V1 ∩ L(G)| + |V2|)
≥ (|V1 \ L(G)| + |V2|) + (|V1 ∩ S(G)| + |V2|)
≥ α(G) + |S(G)|.

Now, we notice that every vertex in V2 has at most Δ − 1 neighbors in
V0 as V1 ∪V2 is a total dominating set. Hence, |V0| ≤ (Δ−1)|V2|. Taking into
account the inequality above, and the fact that n−α(G) ≥ |V (G)\(V1∪V2)| =
|V0| as V1 ∪ V2 is a vertex cover, we have

(Δ − 1)γoitR(G) = (Δ − 1)(|V1| + 2|V2|)
= (Δ − 1)(|V1| + |V2|) + (Δ − 1)|V2|
≥ (Δ − 1)(n − |V0|) + |V0|
≥ n(Δ − 1) − (Δ − 2)|V0|
≥ n(Δ − 1) − (Δ − 2)(n − α(G))
= (Δ − 1)α(G) + (n − α(G)).

This implies that γoitR(G) ≥ α(G) +
⌈

n−α(G)
Δ−1

⌉
, which completes the

first part of the proof.
We now consider G is claw-free. The next proof follows along the lines

of the first part of this proof. We assume D is a γ(G)-set and S is an α(G)-
set. We claim that the function f(V0, V1, V2) (as above) is an OITRDF on G.
Recall that V0 = V (G) \ (D ∪ S), V1 = (D ∪ S) \ (D ∩ S) and V2 = D ∩ S.

It is clear that V0 is an independent set as V0 ⊆ V (G) \ S. Since G is
claw-free graph, by Lemma 2.3, we have that S is also a total dominating
set. Hence, V1 ∪ V2 = D ∪ S is a total dominating set as well. We only
need to prove that every vertex in V0 has a neighbor in V2. Let x ∈ V0 =
V (G)\(D∪S). Since S is a vertex cover and D is a dominating set, we deduce
that N(x) ⊆ S and N(x) ∩ D �= ∅, respectively. Hence N(x) ∩ D ∩ S �= ∅,
i.e., N(x) ∩ V2 �= ∅. Therefore, f is an OITRDF on G, as desired. Thus,
γoitR(G) ≤ ω(f) ≤ |(D ∪ S) \ (D ∩ S)| + 2|D ∩ S| = α(G) + γ(G), which
completes the proof. �

The bounds above are tight. For instance, for the graph G shown in
Fig. 2 we have that γoitR(G) = 7 = α(G) + γt(G). Also, the complete graph
Kn satisfies that γoitR(Kn) = n = α(Kn) +

⌈
n−α(Kn)

Δ−1

⌉
. Furthermore, in

[7], the authors showed that the corona graph G ∼= G1 
 Nr satisfies that
γoitR(G) = 2|S(G)| = α(G) + |S(G)|. In addition, for the case of wheel
graphs Wn, since they have no leaves, they clearly have no support vertices,
and so |S(Wn)| = 0. For such graphs, the lower bound above is tight when
n ≥ 7, since

⌈
n−α(Wn)
Δ(Wn)−1

⌉
= 1 and, by Remark 1.2, γoitR(Wn) =

⌈
n−1

2

⌉
+ 2 =
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2 1 2

11

Figure 2. A graph G with γoitR(G) = 7 = α(G)+γt(G) with
the positive labels of a γoitR(G)-function

α(Wn) + 1. Other graphs that show the tightness of the upper bound of
Theorem 2.4 are the complete bipartite graphs Kr,s, which can be seen using
Remark 1.1. For the tightness of the bound concerning claw-free graphs, we
consider for instance the complete graph Kn (n ≥ 4), which is claw-free, and
satisfies that γoitR(Kn) = n = α(Kn) + γ(Kn).

The next result, which also improves the upper bound given in Theo-
rem 2.1, is an immediate consequence of Theorem 2.4 and Observation 2.2
(ii).

Theorem 2.5. For any graph G with no isolated vertex,

γoitR(G) ≤ α(G) + γR(G) ≤ α(G) + 2γ(G).

With respect to the equality in the bound γoitR(G) ≤ α(G) + 2γ(G)
above, we can deduce the following connection. To this end, we need to say
that a graph G is called a Roman graph if γR(G) = 2γ(G).

Proposition 2.6. If G is a graph such that γoitR(G) = α(G) + 2γ(G), then G
is a Roman graph.

Proof. From Theorem 2.5, we have that α(G) + 2γ(G) = γoitR(G) ≤ α(G) +
γR(G) ≤ α(G)+2γ(G). Thus, we must have equalities in the whole inequality
chain. In particular, we conclude that γR(G) = 2γ(G), and so, G is a Roman
graph. �

Notice that the opposed to the result above is not necessarily true. For
instance, any complete bipartite graph Kr,s, with 3 ≤ r ≤ s, is a Roman
graph, but it does not satisfy the equality since, by Remark 1.1, α(Kr,s) +
2γ(Kr,s) = r + 4 �= r + 2 = γoitR(Kr,s).

Concerning the outer-independent Roman domination number and the
outer-independent total domination number, which are closely related to
γoitR(G), in [7], the authors showed the following results.

Theorem 2.7. [7] The following statements hold for any graph G of order
n ≥ 3 with no isolated vertex.

(i) γt,oi(G) + 1 ≤ γoitR(G) ≤ 2γt,oi(G).
(ii) If f(V0, V1, V2) is a γoiR(G)-function, then γoiR(G) ≤ γoitR(G) ≤

γoiR(G) + |V1| + |V2|.
We now provide a result which improves the upper bounds given in

Theorem 2.7.
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Theorem 2.8. For any graph G with no isolated vertex,

γoitR(G) ≤ min{γt,oi(G), γoiR(G)} + γ(G).

Proof. First, we proceed to prove that γoitR(G) ≤ γt,oi(G) + γ(G). Let D be
a γt,oi(G)-set and S a γ(G)-set. Let f(V0, V1, V2) be a function defined by
V0 = V (G) \ (D ∪ S), V1 = (D ∪ S) \ (D ∩ S) and V2 = D ∩ S. We claim
that f is an OITRDF on G. Notice that V0 ⊆ V (G) \ D is an independent
set and V1 ∪ V2 is a total dominating set as D is a outer-independent total
dominating set of G. Now, we prove that every vertex in V0 has a neighbor
in V2. Let x ∈ V0 = V (G) \ (D ∪ S). Since D is also a vertex cover and S is
a dominating set, we deduce that N(x) ⊆ D and N(x) ∩ S �= ∅, respectively.
Thus, N(x) ∩ D ∩ S �= ∅, i.e., N(x) ∩ V2 �= ∅. Hence, f is an OITRDF on
G, as required. Thus, γoitR(G) ≤ ω(f) ≤ |(D ∪ S) \ (D ∩ S)| + 2|D ∩ S| =
γt,oi(G) + γ(G), as desired.

Finally, we proceed to prove that γoitR(G) ≤ γoiR(G) + γ(G). In this
case, let g(W0,W1,W2) be a γoiR(G)-function and S a γ(G)-set. Now, we
define a function f(V0, V1, V2) as follows.

(i) V2 = W2 and W1 ⊆ V1.
(ii) If x ∈ (W1 ∪ W2) ∩ S, then choose a vertex y ∈ N(x) ∩ W0 (if it exists)

and set y ∈ V1.
(iii) If x ∈ W0 ∩ S, then set x ∈ V1.
(iv) For any other vertex x ∈ W0 not previously labelled, set x ∈ V0.
We claim that f is an OITRDF on G. Since W0 is an independent set and
V0 ⊆ W0 ⊆ N(W2), it follows by (i) that V0 is also an independent set and
V0 ⊆ N(V2). Finally, by (ii), (iii), (iv) and the fact that S is a dominating
set, we deduce that V1 ∪ V2 is a total dominating set of G. Hence, f is an
OITRDF on G, as desired. Therefore, γoitR(G) ≤ ω(f) = 2|V2| + |V1| ≤
2|W2| + |W1| + |S| = γoiR(G) + γ(G), which completes the proof. �

The following result shows a class of graphs which satisfy the equality
γoitR(G) = γoiR(G).

Theorem 2.9. For any claw-free graph G of minimum degree δ ≥ 3,

γoitR(G) = γoiR(G).

Proof. Let f(V0, V1, V2) be a γoiR(G)-function. Since V0 is an independent set,
we have that V1∪V2 is a vertex cover of G. As every vertex cover in a claw-free
graph of minimum degree δ ≥ 3 is also a total dominating set by Lemma 2.3,
we deduce that f is also an OITRDF. Hence, γoitR(G) ≤ ω(f) = γoiR(G).
Theorem 2.7 (ii) completes the proof. �

Moreover, by Theorems 2.7 and 2.8 , we deduce that the graphs G with
γoitR(G) > γoiR(G) satisfy the following inequality chain.

max{γt,oi(G), γoiR(G)} + 1 ≤ γoitR(G) ≤ min{γt,oi(G), γoiR(G)} + γ(G). (1)

For instance, for the complete bipartite graph K1,n−1 we obtain equali-
ties through the previous inequality chain, i.e., γt,oi(K1,n−1)+1 = γoiR(K1,n−1)+
1 = γoitR(K1,n−1) = γt,oi(K1,n−1) + γ(K1,n−1) = γoiR(K1,n−1)
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+ γ(K1,n−1). In contrast with the example above, if we consider G ∈ Fp,q

(as defined in Section 1), we note that there are graphs achieving a strict
inequality in all the steps of the inequality chain (1). That is, for any graph
G ∈ Fp,q, (using Remark 1.3) it follows that

γt,oi(G) + 1 = 1 + 2p + q +
q∑

i=1

ri

< γoiR(G) + 1 = 1 + 2p + 2q +
q∑

i=1

ri

< γoitR(G) = 3p + 3q +
q∑

i=1

ri

< γt,oi(G) + γ(G) = 2p + q +
q∑

i=1

ri + p + 3q = 3p + 4q +
q∑

i=1

ri

< γoiR(G) + γ(G) = 2p + 2q +
q∑

i=1

ri + p + 3q = 3p + 5q +
q∑

i=1

ri.

Theorem 2.10 [5]. For any connected graph G of minimum degree δ,

γt,oi(G) ≤ 2α(G) − δ + 1.

Next, we provide a new upper bound for the outer-independent total
Roman domination number, which is an immediate consequence of Theo-
rems 2.8 and 2.10 . Notice that this result improves Theorem 2.5 for the
graphs G that satisfy the inequality α(G) ≤ γ(G) + δ − 1.

Theorem 2.11. For any connected graph G of minimum degree δ,

γoitR(G) ≤ 2α(G) + γ(G) − δ + 1.

The bound above is tight for the case of star graphs, and in connection
with this fact, we pose the following question.
Open question: Is it the case that γoitR(G) = 2α(G) + γ(G) − δ + 1 if and
only if G is a star graph?

3. Exact Formulas for Some Families of Graphs

This section is centered into giving the exact value of the outer-independent
total Roman domination number of some significant families of graphs, that
have been frequently studied in the literature in connection with several dom-
ination related invariants.

3.1. Sierpiński Graphs

Sierpiński graphs were introduced in [15]. However, they were named in this
way a little further in [16]. For integers n ≥ 2 and p ≥ 3, the Sierpiński graph
Sn

p is defined on the vertex set {0, 1, . . . , p− 1}n, where two different vertices
(i1, . . . , in) and (j1, . . . , jn) are adjacent if and only if there exists an index r
in {1, . . . , n} such that the following follows.
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1 1

11

2 0

01

1 2
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1 1
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11

0 1
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1 0

21

1 0
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1 1

11

0 1

11

1 0

21

1 0
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1 1

1 1

1 2

0

1 1

0 1

2

1 1

1 0

1

0 1
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1

1 0

1 1

1

Figure 3. The graphs S2
4 , S3

4 and S2
5 (from left to right), and

a labeling for an OITRDF of minimum weight in each graph

(i) it = jt, for t = 1, . . . , r − 1;
(ii) ir �= jr; and
(iii) it = jr and jt = ir for t = r + 1, . . . , n.
Three representative examples of Sierpiński graphs are shown in Fig. 3. On
the other hand, any Sierpiński graph Sn

p can be constructed using an inductive
manner. That is, we begin this construction with a clique of cardinality p (a
p-clique from now on), which can precisely be seen as S1

p . Now, to construct
S2

p , we take p copies of the p-clique and connect one with each other through
an edge set in “1-to-1” correspondence with the edges of one p-clique. This
procedure is repeated n times to obtain our desired Sn

p . In general, we can
recursively construct any Sn

p by connecting p copies of Sn−1
p using a set of

p(p−1)
2 edges. The first two graphs of Fig. 3 shows this process of construction,

while using a clique of cardinality four. Although, we could include here
several references to a large number of works which deals with Sierpiński
graph, it is not our goal to make so. Thus, for more information on such
graph, we suggest the reader the nice survey [14]. We next compute the
outer-independent total Roman domination number of Sierpiński graphs.

Theorem 3.1. For any Sierpiński graph Sn
p ,

γoitR(Sn
p ) = p

⌈
pn−1

2

⌉

+ (p − 1)
⌊

pn−1

2

⌋

.

Proof. We first note that in each subgraph of Sn
p isomorphic to Kp, only one

vertex can belong to V0 for any γoitR(Sn
p )-function f(V0, V1, V2). Moreover,

each of these vertices in V0 needs to have a neighbor in V2. Since every vertex
of each copy of Kp in Sn

p has at most one neighbor not in the same copy
of Kp, this means that a vertex of V2 can have at most two neighbors in
V0, one from the same copy it belongs, one from another copy. If there is a
vertex labeled 2 under f in a copy Q of Kp in Sn

p , then f(V (Q)) ≥ p. On
the contrary, if there is no vertex labeled 2 under f in a copy Q′ of Kp in
Sn

p , then f(V (Q′)) ≥ p − 1. Note that Sn
p contains pn−1 disjoint subgraphs
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isomorphic to Kp (the copies of Kp). Hence, since there could be at most one
vertex in each copy of Kp labeled 0 under f and each vertex in V2 can have at

most two neighbors in V0, we deduce that there at least
⌈

pn−1

2

⌉
copies of Kp

containing a vertex labeled 2 under f . Assume Q1, . . . , Qr, with r ≥
⌈

pn−1

2

⌉
,

are the copies of Kp containing a vertex with label 2. This leaves pn−1 − r
copies of Kp to have no vertex with label 2, denoted by Q′

1, . . . , Q
′
pn−1−r.

This leads to the following.

γoitR(Sn
p ) = ω(f) =

r∑

i=1

f(V (Qi)) +
pn−1−r∑

i=1

f(V (Q′
i))

≥ pr + (p − 1)(pn−1 − r) = r + (p − 1)pn−1.

Since r ≥
⌈

pn−1

2

⌉
, we obtain that

γoitR(Sn
p ) ≥ (p − 1)pn−1 +

⌈
pn−1

2

⌉

= p

⌈
pn−1

2

⌉

+ (p − 1)
⌊

pn−1

2

⌋

.

On the other hand, we shall construct a γoitR(Sn
p )-function of weight p

⌈
pn−1

2

⌉

+ (p − 1)
⌊

pn−1

2

⌋
in the following way. We will proceed iteratively. That is,

we begin with a function f2 for the graph S2
p with a specific structure which

we require for our purposes. One possible labeling, for a function f2 for the
cases p = 4 and p = 5, is shown in Fig. 3. There are two requirements that
we need for our function:

(i) There are exactly p vertices labeled with 0, and they are lying in “inte-
rior” positions of the drawing of S2

p . Notice that this latter requirement
can be always done unless p = 4.

(ii) There are
⌈

pn−1

2

⌉
vertices labeled with 2, and they have at least one

and at most two neighbors labeled with 0 that belong to two different
copies of Kp. If p is even, each vertex labeled 2 has exactly two neighbors
labeled 0. This could happen also is p is odd, but not necessarily.

Notice that f2 has weight p
⌈

pn−1

2

⌉
+(p−1)

⌊
pn−1

2

⌋
, and so, it is a γoitR(Sn

p )-
function.

Now, for the graph S3
p , we need p copies of the graph S2

p . Then, we use in
each copy, the labeling used in the graph S2

p . Since the vertices labeled with
0 are “interiors” in their corresponding copies, they will not have a neighbor
in another copy, and clearly they remain having a neighbor labeled 2. Thus,
this labeling is taken as a function f3 which is indeed a γoitR(Sn

p )-function of

weight p
⌈

pn−1

2

⌉
+ (p − 1)

⌊
pn−1

2

⌋
. We note that, if p = 4, then, although the

vertices labeled 0 are not “interior”, the property for a vertex in a copy of S2
4

of not having a neighbor in another copy remains. Thus, the same conclusion
can be deduced for S3

4 . A repetition of this process will always produce a
γoitR(Sn

p )-function of weight p
⌈

pn−1

2

⌉
+ (p − 1)

⌊
pn−1

2

⌋
for any values of p

and n. This completes the proof. �
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3.2. Circulant Graphs

Let Zn be the additive group of integers modulo n and let M ⊂ Zn, such
that, i ∈ M if and only if −i ∈ M . A circulant graph G of order n with
respect to M is a graph G constructed as follows. The vertices of G are the
elements of Zn and (i, j) is an edge of G if and only if j − i ∈ M . With
such notation above, we see that a cycle is precisely a circulant graph when
M = {−1, 1}, while a complete graph is also a circulant graph with M = Zn.
Now, in order to simplify the notation, we shall use C(n, k), 0 < k ≤ ⌊

n
2

⌋
,

instead of CR(n, {−k,−k + 1, . . . ,−1, 1, 2, . . . , k}). Moreover, we shall next
assume that V (C(n, k)) = {v0, v1, . . . , vn−1}, such that vi is adjacent to vi+j

and vi−j with j = 1, . . . , k, where the subscripts are taken modulo n. To
compute γoitR(C(n, k)), we shall need the following result (which could be a
known one, but we know no reference in which this appears).

Lemma 3.2. For any integers n and 2 ≤ k ≤ �n/2�, β(C(n, k)) =
⌊

n
k+1

⌋
.

Proof. Let S = {vi : i ≡ 0 (k+1)} ⊂ V (C(n, k)). Since vi is not adjacent to
every vertex vj such that i ≡ j(k + 1), it is clear that S is an independent

set of C(n, k), and so, β(C(n, k)) ≥ |S| =
⌊

n
k+1

⌋
.

On the other hand, let S′ be a β(C(n, k))-set. For every i ∈ {0, . . . , n −
1}, we shall consider the set Ai = {vi, vi+1, . . . , vi+k}. Notice that |S′∩Ai| ≤ 1
for every i ∈ {0, . . . , n − 1}. Thus, we have the following.

β(C(n, k)) =
1

k + 1

n−1∑

i=0

|S′ ∩ Ai| ≤ n

k + 1

Since β(C(n, k)) is an integer, it must happen β(C(n, k)) ≤
⌊

n
k+1

⌋
, which

completes the proof. �

Theorem 3.3. For any integers n and 2 ≤ k ≤ �n/2�,

γoitR(C(n, k)) = n −
⎢
⎢
⎢
⎣

⌊
n

k+1

⌋

2

⎥
⎥
⎥
⎦ .

Proof. Let f(V0, V1, V2) be a function on C(n, k) defined as follows

V0 =
�n/(k+1)�⋃

i=0

{vi(k+1)}, V2 =
�n/(k+1)�⋃

i=0

{vi(k+1)+1} and

V1 = V (C(n, k)) \ (V1 ∪ V2).

Notice that f is an OITRDF on C(n, k). Hence, γoitR(C(n, k)) ≤ ω(f) =

|V1| + 2|V2| = n −
⌊� n

k+1�
2

⌋

.

In consequence, we only need to prove that γoitR(C(n, k)) ≥ n−
⌊� n

k+1�
2

⌋

.

Let f(V0, V1, V2) be a γoitR(C(n, k))-function. Notice that |V0| ≤ 2|V2| which
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leads to
⌈

|V0|
2

⌉
≤ |V2|. We consider the following.

γoitR(C(n, k)) = ω(f) = 2|V2| + |V1|
= n − |V0| + |V2|

≥ n − |V0| +
⌈ |V0|

2

⌉

= n −
⌊ |V0|

2

⌋

.

Since |V0| ≤ β(C(n, k)) =
⌊

n
k+1

⌋
(the last part by Lemma 3.2), we deduce

that γoitR(C(n, k)) ≥ n −
⌊� n

k+1�
2

⌋

, which completes the proof. �

3.3. Products of Complete Graphs

Interest in studies on products of complete graphs might has come from the
well known Hamming graphs H(d, q), which are indeed the Cartesian product
of d complete graphs Kq. For our exposition, we simply begin with studying
the case in which d = 2, but the research could be continued to larger values
of d. In addition, we also study other products of complete graphs.

Let V (Kr) = {u1, . . . , ur} and V (Ks) = {v1, . . . , vs}. We now consider
the outer-independent total Roman domination number of the four stan-
dard products (Cartesian-�, direct-×, strong-� and lexicographic-◦, accord-
ing to [9]) of complete graphs. First it is clear that the strong and lexico-
graphic product of complete graphs result in a complete graph as well. Thus,
γoitR(Kr � Ks) = γoitR(Kr ◦ Ks) = rs. We next give also exact formulas for
the remaining two standard products. For information, definitions and usual
terminology on product graphs we suggest the very complete book [9].

Theorem 3.4. For any integers r, s with 2 ≤ r ≤ s, γoitR(Kr�Ks) = rs−⌊
r
2

⌋
.

Proof. Let f(V0, V1, V2) be a function on Kr�Ks such that V0 = {(ui, vi) :
1 ≤ i ≤ r}, V2 = {(u2i, v2i−i) : 1 ≤ i ≤ �r/2�} and V1 = V (Kr�Ks) \ (V0 ∪
V2). We readily see that V0 is independent, that V1 ∪V2 is a total dominating
set, and that every vertex in V0 is adjacent to a vertex in V2. Thus, f is an
OITRDF on Kr�Ks, and so, γoitR(Kr�Ks) ≤ ω(f) = rs−r+

⌈
r
2

⌉
= rs−⌊

r
2

⌋
.

On the other hand, let f ′(V ′
0 , V ′

1 , V ′
2) be a γoitR(Kr�Ks)-function. From

now, the proof follows along the lines of the second part of the proof of
Theorem 3.3. That is, since similarly

⌈ |V ′
0 |
2

⌉
≤ |V ′

2 | and |V ′
0 | ≤ β(Kr�Ks) =

r, we deduce that γoitR(Kr�Ks) ≥ rs − ⌊
r
2

⌋
. �

Theorem 3.5. For any integers r, s with 2 ≤ r ≤ s, γoitR(Kr × Ks) = s(r −
1) + 2.

Proof. Let f(V0, V1, V2) be a function on Kr × Ks such that V0 = {(u1, vi) :
1 ≤ i ≤ s}, V2 = {(u2, v1), (u2, v2)} and V1 = V (Kr × Ks) \ (V0 ∪ V2). It can
be easily noted that f is an OITRDF on Kr × Ks. Thus γoitR(Kr × Ks) ≤
s(r − 1) + 2.
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Now, let f ′(V ′
0 , V ′

1 , V ′
2) be a γoitR(Kr × Ks)-function. Since 2 ≤ |V ′

0 | ≤
β(Kr × Ks) = s, it follows |V ′

2 | ≥ 2, and we have that γoitR(Kr × Ks) =
ω(f) = 2|V ′

2 | + |V ′
1 | = rs − |V ′

0 | + |V ′
2 | ≥ rs − s + 2 = s(r − 1) + 2, which

completes the proof. �
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