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General Reiteration Theorems for R
and L Classes: Case of Right R-Spaces
and Left L-Spaces

Pedro Fernández-Mart́ınez and Teresa M. Signes

Abstract. Given E0, E1, E, F rearrangement invariant spaces, a, b, b0, b1

slowly varying functions and 0 ≤ θ0 < θ1 ≤ 1, we characterize the
interpolation spaces

(Xθ0,b0,E0 , X
R
θ1,b1,E1,a,F )θ,b,E and (X

L
θ0,b0,E0,a,F , Xθ1,b1,E1)θ,b,E ,

for all possible values of θ ∈ [0, 1]. Applications to interpolation iden-
tities for grand and small Lebesgue spaces, Gamma spaces and A and
B-type spaces are given.
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1. Introduction

Reiteration theorems are important results in Interpolation Theory. These
results not only assure the interpolation process is stable under reiteration,
but also they are very useful identifying interpolation spaces. The classical
results can be found in the monographs [8,9,11,51]. Additionally, there is an
extensive literature concerning explicit reiteration formulae in various special
cases, see, e.g., [3,5,6,15,17,21,33,39,41].

This paper is the second of a series in which we study reiteration results
for couples formed by the spaces

Xθ,b,E , X
R
θ,b,E,a,F , X

L
θ,b,E,a,F . (1.1)

Here, 0 ≤ θ ≤ 1, a and b are slowly varying functions and, finally, E and
F are rearrangement invariant (r.i.) function spaces. In fact, given a couple
X = (X0,X1), these spaces are defined as
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Xθ,b,E =
{

f ∈ X0 + X1 :
∥∥t−θb(t)K(t, f)

∥∥
Ẽ

< ∞
}

,

X
L
θ,b,E,a,F =

{
f ∈ X0 + X1 :

∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (0,t)

∥∥
Ẽ

< ∞
}

and

X
R
θ,b,E,a,F =

{
f ∈ X0 + X1 :

∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ

< ∞
}

.

In the previous paper [26], we identified the interpolation spaces(
X

R
θ0,b0,E0,a,F ,Xθ1,b1,E1

)
θ,b,E

and
(
Xθ0,b0,E0 ,X

L
θ1,b1,E1,a,F

)
θ,b,E

.

(1.2)

This time we shall focus in the “dual” situation(
Xθ0,b0,E0 ,X

R
θ1,b1,E1,a,F

)
θ,b,E

and
(
X

L
θ0,b0,E0,a,F ,Xθ1,b1,E1

)
θ,b,E

,

(1.3)

when 0 ≤ θ0 < θ1 ≤ 1, 0 ≤ θ ≤ 1, a,b,b0,b1 are slowly varying functions
and E0, E1, E, F are r.i. spaces.

We remark that the identities in (1.3) do not follow from those in (1.2)
by a usual “symmetry” argument (i.e., interchanging X0 and X1), since such
argument would not preserve the condition 0 ≤ θ0 < θ1 ≤ 1, which is crucial
in the identification of the spaces in (1.2). Moreover, in the limiting cases
θ = 0, 1, the reiteration spaces obtained in (1.3) will no longer belong to the
scales in (1.1). In fact, new interpolation functors

X
R,R
θ,c,E,b,F,a,G and X

L,L
θ,c,E,b,F,a,G (1.4)

will be needed; see Definition 2.11.
As in [26], a motivation for this study arises from various recent appli-

cations (see [1,2,30]) to the so-called grand and small Lebesgue spaces

Lp),α and L(p,α, 1 < p < ∞, α > 0;

see Definition 5.2 below. As observed in [28,42], one can write

Lp),α = (L1, L∞)R
1− 1

p ,�
− α

p (t),L∞,1,Lp

and

L(p,α = (L1, L∞)L
1− 1

p ,�
− α

p
+α−1

(t),L1,1,Lp

,

with �(t) = 1 + | log(t)|, t ∈ (0, 1). So, in particular (1.3) allows to identify
the interpolation spaces(

Lp0 , L
p1),α

)
θ,b,E

and
(
L(p0,α, Lp1

)
θ,b,E

,

for 1 ≤ p0 < p1 ≤ ∞, α > 0, and 0 ≤ θ ≤ 1. Moreover, using additionally
reiteration results from [24] or using limiting cases for θ0 and θ1 in (1.3), one
computes the pairs(

L(p0,α, Lp1),β
)
θ,b,E

,
(
L log L,Lp1),β

)
θ,b,E

and
(
L(p0,α, Lexp

)
θ,b,E

;

see Theorem 5.7 and Corollaries 5.8, 5.11 below.
Some of these special cases are contained in the recent papers [1,2,30],

together with other interpolation formulae for pairs involving grand or small
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Lebesgue (Lorentz) spaces. Our goal here is to present a unified study for such
identities in the setting of general couples X = (X0,X1) of (quasi-) Banach
spaces, and arbitrary parameters b and E. This point of view, besides being
more general, also produces new formulae compared to [1,2,30], and allows
to apply the results to other situations, such as Gamma spaces and A and
B-type spaces; see Sect. 5 below.

As in [26], the proofs use a direct approach, which closely follows the
classical methods of reiteration. The main point is to obtain Holmstedt type
formulae for the interpolation couples described above; these can be seen as
quantitative forms of the reiteration theorems. We also make use of standard
techniques that already appeared in [26], such as Hardy-type inequalities in
the context of r.i. spaces and slowly varying functions (see Sect. 4.1), and an
estimate that is specific of this situation (Lemma 4.4).

The paper is organized as follows. In Sect. 2, we recall basic concepts
regarding rearrangement invariant spaces and slowly varying functions. We
also describe the interpolation methods we shall work with, namely Xθ,b,E ,
the R and L-spaces, X

R
θ,b,E,a,F , X

L
θ,b,E,a,F , and the new constructions in

(1.4). Generalized Holmstedt-type formulae for the K-functional of the cou-
ples involved can be found in Sect. 3. The reiteration results appear in Sect. 4
and finally Sect. 5 is devoted to applications.

2. Preliminaries

We refer to the monographs [8,9,11,37,51] for the basic concepts and facts on
Interpolation Theory and Banach function spaces. A Banach function space
E on (0,∞) is called rearrangement invariant (r.i.) if, for any two measurable
functions f , g,

g ∈ E and f∗ ≤ g∗ =⇒ f ∈ E and ‖f‖E ≤ ‖g‖E ,

where f∗ and g∗ stand for the non-increasing rearrangements of f and g.
Following [8], we assume that every Banach function space E enjoys the
Fatou property. Under this assumption every r.i. space E can be obtained by
applying an exact interpolation method to the couple (L1, L∞).

Along this paper, we will handle two different measures on (0,∞); the
usual Lebesgue measure and the homogeneous measure ν(A) =

∫ ∞
0

χA(t)dt
t .

We use a tilde to denote rearrangement invariant spaces with respect to the
second measure. For example,

‖f‖L̃1
=

∫ ∞

0

|f(t)|dt

t
and ‖f‖L̃∞

= ‖f‖L∞ .

If E is an r.i. space obtained by applying the interpolation functor F to the
couple (L1, L∞), E = F(L1, L∞), we will denote by Ẽ the space generated
by F acting on the couple (L̃1, L∞), Ẽ = F(L̃1, L∞).

Sometimes we will need to restrict the space to some partial interval
(a, b) ⊂ (0,∞). Then, we will use the notation E(a, b) and Ẽ(a, b); the norm
being ‖f‖E(a,b) = ‖f(t)χ(a,b)(t)‖E .
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For two (quasi-) Banach spaces X and Y , we write X ↪→ Y if Y ⊂ X
and the natural embedding is continuous. The symbol X = Y means that
X ↪→ Y and Y ↪→ X.

Let A and B be two non-negative quantities depending on certain pa-
rameters. We write A � B if there is a constant c > 0, independent of the
parameters involved in A and B, such that A ≤ cB. If A � B and B � A,
we say that A and B are equivalent and write A ∼ B.

2.1. Slowly Varying Functions

In this subsection, we recall the definition and basic properties of slowly
varying functions. See [10,38].

Definition 2.1. A positive Lebesgue measurable function b, 0 
≡ b 
≡ ∞, is
said to be slowly varying on (0,∞) (notation b ∈ SV ) if, for each ε > 0, the
function t � tεb(t) is equivalent to a non-decreasing function on (0,∞) and
t � t−εb(t) is equivalent to a non-increasing function on (0,∞).

Examples of SV -functions include powers of logarithms,

�α(t) = (1 + | log t|)α, t > 0, α ∈ R,

“broken” logarithmic functions defined as

�(α,β)(t) =
{

�α(t), 0 < t ≤ 1
�β(t), t > 1 , (α, β) ∈ R

2, (2.1)

reiterated logarithms (� ◦ . . . ◦ �)α(t), α ∈ R, t > 0 and also the family of
functions exp(| log t|α), α ∈ (0, 1), t > 0.

In the following lemmas, we summarize some of the basic properties of
slowly varying functions.

Lemma 2.2. Let b,b1,b2 ∈ SV .
(i) Then b1b2 ∈ SV , b(1/t) ∈ SV and br ∈ SV for all r ∈ R.
(ii) If α > 0, then b(tαb1(t)) ∈ SV .
(iii) If ε, s > 0 then there are positive constants cε and Cε such that

cε min{s−ε, sε}b(t) ≤ b(st) ≤ Cε max{sε, s−ε}b(t) for every t > 0.

Lemma 2.3. Let E be an r.i. space on (0,∞) and b ∈ SV .
(i) If α > 0, then, for all t > 0,

‖sαb(s)‖Ẽ(0,t) ∼ tαb(t) and ‖s−αb(s)‖Ẽ(t,∞) ∼ t−αb(t).

(ii) The following functions belong to SV

B0(t) := ‖b‖Ẽ(0,t) and B∞(t) := ‖b‖Ẽ(t,∞), t > 0.

(iii) For all t > 0,

b(t) � ‖b‖Ẽ(0,t) and b(t) � ‖b‖Ẽ(t,∞).

We refer to [22,33] for the proof of Lemma 2.2 and 2.3 respectively.
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Remark 2.4. The property (iii) of Lemma 2.2 implies that if b ∈ SV is such
that b(t0) = 0 (b(t0) = ∞) for some t0 > 0, then b ≡ 0 (b ≡ ∞). Thus, by
Lemma 2.3 (ii), if ‖b‖Ẽ(0,1) < ∞ then ‖b‖Ẽ(0,t) < ∞ for all t > 0, and if
‖b‖Ẽ(1,∞) < ∞ then ‖b‖Ẽ(t,∞) < ∞ for all t > 0.

Moreover, if f ∼ g then, using Definition 2.1 and Lemma 2.2 (iii), one
can show that b ◦ f ∼ b ◦ g for any b ∈ SV .

2.2. Interpolation Methods

In what follows X = (X0,X1) will be a compatible (quasi-) Banach couple,
that is, two (quasi-) Banach spaces continuously embedded in a Hausdorff
topological vector space. The Peetre K-functional K(t, f) ≡ K(t, f ;X0,X1)
is defined for f ∈ X0 + X1 and t > 0 by

K(t, f ;X0,X1) = inf
{

‖f0‖X0 + t‖f1‖X1 : f = f0 + f1, fi ∈ Xi, i = 0, 1
}

.

It is known that the function t � K(t, f) is non-decreasing, while t �
t−1K(t, f), t > 0, is non-increasing. Other important property of the K-
functional is the fact that

K(t, f ;X0,X1) = tK(t−1, f ;X1,X0) for all t > 0, (2.2)

(see [8, Chap. 5, Proposition 1.2]).
Now, we recall the definition and some properties of the real interpola-

tion method Xθ,b,E and of the limiting constructions L and R. See [22] for
the proof of the results of this subsection.

Definition 2.5. Let E be an r.i. space, b ∈ SV and 0 ≤ θ ≤ 1. The real
interpolation space Xθ,b,E ≡ (X0,X1)θ,b,E consists of all f in X0 + X1 that
satisfy

‖f‖θ,b,E :=
∥∥t−θb(t)K(t, f)

∥∥
Ẽ

< ∞.

The space Xθ,b,E is a (quasi-) Banach space, and is an intermediate
space for the couple X, that is,

X0 ∩ X1 ↪→ Xθ,b,E ↪→ X0 + X1,

provided that one of the following conditions holds
⎧
⎨
⎩

0 < θ < 1
θ = 0, ‖b‖Ẽ(1,∞) < ∞
θ = 1, ‖b‖Ẽ(0,1) < ∞.

If none of the above conditions holds, then Xθ,b,E = {0}.
When E = Lq and b ≡ 1, then Xθ,b,E coincides with the classical real

interpolation space Xθ,q. We emphasize, however, that the spaces Xθ,b,E are
well defined even for the extremal values of the parameter θ = 0 and θ = 1.
Thus, this scale contains extrapolation spaces in the sense of Milman [39] and
Gómez and Milman [34]. The interpolation spaces Xθ,b,Lq

have been studied
in detail by Gogatishvili, Opic and Trebels in [33], while the special cases
Xθ,�(α,β)(t),Lq

, see (2.1), were considered earlier by Evans, Opic and Pick in
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[21] and by Evans and Opic in [20]. See also [14,17,35,45,50], among other
references.

In the next remark, we collect some elementary estimates that will be
used in the rest of the paper.

Remark 2.6. Using Lemma 2.3 (i) and the monotonicity of t � t−1K(t, ·),
it is easy to check that for t > 0 and f ∈ X0 + X1

t−θb(t)K(t, f) �
∥∥s−θb(s)K(s, f)

∥∥
Ẽ(0,t)

, 0 ≤ θ < 1, (2.3)

and

t−1‖b‖Ẽ(0,t)K(t, f) �
∥∥s−1b(s)K(s, f)

∥∥
Ẽ(0,t)

. (2.4)

Similarly,

t−θb(t)K(t, f) �
∥∥s−θb(s)K(s, f)

∥∥
Ẽ(t,∞)

, 0 < θ ≤ 1, (2.5)

and for θ = 0

‖b‖Ẽ(t,∞)K(t, f) �
∥∥b(s)K(s, f)

∥∥
Ẽ(t,∞)

. (2.6)

It is worth remarking that by (2.3) and (2.5), we have

K(t, f) � tθ

b(t)
‖f‖θ,b,E , 0 < θ < 1, (2.7)

for all t > 0 and f ∈ Xθ,b,E . In the cases θ = 0, 1 the estimate (2.7) is also
true if we replace b(t) by ‖b‖Ẽ(t,∞) or ‖b‖Ẽ(0,t), respectively.

Definition 2.7. Let E, F be two r.i. spaces, a,b ∈ SV and 0 ≤ θ ≤ 1. The
space X

L
θ,b,E,a,F ≡ (X0,X1)L

θ,b,E,a,F consists of all f ∈ X0 + X1 for which

‖f‖L;θ,b,E,a,F :=
∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (0,t)

∥∥
Ẽ

< ∞.

This is a (quasi-) Banach intermediate space for the couple X,

X0 ∩ X1 ↪→ X
L
θ,b,E,a,F ↪→ X0 + X1,

provided that
1. 0 < θ < 1 and ‖b‖Ẽ(1,∞) < ∞, or
2. θ = 0, ‖b‖Ẽ(1,∞) < ∞,

∥∥b(t)‖a‖F̃ (1,t)

∥∥
Ẽ(1,∞)

< ∞ and ‖ab‖Ẽ(1,∞) < ∞
or

3. θ = 1, ‖b‖Ẽ(1,∞)< ∞ and
∥∥b(t)‖a‖F̃ (0,t)

∥∥
Ẽ(0,1)

< ∞.

If none of these conditions holds, then X
L
θ,b,E,a,F = {0}.

Definition 2.8. Let E, F be two r.i. spaces, a,b ∈ SV and 0 ≤ θ ≤ 1. The
space X

R
θ,b,E,a,F ≡ (X0,X1)R

θ,b,E,a,F consists of all f ∈ X0 + X1 for which

‖f‖R;θ,b,E,a,F :=
∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ

< ∞.

The space R is a (quasi)-Banach intermediate space for the couple X,
that is,

X0 ∩ X1 ↪→ X
R
θ,b,E,a,F ↪→ X0 + X1,

provided that
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1. 0 < θ < 1 and ‖b‖Ẽ(0,1) < ∞ or
2. θ = 0, ‖b‖Ẽ(0,1)< ∞ and

∥∥b(t)‖a‖F̃ (t,∞)

∥∥
Ẽ(1,∞)

< ∞
3. θ = 1, ‖b‖Ẽ(0,1)< ∞,

∥∥b(t)‖a‖F̃ (t,1)

∥∥
Ẽ(0,1)

< ∞ and ‖ab‖Ẽ(0,1) < ∞.

If none of these conditions holds, then X
R
θ,b,E,a,F is a trivial space.

The above definitions generalize a previous notion by Evans and Opic
[20] in which a,b are broken logarithms while E,F remain within the classes
Lq. Earlier versions of these spaces appeared in a paper by Doktorskii [17],
with a,b powers of logarithms and X an ordered couple. These spaces also
appear in the work of Gogatishvili, Opic and Trebels [33] and Ahmed et al.
[3]. In all these cases, the spaces E and F remain within the Lq classes.

Some inclusions between the three constructions can be obtained using
inequalities (2.3)–(2.6). In fact,

X
L
θ,b,E,a,F ↪→ Xθ,ba,E if 0 ≤ θ < 1,

X
L
1,b,E,a,F ↪→ X1,b‖a‖

F̃ (0,t),E
if θ = 1,

(2.8)

and

X
R
θ,b,E,a,F ↪→ Xθ,ba,E if 0 < θ ≤ 1,

X
R
0,b,E,a,F ↪→ X0,b‖a‖

F̃ (t,∞),E
if θ = 0.

(2.9)

See [22, Lemma 6.7] for the identities in the case E = F = Lq.
The spaces (X0,X1)θ,b,E , (X0,X1)L

θ,b,E,a,F and (X0,X1)R
θ,b,E,a,F are

interpolation spaces and satisfy the following symmetry property.

Lemma 2.9. Let E,F be r.i. spaces, a, b ∈ SV and 0 ≤ θ ≤ 1. Then

(X0,X1)θ,b,E = (X1,X0)1−θ,b,E , (X0,X1)L
θ,b,E,a,F = (X1,X0)R

1−θ,b,E,a,F
,

where a(t) = a(1/t) and b(t) = b(1/t), t > 0.

We conclude this subsection with some inequalities that will be used
later.

Lemma 2.10. Let E,F be r.i. spaces, a,b ∈ SV and 0 ≤ θ ≤ 1. Then, for all
f ∈ X0 + X1 and u > 0

u−θa(u)‖b‖Ẽ(0,u)K(u, f) �
∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,u)

∥∥
Ẽ(0,u)

(2.10)

and

u−θa(u)b(u)K(u, f) �
∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ(u,∞)

. (2.11)

Proof. We refer to [26, Lemma 2.12] for the proof of (2.10). Inequality (2.11)
is an easy consequence of Lemma 2.3 (i) and the monotonicity of the K-
functional. Indeed,∥∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,∞)

∥∥∥
Ẽ(u,∞)

� K(u, f)
∥∥∥b(t)‖s−θa(s)‖F̃ (t,∞)

∥∥∥
Ẽ(u,∞)

∼ K(u, f)‖t−θb(t)a(t)‖Ẽ(u,∞)

∼ u−θa(u)b(u)K(u, f).
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For θ = 0, we need to use Lemma 2.3 (iii) instead of 2.3 (i). �

Consequently, for 0 ≤ θ ≤ 1 and f ∈ X
R
θ,b,E,a,F , we have

K(u, f) � uθ

a(u)‖b‖Ẽ(0,u)

‖f‖R;θ,b,E,a,F , u > 0. (2.12)

2.3. New Extremal Spaces

Our next definition introduces two new types of extremal interpolation spaces
that will appear in relation with the extreme reiteration results that will be
studied in §4.

Definition 2.11. Let E,F,G be r.i. spaces, a,b, c ∈ SV and 0 ≤ θ ≤ 1. The
space X

L,L
θ,c,E,b,F,a,G ≡ (X0,X1)

L,L
θ,c,E,b,F,a,G is the set of all f ∈ X0 + X1 for

which

‖f‖L,L;θ,c,E,b,F,a,G :=
∥∥∥∥c(u)

∥∥∥b(t)‖s−θa(s)K(s, f)‖G̃(0,t)

∥∥∥
F̃ (0,u)

∥∥∥∥
Ẽ

< ∞.

Similarly, the space X
R,R
θ,c,E,b,F,a,G ≡ (X0,X1)

R,R
θ,c,E,b,F,a,G is the set of all

f ∈ X0 + X1 such that

‖f‖R,R;θ,c,E,b,F,a,G :=
∥∥∥∥c(u)

∥∥∥b(t)‖s−θa(s)K(s, f)‖G̃(t,∞)

∥∥∥
F̃ (u,∞)

∥∥∥∥
Ẽ

< ∞.

A standard reasoning (see [8,20]) shows that the above two classes are
(quasi-) Banach spaces, provided X0 and X1 are so. Moreover, using estimates
(2.3)–(2.6), one can obtain the following inclusions

X
L,L
θ,c,E,b,F,a,G ↪→ X

L
θ,c,E,ba,F if 0 ≤ θ < 1,

X
L,L
1,c,E,b,F,a,G ↪→ X

L
1,c,E,b‖a‖

G̃(0,t),F
if θ = 1,

and

X
R,R
θ,c,E,b,F,a,G ↪→ X

R
θ,c,E,ba,F if 0 < θ ≤ 1,

X
R,R
0,c,E,b,F,a,G ↪→ X

R
0,c,E,b‖a‖

G̃(t,∞),F
if θ = 0.

It is easy to show that the spaces L,L and R,R are also related by the
following symmetry property.

Lemma 2.12. Let E, F , G be r.i. spaces, a, b, c ∈ SV and 0 ≤ θ ≤ 1. Then

(X0,X1)
L,L
θ,c,E,b,F,a,G = (X1,X0)

R,R
1−θ,c,E,b,F,a,G

where a(t) = a(1/t), b(t) = b(1/t) and c(t) = c(1/t), t > 0.
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3. Generalized Holmstedt-Type Formulae

For parameters 0 ≤ θ0 < θ1 ≤ 1, a, b0, b1 ∈ SV and E0, E1 r.i. spaces, the
couples

(Xθ0,b0,E0 ,X
R
θ1,b1,E1,a,F ) and (X

L
θ0,b0,E0,a,F ,Xθ1,b1,E1),

are compatible (quasi-) Banach couples (assuming the usual conditions on b0

and b1 in the extreme cases θ0 = 0, θ1 = 1, respectively). In this section, we
relate the K-functionals of these couples with the K-functional of the original
one, X, by means of some generalized Holmstedt type formulae.

3.1. The K-Functional of the Couple (Xθ0,b0,E0 , X
R
θ1,b1,E1,a,F ), 0 ≤ θ0 <

θ1 < 1

Theorem 3.1. Let 0 < θ0 < θ1 < 1. Let E0, E1, F be r.i. spaces and a, b0,
b1 ∈ SV such that ‖b1‖Ẽ1(0,1) < ∞.

a) Then, for every f ∈ Xθ0,b0,E0 + X
R
θ1,b1,E1,a,F and all u > 0

K
(
ρ(u), f ;Xθ0,b0,E0 ,X

R
θ1,b1,E1,a,F

)

∼ ‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

+ ρ(u)‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

+ ρ(u)
∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

,

where

ρ(u) = uθ1−θ0
b0(u)

a(u)‖b1‖Ẽ1(0,u)

, u > 0. (3.1)

b) If ‖b0‖Ẽ0(1,∞) < ∞, then, for every f ∈ X0,b0,E0 +X
R
θ1,b1,E1,a,F and all

u > 0

K
(
ρ(u), f ;X0,b0,E0 ,X

R
θ1,b1,E1,a,F

)

∼ ‖b0(t)K(t, f)‖Ẽ0(0,u)

+ ρ(u)‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

+ ρ(u)
∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

,

where ρ(u) = uθ1
‖b0‖

Ẽ0(u,∞)

a(u)‖b1‖
Ẽ1(0,u)

, u > 0

c) Moreover, for every f ∈ X0 + X
R
θ1,b1,E1,a,F and all u > 0

K
(
ρ(u), f ; X0, X

R
θ1,b1,E1,a,F

) ∼ ρ(u)‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

+ρ(u)
∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

,

(3.2)

where ρ(u) = uθ1 1
a(u)‖b1‖

Ẽ1(0,u)
, u > 0.



193 Page 10 of 36 P. Fernández-Mart́ınez and T. M. Signes MJOM

Proof. We prove only a), the proofs of b) and c) are similar. Given f ∈
X0 + X1 and u > 0 we consider the (quasi-) norms

(P0f)(u) = ‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u),

(Q0f)(u) = ‖t−θ0b0(t)K(t, f)‖Ẽ0(u,∞),

(P1f)(u) =
∥∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,u)

∥∥∥
Ẽ1(0,u)

,

(R1f)(u) = ‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞),

(Q1f)(u) =
∥∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥∥
Ẽ1(u,∞)

,

and we denote Y0 = Xθ0,b0,E0 and Y1 = X
R
θ1,b1,E1,a,F . With this notation,

what we pursue to show is the equivalence

K(ρ(u), f ;Y0, Y1) ∼ (P0f)(u) + ρ(u)[(R1f)(u) + (Q1f)(u)], (3.3)

for all f ∈ Y0 + Y1 and u > 0, where ρ is defined by (3.1).
We first prove the upper estimate � of (3.3) for all f ∈ X0 + X1 and

any positive function ρ : (0,∞) → (0,∞).
Suppose that f ∈ X0 + X1 and fix u > 0. We may assume with no loss

of generality that (P0f)(u), (R1f)(u) and (Q1f)(u) are finite, otherwise the
upper estimate of (3.3) holds trivially. As usual (see for example [8] or [21])
we choose a decomposition f = g + h such that

‖g‖X0 + u‖h‖X1 ≤ 2K(u, f)

and

K(t, g) ≤ 2K(u, f) and
K(t, h)

t
≤ 2

K(u, f)
u

(3.4)

for all t > 0. So, to obtain the upper estimate of (3.3), it suffices to prove
that

‖g‖Y0 + ρ(u)‖h‖Y1 � (P0f)(u) + ρ(u)[(R1f(u) + (Q1f)(u)].

We start by showing that ‖g‖Y0 � (P0f)(u). The triangle inequality and the
(quasi-) subadditivity of the K-functional establish that

‖g‖Y0 ≤ (P0g)(u) + (Q0g)(u) � (P0f)(u) + (P0h)(u) + (Q0g)(u).

Using (3.4), Lemma 2.3 (i) and (2.3), we obtain

(P0h)(u) =
∥∥t−θ0b0(t)K(t, h)

∥∥
Ẽ0(0,u)

� K(u, f)
u

‖t1−θ0b0(t)‖Ẽ0(0,u)

∼ u−θ0b0(u)K(u, f) � (P0f)(u)

and

(Q0g)(u) = ‖t−θ0b0(t)K(t, g)‖Ẽ0(u,∞) � K(u, f)‖t−θ0b0(t)‖Ẽ0(u,∞)

∼ u−θ0b0(u)K(u, f) � (P0f)(u).

These give

‖g‖Y0 � (P0f)(u) < ∞



MJOM General Reiteration Theorems for R and L Classes Page 11 of 36 193

and therefore g ∈ Y0. Now we proceed with ‖h‖Y1 . Again by triangle inequal-
ity and the (quasi-) subadditivity of the K-functional, we have

‖h‖Y1 ≤ (P1h)(u) + (R1h)(u) + (Q1h)(u)

� (P1h)(u) + (R1f)(u) + (R1g)(u) + (Q1f)(u) + (Q1g)(u).

Using (3.4), Lemma 2.3 (i) and (2.5), we obtain

(P1h)(u) =
∥∥b1(t)‖s−θ1a(s)K(s, h)‖F̃ (t,u)

∥∥
Ẽ1(0,u)

� K(u, f)
u

∥∥b1(t)‖s1−θ1a(s)‖F̃ (t,u)

∥∥
Ẽ1(0,u)

≤ K(u, f)
u

∥∥b1(t)‖s1−θ1a(s)‖F̃ (0,u)

∥∥
Ẽ1(0,u)

∼ u−θ1a(u)‖b1‖Ẽ1(0,u)K(u, f) � (R1f)(u)

and

(R1g)(u) = ‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, g)‖F̃ (u,∞)

� K(u, f)‖b1‖Ẽ1(0,u)‖t−θ1a(t)‖F̃ (u,∞)

∼ u−θ1a(u)‖b1‖Ẽ1(0,u)K(u, f) � (R1f)(u).

Similarly, using also (2.11), we estimate (Q1g)(u) from above

(Q1g)(u) =
∥∥b1(t)‖s−θ1a(s)K(s, g)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

� K(u, f)
∥∥b1(t)‖s−θ1a(s)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∼ u−θ1b1(u)a(u)K(u, f) � (Q1f)(u).

Thus,

‖h‖Y1 � (R1f)(u) + (Q1f)(u) < ∞,

and we obtain that h ∈ Y1. Summing up, we deduce that

K(ρ(u), f ;Y0, Y1) ≤ ‖g‖Y0 + ρ(u)‖h‖Y1

� (P0f)(u) + ρ(u)[(R1f)(u) + (Q1f)(u)],

which is the upper estimate of (3.3).
Let us prove the lower estimate of (3.3). More precisely,

(P0f)(u) + ρ(u)[(R1f)(u) + (Q1f)(u)] � K(ρ(u), f ;Y0, Y1), (3.5)

for all f ∈ Y0 + Y1, u > 0 and ρ defined by (3.1).
Choose f = g + h any decomposition of f with g ∈ Y0 and h ∈ Y1, and

fix again u > 0. Using the (quasi-) subadditivity of the K-functional and the
definition of the norm in Y0 and Y1, we have

(P0f)(u) � (P0g)(u) + (P0h)(u) ≤ ‖g‖Y0 + (P0h)(u),

(R1f)(u) � (R1g)(u) + (R1h)(u) ≤ (R1g)(u) + ‖h‖Y1 ,

(Q1f)(u) � (Q1g)(u) + (Q1h)(u) ≤ (Q1g)(u) + ‖h‖Y1 .
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Then,

(P0f)(u) + ρ(u)[(R1f(u) + (Q1f)(u)]

� ‖g‖Y0 + (P0h)(u) + ρ(u)[(R1g)(u) + (Q1g)(u) + ‖h‖Y1 ].

Thus, it is enough to verify that (P0h)(u), ρ(u)(R1g)(u) and ρ(u)(Q1g)(u)
are bounded by ‖g‖Y0 + ρ(u)‖h‖Y1 . We begin with (P0h)(u). Estimate (2.12)
with f = h and Lemma 2.3 (i) imply that

(P0h)(u) � ‖h‖Y1

∥∥∥tθ1−θ0
b0(t)

a(t)‖b1‖Ẽ1(0,t)

∥∥∥
Ẽ0(0,u)

∼ ρ(u)‖h‖Y1 .

Observe that by hypothesis 0 < θ0 < θ1 < 1 and then θ1 − θ0 > 0.
Similarly, using (2.7) with f = g and Lemma 2.3 (i), we have the esti-

mates

(R1g)(u) � ‖b1‖Ẽ1(0,u)

∥∥∥tθ0−θ1
a(t)
b0(t)

∥∥∥
F̃ (u,∞)

‖g‖Y0

∼ uθ0−θ1
a(u)
b0(u)

‖b1‖Ẽ1(0,u)‖g‖Y0 =
1

ρ(u)
‖g‖Y0

and

(Q1g)(u) ≤ ‖g‖Y0

∥∥∥∥b1(t)
∥∥∥sθ0−θ1

a(s)
b0(s)

∥∥∥
F̃ (t,∞)

∥∥∥∥
Ẽ1(u,∞)

∼ uθ0−θ1
a(u)b1(u)

b0(u)
‖g‖Y0 � 1

ρ(u)
‖g‖Y0 ,

where the last equivalence follows from Lemma 2.3 (iii).
Putting together the previous estimates we obtain that

(P0f)(u) + ρ(u)[(R1f)(u) + (Q1f)(u)] � ‖g‖Y0 + ρ(u)‖h‖Y1 .

Finally, taking infimum over all possible decomposition of f = g + h, with
g ∈ Y0 and h ∈ Y1, we obtain (3.5) and the proof of a) is finished. �

3.2. The K-Functional of the Couple
(
X

L
θ0,b0,E0,a,F , Xθ1,b1,E1

)
, 0 < θ0 <

θ1 ≤ 1
Next theorem can be proved as Theorem 3.1, although we shall make use of
a symmetry argument.

Theorem 3.2. Let 0 < θ0 < θ1 < 1. Let E0, E1, F be r.i. spaces and a, b0,
b1 ∈ SV such that ‖b0‖Ẽ0(1,∞) < ∞.

a) Then, for every f ∈ X
L
θ0,b0,E0,a,F + Xθ1,b1,E1 and all u > 0

K
(
ρ(u), f ;X

L
θ0,b0,E0,a,F ,Xθ1,b1,E1

) ∼ ∥∥b0(t)‖s−θ0a(s)K(s, f)‖F̃ (0,t)

∥∥
Ẽ0(0,u)

+ ‖b0‖Ẽ0(u,∞)‖t−θ0a(t)K(t, f)‖F̃ (0,u)

+ ρ(u)‖t−θ1b1(t)K(t, f)‖Ẽ1(u,∞),

where ρ(u) = uθ1−θ0
a(u)‖b0‖

Ẽ0(u,∞)

b1(u)
, u > 0.
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b) If ‖b1‖Ẽ1(0,1) < ∞, then, for every f ∈ X
L
θ0,b0,E0,a,F + X1,b1,E1 and all

u > 0

K
(
ρ(u), f ;X

L
θ0,b0,E0,a,F ,X1,b1,E1

) ∼
∥∥∥b0(t)‖s−θ0a(s)K(s, f)‖F̃ (0,t)

∥∥∥
Ẽ0(0,u)

+ ‖b0‖Ẽ0(u,∞)‖t−θ0a(t)K(t, f)‖F̃ (0,u)

+ ρ(u)‖t−1b1(t)K(t, f)‖Ẽ1(u,∞),

where ρ(u) = u1−θ0
a(u)‖b0‖

Ẽ0(u,∞)

‖b1‖
Ẽ1(0,u)

, u > 0.

c) Moreover, for every f ∈ X
L
θ0,b0,E0,a,F + X1 and all u > 0

K
(
ρ(u), f ;X

L
θ0,b0,E0,a,F ,X1

) ∼ ∥∥b0(t)‖s−θ0a(s)K(s, f)‖F̃ (0,t)

∥∥
Ẽ0(0,u)

+‖b0‖Ẽ0(u,∞)‖t−θ0a(t)K(t, f)‖F̃ (0,u), (3.6)

where ρ(u) = u1−θ0a(u)‖b0‖Ẽ0(u,∞), u > 0.

Proof. We prove only b), the proofs of a) and c) are similar. We consider the
slowly varying functions bi(t) = bi(1/t), i = 0, 1, and a(t) = a(1/t). Notice
that ‖f‖Ẽ( 1

t ,∞) = ‖f(1/s)‖Ẽ(0,t) and hence

1
ρ(u)

=
( 1

u

)1−θ0 ‖b1‖Ẽ1(
1
u ,∞)

a( 1
u )‖b0‖Ẽ0(0, 1

u )

, u > 0.

By (2.2) and Lemma 2.9, we have that

K
(
ρ(u), f ;X

L
θ0,b0,E0,a,F ,X1,b1,E1

)

= ρ(u)K
( 1

ρ(u)
, f ; (X1,X0)0,b1,E1

, (X1,X0)R
1−θ0,b0,E0,a,F

)
.

Now applying Theorem 3.1 b), we obtain the estimate

K
(
ρ(u), f ;X

L
θ0,b0,E0,a,F ,X1,b1,E1

)

∼ ρ(u)‖b1(t)K(t, f ;X1,X0)‖Ẽ1(0, 1
u )

+ ‖b0‖Ẽ0(0, 1
u )‖tθ0−1a(t)K(t, f ;X1,X0)‖F̃ ( 1

u ,∞)

+
∥∥b0(t)‖sθ0−1a(s)K(s, f ;X1,X0)‖F̃ (t,∞)

∥∥
Ẽ0(

1
u ,∞)

.

Finally, the relations ‖f‖Ẽ( 1
t ,∞) = ‖f(1/s)‖Ẽ(0,t) and (2.2) give the desired

equivalence. �

4. Reiteration Formulae for R- and L-Spaces.

The aim of this section is to identify the spaces

(Xθ0,b0,E0 ,X
R
θ1,b1,E1,a,F )θ,b,E and (X

L
θ0,b0,E0,a,F ,Xθ1,b1,E1)θ,b,E

for all possible values of θ ∈ [0, 1]. In that process, the lemmas that we collect
in the next subsection play a key role.
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4.1. Lemmas

Next three lemmas can be found in [22,26].

Lemma 4.1. [26, Lemma 4.1] Let E be an r.i. space, a, b ∈ SV , 0 ≤ θ ≤ 1,
0 < α < 1 and consider the function ρ(u) = uαa(u), u > 0. Then, the
equivalence

∥∥ρ(u)−θb(ρ(u))K(ρ(u), f)
∥∥

Ẽ
∼ ∥∥u−θb(u)K(u, f)

∥∥
Ẽ

hold for all f ∈ X0 + X1, with equivalent constant independent of f .

Lemma 4.2. [22, Lemma 2.4] Let b ∈ SV , ϕ a quasi-concave function and
α ∈ R. Then, for any r.i. E and any t > 0,

‖sαb(s)ϕ(s)‖Ẽ(0,t) �
∫ t

0

sαb(s)ϕ(s)
ds

s
(4.1)

and

‖sαb(s)ϕ(s)‖Ẽ(t,∞) �
∫ ∞

t

sαb(s)ϕ(s)
ds

s
. (4.2)

Lemma 4.3. [22, Lemma 2.5] Let b ∈ SV and α > 0. Then, for any r.i. E,
the inequalities

∥∥∥t−αb(t)
∫ t

0

f(s) ds
∥∥∥

Ẽ
� ‖t1−αb(t)f(t)‖Ẽ (4.3)

and
∥∥∥tαb(t)

∫ ∞

t

f(s) ds
∥∥∥

Ẽ
� ‖t1+αb(t)f(t)‖Ẽ (4.4)

hold for all positive measurable functions f on (0,∞).

Reiteration results of next subsections do not follow from Theorems
4.4, 4.5, 4.7 of [26] and the usual symmetry argument, since the order of the
parameters θ0 < θ1 is crucial. However, similar proofs can be carried out now
using additionally the following lemma from [23].

Lemma 4.4. [23, Theorem 3.6] Let E, F be r.i. spaces, a, b ∈ SV and α, β ∈ R

with β > 0. Then, the equivalence∥∥∥tβb(t)‖sαa(s)f(s)‖F̃ (t,∞)

∥∥∥
Ẽ

∼ ‖tα+βa(t)b(t)f(t)‖Ẽ

holds for all positive and non-increasing measurable function f on (0,∞).

4.2. The Space (Xθ0,b0,E0 , X
R
θ1,b1,E1,a,F )θ,b,E , 0 ≤ θ0 < θ1 < 1 and

0 ≤ θ ≤ 1
Theorem 4.5. Let 0 < θ0 < θ1 < 1 and let E, E0, E1, F be r.i. spaces. Let a,
b, b0, b1 ∈ SV with b1 satisfying ‖b1‖Ẽ1(0,1) < ∞ and consider the function

ρ(u) = uθ1−θ0
b0(u)

a(u)‖b1‖Ẽ1(0,u)

, u > 0.
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a) If 0 < θ < 1, then

(Xθ0,b0,E0 ,X
R
θ1,b1,E1,a,F )θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = (1 − θ)θ0 + θθ1 and Bθ(u) =
(
b0(u)

)1−θ(
a(u)‖b1‖Ẽ1(0,u)

)θ
b(ρ(u)), u > 0.

b) If θ = 0 and ‖b‖Ẽ(1,∞) < ∞, then

(Xθ0,b0,E0 ,X
R
θ1,b1,E1,a,F )0,b,E = X

L
θ0,b◦ρ,E,b0,E0

.

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(Xθ0,b0,E0 ,X
R
θ1,b1,E1,a,F )1,b,E = X

R
θ1,B1,E,a,F ∩ X

R,R
θ1,b◦ρ,E,b1,E1,a,F ,

where B1(u) = ‖b1‖Ẽ1(0,u)b(ρ(u)), u > 0.

Proof. Throughout the proof, we use the notation Y0 = Xθ0,b0,E0 , Y1 =
X

R
θ1,b1,E1,a,F and K(s, f) = K(s, f ;Y0, Y1), f ∈ Y0 + Y1, s > 0.

We start with the proof of a). Let f ∈ Y θ,b,E . Lemma 4.1, Theorem
3.1 a) and the lattice property of Ẽ yield

‖f‖Y θ,b,E
∼ ‖ρ(u)−θb(ρ(u))K(ρ(u), f)‖Ẽ

�
∥∥ρ(u)−θb(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥
Ẽ

.

Now using (2.3) and observing that

ρ(u)−θb(ρ(u)) = uθ0−θ̃ Bθ(u)
b0(u)

, u > 0, (4.5)

one deduces that

‖f‖Y θ,b,E
� ‖ρ(u)−θb(ρ(u))u−θ0b0(u)K(u, f)‖Ẽ = ‖u−θ̃Bθ(u)K(u, f)‖Ẽ .

Thus, the inclusion Y θ,b,E ↪→ X θ̃,Bθ,E is proved.
Next we proceed with the reverse inclusion. Let f ∈ X θ̃,Bθ,E . Using

again Lemma 4.1, Theorem 3.1 a) and the triangular inequality, we have the
estimate

‖f‖Y θ,b,E
�

∥∥∥ρ(u)−θb(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

+
∥∥∥ρ(u)1−θb(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

+
∥∥∥ρ(u)1−θb(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

.

(4.6)

We denote the last three expressions by I1, I2 and I3, respectively, and we
have to estimate each one by the norm of the function f in X θ̃,Bθ,E . Let us
begin with I1. Identity (4.5) implies that

I1 =
∥∥∥∥uθ0−θ̃ Bθ(u)

b0(u)
‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥∥
Ẽ

,
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where θ0 − θ̃ < 0, so applying (4.1) and (4.3) we obtain that I1 � ‖f‖X θ̃,Bθ,E
.

Indeed,

I1 �
∥∥∥∥uθ0−θ̃ Bθ(u)

b0(u)

∫ u

0

t−θ0b0(t)K(t, f)
dt

t

∥∥∥∥
Ẽ

�
∥∥∥uθ0−θ̃ Bθ(u)

b0(u)
u−θ0b0(u)K(u, f)

∥∥∥
Ẽ

= ‖u−θ̃Bθ(u)K(u, f)‖Ẽ = ‖f‖X θ̃,Bθ,E
.

Similarly, using that

ρ(u)1−θb(ρ(u)) = uθ1−θ̃ Bθ(u)
a(u)‖b1‖Ẽ1(0,u)

, u > 0, (4.7)

the L̃1-bound (4.2) and the Hardy type inequality (4.4) (θ1 − θ̃ > 0), we have
that

I2 =
∥∥∥∥ρ(u)1−θb(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

(4.8)

=
∥∥∥∥uθ1−θ̃ Bθ(u)

a(u)
‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

�
∥∥∥∥uθ1−θ̃ Bθ(u)

a(u)

∫ ∞

u

t−θ1a(t)K(t, f)
dt

t

∥∥∥∥
Ẽ

�
∥∥∥uθ1−θ̃ Bθ(u)

a(u)
u−θ1a(u)K(u, f)

∥∥∥
Ẽ

= ‖u−θ̃Bθ(u)K(u, f)‖Ẽ = ‖f‖X θ̃,Bθ,E
.

Finally, we observe that I3 is bounded by I2. Indeed, using (4.7) we can
identify I3 in the following way

I3 =
∥∥∥∥uθ1−θ̃ Bθ(u)

a(u)‖b1‖Ẽ1(0,u)

∥∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥∥
Ẽ1(u,∞)

∥∥∥∥
Ẽ

.

Since the function t � ‖ · ‖F̃ (t,∞), t ∈ (u,∞), is a non-increasing function

and θ1 − θ̃ > 0, Lemma 4.4 and Lemma 2.3 (iii) give that

I3 ∼
∥∥∥∥uθ1−θ̃ Bθ(u)

a(u)‖b1‖Ẽ1(0,u)

b1(u) ‖s−θ1a(s)K(s, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

� I2.

Summing up ‖f‖Y θ,b,E
� I1 + I2 + I3 � I1 + I2 � ‖f‖X θ̃,Bθ,E

.

The proof of b) follows the same steps. In fact, let f ∈ Y 0,b,E . Lemma
4.1, Theorem 3.1 a) and the lattice property of Ẽ yield

‖f‖Y 0,b,E
∼ ‖b(ρ(u))K(ρ(u), f)‖Ẽ �

∥∥∥b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

.

Hence, f ∈ X
L
θ0,b◦ρ,E,b0,E0

.
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Next, we prove the reverse embedding. Let f ∈ X
L
θ0,b◦ρ,E,b0,E0

. Arguing
as in (4.6), we have

‖f‖Y 0,b,E
�

∥∥∥b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

+
∥∥∥ρ(u)b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

+
∥∥∥ρ(u)b(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

:= I4 + I5 + I6.

Clearly I4 = ‖f‖
X

L
θ0,b◦ρ,E,b0,E0

. To estimate I5 by I4 one can argue as in (4.9)

with θ1 − θ0 > 0 and use (2.3) to obtain

I5 =
∥∥∥ρ(u)b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

=
∥∥∥uθ1−θ0

b0(u)
a(u)

b(ρ(u))‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

�
∥∥∥uθ1−θ0

b0(u)
a(u)

b(ρ(u))
∫ ∞

u

t−θ1a(t)K(t, f)
dt

t

∥∥∥
Ẽ

�
∥∥∥uθ1−θ0

b0(u)
a(u)

b(ρ(u))u−θ1a(u)K(u, f)
∥∥∥

Ẽ

= ‖u−θ0b0(u)b(ρ(u))K(u, f)‖Ẽ

�
∥∥b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥
Ẽ

= I4.

Now, we estimate I6 by I5 and then by I4. Using the definition of ρ(u) and
Lemmas 4.4 and 2.3 (iii) we have that

I6 =
∥∥∥ρ(u)b(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

=

∥∥∥∥uθ1−θ0 b0(u)

a(u)‖b1‖Ẽ1(0,u)

b(ρ(u))
∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥∥
Ẽ

∼
∥∥∥∥uθ1−θ0 b0(u)b1(u)

a(u)‖b1‖Ẽ1(0,u)

b(ρ(u))‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

�
∥∥∥∥uθ1−θ0 b0(u)

a(u)
b(ρ(u))‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

= I5 � I4.

Then, ‖f‖Y 0,b,E
� I4 = ‖f‖

X
L
θ0,b◦ρ,E,b0,E0

and the proof of b) is complete.

Finally, we proceed with the proof of c). Choose f ∈ Y 1,b,E . Lemma
4.1, Theorem 3.1 a) and the lattice property guarantee that

‖f‖Y 1,b,E
∼ ‖ρ(u)−1b(ρ(u))K(ρ(u), f)‖Ẽ

�
∥∥∥b(ρ(u)) ‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

and

‖f‖Y 1,b,E
�

∥∥∥b(ρ(u))
∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ
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and therefore f ∈ X
R
θ1,B1,E,a,F ∩ X

R,R
θ1,b◦ρ,E,b1,E1,a,F . Let us prove the reverse

embedding. Again, Lemma 4.1, Theorem 3.1 a) and the triangular inequality
give that

‖f‖Y 1,b,E
�

∥∥∥ρ(u)−1b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

+
∥∥∥b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

+
∥∥∥b(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

:= I7 + I8 + I9.

Since I8 = ‖f‖
X

R
θ1,B1,E,a,F

and I9 = ‖f‖
X

R,R
θ1,b◦ρ,E,b1,E1,a,F

, it is enough to

estimate I7. We proceed as before, applying the definition of ρ(u), and using
the equations (4.1), (4.3) and (2.5) it follows that

I7 =
∥∥∥ρ(u)−1b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

=
∥∥∥∥uθ0−θ1

a(u)‖b1‖Ẽ1(0,u)

b0(u)
b(ρ(u))‖t−θ0b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥∥
Ẽ

�
∥∥∥∥uθ0−θ1

a(u)‖b1‖Ẽ1(0,u)

b0(u)
b(ρ(u))

∫ u

0

t−θ0b0(t)K(t, f)
dt

t

∥∥∥∥
Ẽ

�
∥∥∥u−θ1a(u)‖b1‖Ẽ1(0,u)b(ρ(u))K(u, f)

∥∥∥
Ẽ

�
∥∥∥b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

= I8.

Hence

‖f‖Y 1,b,E
� max

{‖f‖
X

R
θ1,B1,E,a,F

, ‖f‖
X

R,R
θ1,b◦ρ,E,b1,E1,a,F

}

and the proof of c) is finished. �

Next we deal with the extreme case θ0 = 0.

Theorem 4.6. Let 0 < θ1 < 1 and let E, E0, E1 and F be r.i. spaces. Let a,
b, b0, b1 ∈ SV with b0 and b1 satisfying ‖b0‖Ẽ0(1,∞) < ∞, ‖b1‖Ẽ1(0,1) < ∞,
respectively, and consider the function

ρ(u) = uθ1
‖b0‖Ẽ0(u,∞)

a(u)‖b1‖Ẽ1(0,u)

, u > 0.

a) If 0 < θ < 1, then

(X0,b0,E0 ,X
R
θ1,b1,E1,a,F )θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = θθ1 and Bθ(u) =
(‖b0‖Ẽ0(u,∞)

)1−θ(
a(u)‖b1‖Ẽ1(0,u)

)θb(ρ(u)), u > 0.

b) If θ = 0 and ‖b‖Ẽ(1,∞) < ∞, then

(X0,b0,E0 ,X
R
θ1,b1,E1,a,F )0,b,E = X0,B0,E ∩ X

L
0,b◦ρ,E,b0,E0

,

where B0(u) = ‖b0‖Ẽ0(u,∞)b(ρ(u)), u > 0.
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c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(X0,b0,E0 ,X
R
θ1,b1,E1,a,F )1,b,E = X

R
θ1,B1,E,a,F ∩ X

R,R
θ1,b◦ρ,E,b1,E1,a,F ,

where B1(u) = ‖b1‖Ẽ1(0,u)b(ρ(u)), u > 0.

Proof. The proofs of a) and c) follow the same arguments used in the proofs
of Theorem 4.5 a) and c). The only differences are the use of Theorem 3.1 b)
instead of a) and the use of the inequality b0(u) � ‖b0‖Ẽ0(u,∞), u > 0.

Next we prove b). As in Theorem 4.5 we use the notation Y0 = X0,b0,E0 ,
Y1 = X

R
θ1,b1,E1,a,F and K(s, f) = K(s, f ;Y0, Y1), f ∈ Y0 + Y1, s > 0. Again,

Lemma 4.1 establishes that

‖f‖Y 0,b,E
∼ ‖b(ρ(u))K(ρ(u), f)‖Ẽ .

Then, to finish the proof it suffices to show that

‖b(ρ(u))K(ρ(u), f)‖Ẽ ∼ max
{‖f‖X0,B0,E

, ‖f‖
X

L
0,b◦ρ,E,b0,E0

}
.

Theorem 3.1 b) and (2.5) guarantee that

K(ρ(u), f) � ‖b0(t)K(t, f)‖Ẽ0(0,u)

and that

K(ρ(u), f) � ρ(u)‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

= uθ1
‖b0‖Ẽ0(u,∞)

a(u)‖b1‖Ẽ1(0,u)

‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

� uθ1
‖b0‖Ẽ0(u,∞)

a(u)
u−θ1a(u)K(u, f) = ‖b0‖Ẽ0(u,∞)K(u, f).

Hence,

‖b(ρ(u))K(ρ(u), f)‖Ẽ � max
{‖f‖X0,B0,E

, ‖f‖
X

L
0,b◦ρ,E,b0,E0

}
.

Now, we prove the reverse inequality. Use Theorem3.1 b) and the triangular
inequality to obtain that

‖b(ρ(u))K(ρ(u), f)‖Ẽ �
∥∥∥b(ρ(u))‖b0(t)K(t, f)‖Ẽ0(0,u)

∥∥∥
Ẽ

+
∥∥∥ρ(u)b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

+
∥∥∥ρ(u)b(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

:= I10 + I11 + I12.
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The term I10 is precisely ‖f‖
X

L
0,b◦ρ,E,b0,E0

. The other two terms can be esti-

mated by ‖f‖X0,B0,E
proceeding as we did in (4.9) and with I3. Indeed,

I11 =
∥∥∥ρ(u)b(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

=
∥∥∥uθ1

B0(u)
a(u)

‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

�
∥∥∥∥uθ1

B0(u)
a(u)

∫ ∞

u

t−θ1a(t)K(t, f)
dt

t

∥∥∥∥
Ẽ

�
∥∥∥uθ1

B0(u)
a(u)

u−θ1a(u)K(u, f)
∥∥∥

Ẽ

= ‖B0(u)K(u, f)‖Ẽ = ‖f‖X0,B0,E

and

I12 =
∥∥∥ρ(u)b(ρ(u))

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥
Ẽ

=
∥∥∥∥uθ1

B0(u)
a(u)‖b1‖Ẽ1(0,u)

∥∥b1(t)‖s−θ1a(s)K(s, f)‖F̃ (t,∞)

∥∥
Ẽ1(u,∞)

∥∥∥∥
Ẽ

∼
∥∥∥∥uθ1

B0(u)
a(u)‖b1‖Ẽ1(0,u)

b1(u)‖s−θ1a(s)K(s, f)‖F̃ (u,∞)

∥∥∥∥
Ẽ

� I11.

The proof of b) is complete. �

Our last result of this subsection characterizes the reiteration space
when the first space in the couple is X0.

Theorem 4.7. Let 0 < θ1 < 1, and let E, E1, F be r.i. spaces. Let a, b,
b1 ∈ SV with b1 satisfying ‖b1‖Ẽ1(0,1) < ∞ and consider the function

ρ(u) = uθ1
1

a(u)‖b1‖Ẽ1(0,u)

, u > 0.

The following statements hold:
a) If 0 < θ < 1, or θ = 0 and ‖b‖Ẽ(1,∞) < ∞, then

(X0,X
R
θ1,b1,E1,a,F )θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = θθ1 and Bθ(u) =
(
a(u)‖b1‖Ẽ1(0,u)

)θb(ρ(u)), u > 0.

b) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(X0,X
R
θ1,b1,E1,a,F )1,b,E = X

R
θ1,B1,E,a,F ∩ X

R,R
θ1,b◦ρ,E,b1,E1,a,F ,

where B1(u) = ‖b1‖Ẽ1(0,u)b(ρ(u)), u > 0.

Proof. Again, as in Theorem 4.5 we use the notation Y0 = X0, Y1 =
X

R
θ1,b1,E1,a,F and K(s, f) = K(s, f ;Y0, Y1), f ∈ Y0 + Y1, s > 0. Lemma

4.1 establishes the equivalence

‖f‖Y θ,b,E
∼ ‖ρ(u)−θb(ρ(u))K(ρ(u), f)‖Ẽ ,
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for 0 ≤ θ < 1. Moreover, (3.2) and (2.5) imply that

‖f‖Y θ,b,E
�

∥∥∥ρ(u)1−θb(ρ(u))‖b1‖Ẽ1(0,u)‖t−θ1a(t)K(t, f)‖F̃ (u,∞)

∥∥∥
Ẽ

�
∥∥∥∥uθ1(1−θ)

( 1

a(u)‖b1‖Ẽ1(0,u)

)1−θ
b(ρ(u))‖b1‖Ẽ1(0,u)u

−θ1a(u)K(u, f)

∥∥∥∥
Ẽ

= ‖u−θθ1Bθ(u)K(u, f)‖Ẽ = ‖f‖θ̃,Bθ,E .

Hence, the inclusion Y θ,b,E ↪→ X θ̃,Bθ,E is proved. The reverse inclusion can
be done similarly to the estimate of I2 and I3 in the proof of Theorem 4.5 a).

The case θ = 1 can be proved similarly to Theorem 4.5 c) with I7 = 0.
�

4.3. The Space (X
L
θ0,b0,E0,a,F , Xθ1,b1,E1)θ,b,E , 0 < θ0 < θ1 ≤ 1 and

0 ≤ θ ≤ 1
The results of this subsection can be proved using the same ideas we used to
prove those of Sect. 4.2. However, since the proofs are lengthy, we will follow
an alternative approach that uses symmetry arguments; besides, some of the
proofs will be left to the reader.

Theorem 4.8. Let 0 < θ0 < θ1 < 1 and let E, E0, E1 and F be r.i. spaces.
Let a, b, b0, b1 ∈ SV with b0 satisfying ‖b0‖Ẽ0(1,∞) < ∞ and consider the
function

ρ(u) = uθ1−θ0
a(u)‖b0‖Ẽ0(u,∞)

b1(u)
, u > 0.

Then, the following statements hold:

a) If 0 < θ < 1, then

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = (1 − θ)θ0 + θθ1 and Bθ(u) =
(
a(u)‖b0‖Ẽ0(u,∞)

)1−θ(
b1(u)

)θ
b(ρ(u)), u > 0.

b) If θ = 0 and ‖b‖Ẽ(1,∞) < ∞, then

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)0,b,E = X

L
θ0,B0,E,a,F ∩ X

L,L
θ0,b◦ρ,E,b0,E0,a,F ,

where B0(u) = ‖b0‖Ẽ0(u,∞)b(ρ(u)), u > 0.
c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)1,b,E = X

R
θ1,b◦ρ,E,b1,E1

.

Proof. We express the interpolation spaces by means of Lemma 2.9

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)θ,b,E = (Xθ1,b1,E1 ,X

L
θ0,b0,E0,a,F )1−θ,b,E

=
(
(X1,X0)1−θ1,b1,E1

, (X1,X0)R
1−θ0,b0,E0,a,F

)
1−θ,b,E

.(4.9)

Here the functions a, b and bi, i = 0, 1, have the usual meaning.
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Taking θ = 0 in (4.9) and applying Theorem 4.5 c) we have

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)0,b,E

= (X1,X0)R
1−θ0,B#

0 ,E,a,F
∩ (X1,X0)

R,R
1−θ0,b◦ρ#,E,b0,E0,a,F

,

where ρ#(u) = uθ1−θ0 b1(u)

a(u)‖b0‖
Ẽ0(0,u)

and B#
0 (u) = ‖b0‖Ẽ0(0,u)b(ρ#(u)), u >

0. Since ‖b0‖Ẽ0(0, 1
u ) = ‖b0‖Ẽ0(u,∞) it yields that

B
#

0 (u) = B#
0

( 1
u

)
= ‖b0‖Ẽ0(0, 1

u )b
(( 1

u

)θ1−θ0 b1( 1
u )

a( 1
u )‖b0‖Ẽ0(0, 1

u )

)

= ‖b0‖Ẽ0(u,∞)b
(
uθ1−θ0

a(u)‖b0‖
Ẽ0(u,∞)

b1(u)

)
= B0(u)

and b ◦ ρ#(u) = b(ρ(u)), u > 0, and consequently Lemmas 2.9 and 2.12 show

(X
L
θ0,b0,E0,a,F ,Xθ1,b1,E1)0,b,E = X

L
θ0,B0,E,a,F ∩ X

L,L
θ0,b◦ρ,E,b0,E0,a,F .

The cases θ = 1 and 0 < θ < 1 can be proved similarly. �

Theorem 4.9. Let 0 < θ0 < 1 and let E, E0, E1 and F be r.i. spaces. Let a,
b, b0, b1 ∈ SV with b0 and b1 satisfying ‖b0‖Ẽ0(1,∞) < ∞, ‖b1‖Ẽ1(0,1) < ∞,
respectively, and consider the function

ρ(u) = u1−θ0
a(u)‖b0‖Ẽ0(u,∞)

‖b1‖Ẽ1(0,u)

, u > 0.

Then, the following statements hold:
a) If 0 < θ < 1, then

(X
L
θ0,b0,E0,a,F ,X1,b1,E1)θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = (1 − θ)θ0 + θ and Bθ(u) =
(
a(u)‖b0‖

Ẽ0(u,∞)

)1−θ(‖b1‖
Ẽ1(0,u)

)θ
b(ρ(u)), u > 0.

b) If ‖b‖Ẽ(1,∞) < ∞, then

(X
L
θ0,b0,E0,a,F ,X1,b1,E1)0,b,E = X

L
θ0,B0,E,a,F ∩ X

L,L
θ0,b◦ρ,E,b0,E0,a,F ,

where B0(u) = ‖b0‖Ẽ0(u,∞)b(ρ(u)), u > 0.
c) If ‖b‖Ẽ(0,1) < ∞, then

(X
L
θ0,b0,E0,a,F ,X1,b1,E1)1,b,E = X1,B1,E ∩ X

R
1,b◦ρ,E,b1,E1

,

where B1(u) = ‖b1‖Ẽ1(0,u)b(ρ(u)), u > 0.

Theorem 4.10. Let 0 < θ0 < 1 and let E, E0, E1 and F be r.i. spaces. Let a,
b, b0 ∈ SV with b0 satisfying ‖b0‖Ẽ0(1,∞) < ∞ and consider the function

ρ(u) = u1−θ0a(u)‖b0‖Ẽ0(u,∞), u > 0.

Then, the following statements hold:
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a) If 0 < θ < 1, or θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(X
L
θ0,b0,E0,a,F ,X1)θ,b,E = X θ̃,Bθ,E ,

where

θ̃ = (1 − θ)θ0 + θ and Bθ(u) =
(
a(u)‖b0‖Ẽ0(u,∞)

)1−θb(ρ(u)), u > 0.

b) If ‖b‖Ẽ(1,∞) < ∞, then

(X
L
θ0,b0,E0,a,F ,X1)0,b,E = X

L
θ0,B0,E,a,F ∩ X

L,L
θ0,b◦ρ,E,b0,E0,a,F ,

where B0(u) = ‖b0‖Ẽ0(u,∞)b(ρ(u)), u > 0.

Remark 4.11. We observe that generalized Holmstedt-type formula (3.2) (or
(3.6)) holds when the space X0 (or X1) is replaced by an intermediate space
X̃0 of class 0 (or X̃1 of class 1, respectively); see [8, Chap. 5] for the definition.
Consequently, Theorem 4.7 is also true for any intermediate space X̃0 of class
0 and Theorem 4.10 is true for any intermediate space X̃1 of class 1.

5. Applications

The applications we consider in this section will involve ordered (quasi)-
Banach couples X = (X0,X1), in the sense that X1 ↪→ X0. First, we briefly
review how our conditions adapt to this simpler setting.

5.1. Ordered Couples

Given a real parameter 0 ≤ θ ≤ 1, a,b, c ∈ SV (0, 1) and r.i. spaces E,F,G

on (0, 1), the spaces Xθ,b,E , X
L
θ,b,E,a,F and X

L,L
θ,c,E,b,F,a,G are defined just as

in Definitions 2.5, 2.7 and 2.11; the only change being that Ẽ(0,∞) must be
replaced by Ẽ(0, 1), see [26]. Likewise the spaces X

R
θ,b,E,a,F and X

R,R
θ,c,E,b,F,a,G

are defined as

X
R
θ,b,E,a,F =

{
f ∈ X0 :

∥∥b(t)‖s−θa(s)K(s, f)‖F̃ (t,1)

∥∥
Ẽ(0,1)

< ∞
}

and

X
R,R
θ,c,E,b,F,a,G =

{
f ∈ X0 :

∥∥∥c(u)
∥∥b(t)‖s−θa(s)K(s, f)‖G̃(t,1)

∥∥
F̃ (u,1)

∥∥∥
Ẽ(0,1)

< ∞
}

.

Of course, all the results in the paper remain true if we work with an ordered
couple and use as parameters slowly varying functions on (0, 1) and r.i. spaces
on (0, 1). In these cases, all assumptions concerning the interval (1, ∞) must be
omitted.

It is worth to mention that if the couple is ordered, then the scale
{Xθ,b,E}0≤θ≤1 is also ordered.

Lemma 5.1 [26, Lemma 5.2]. Let X be an ordered (quasi-) Banach couple, b0, b1 ∈
SV (0, 1) and E0, E1 r.i. spaces on (0, 1). If 0 ≤ θ0 < θ1 ≤ 1, then

Xθ1,b1,E1 ↪→ Xθ0,b0,E0 .
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5.2. Grand and Small Lebesgue Spaces

Next, we apply our previous results to the grand and small Lebesgue spaces. Fol-
lowing the paper by Fiorenza and Karadzhov [28] we give the following definition:

Definition 5.2. Let (Ω, μ) be a finite measure space with non-atomic measure μ

and assume that μ(Ω) = 1. Let 1 < p < ∞ and α > 0. The space Lp),α(Ω) is the
set of all measurable functions f on (Ω, μ) such that

‖f‖p),α =
∥∥∥�

− α
p (t)‖f∗(s)‖Lp(t,1)

∥∥∥
L∞(0,1)

< ∞.

The small Lebesgue space L(p,α(Ω) is the set of all measurable functions f on
(Ω, μ) such that

‖f‖(p,α =
∥∥∥�

α
p′ −1

(t)‖f∗(s)‖Lp(0,t)

∥∥∥
L̃1(0,1)

< ∞,

where 1
p + 1

p′ = 1.

The classical grand Lebesgue space Lp)(Ω) := Lp),1(Ω) was introduced by
Iwaniec and Sbordone in [36] in connection with the integrability properties of the

Jacobian under minimal hypothesis. The classical small Lebesgue space L(p(Ω) :=

L(p,1(Ω) was introduced by Fiorenza in [27] as associate to the grand Lebesgue

spaces; that is (L(p′
)′ = Lp). Since then many authors have studied relevant prop-

erties of these spaces, such as interpolation, boundedness of classical operators,
generalized versions, etc. For more information about this spaces and their gener-
alizations see the recent paper [29] and the references [2,4,6,13,19,24,30].

We shall also consider ultrasymmetric spaces.

Definition 5.3. Let 1 ≤ p < ∞, b ∈ SV and E an r.i. space. The ultrasymmetric
space Lp,b,E(Ω, μ) is the set of all measurable functions on (Ω, μ) such that

‖f‖Lp,b,E
= ‖t1/pb(t)f∗(t)‖Ẽ < ∞.

This class of spaces was introduced and studied by E. Pustylnik [47] and com-
prises many classical examples as Lorentz–Karamata spaces Lp,q;b (see [33,40]),
generalized Lorentz–Zygmund spaces [43], Lorentz–Zygmund spaces Lp,q(log L)α

(see [7,8]) and some Orlicz spaces. In case E = Lq and b ≡ 1, we have the classical
Lorentz space Lp,q and the Lebesgue space Lp.

For convenience, we will denote the function spaces as Lp),α, L(p,α, Lp, etc...,
dropping the dependence with respect to the domain (Ω, μ).

Ultrasymmetric spaces are interpolation spaces for the couple (L1, L∞). In-
deed, Peetre’s well-known formula [8,44]

K(t, f ; L1, L∞) =

∫ t

0

f∗(s) ds = tf∗∗(t), t > 0,

and the equivalence ‖t1−θb(t)f∗∗(t)‖Ẽ ∼ ‖t1−θb(t)f∗(t)‖Ẽ for 0 < θ < 1 (see,
e.g., [16, Lemma 2.16]), yield the equality

Lp,b,E = (L1, L∞)1− 1
p

,b,E (5.1)

for any r.i. space E, b ∈ SV (0, 1) and 1 < p < ∞.
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Grand and small Lebesgue spaces are limiting interpolation spaces for the
couple (L1, Lp) and (Lp, L∞), respectively. Moreover they can also be character-
ized as R and L-spaces, respectively. In fact, we can observe from Definition 5.2
that

Lp),α = (L1, Lp)
1,�

− α
p (u),L∞

.

Then, using the reiteration formula (4.14) from [33] or [22, Th. 6.12], they can be
characterized as R spaces

Lp),α = (L1, (L1, L∞)1− 1
p

,1,Lp
)
1,�

− α
p (u),L∞

= (L1, L∞)R
1− 1

p
,�

− α
p (u),L∞,1,Lp

.

(5.2)

Similarly, using the reiteration formula (3.21) from [33] or [22, Th. 6.11], the small
Lebesgue spaces can be seen as L-spaces

L(p,α = (Lp, L∞)
0,�

α
p′ −1

(u),L1

=
(
(L1, L∞)1− 1

p
,1,Lp

, L∞
)
0,�

α
p′ −1

(u),L1

= (L1, L∞)L
1− 1

p
,�

α
p′ −1

(u),L1,1,Lp

. (5.3)

Since in Corollary 5.5 from [26] we interpolate the grand Lebesgue spaces with
the ultrasymmetric spaces included in them, now Theorem 4.5 allows us to obtain
the “dual” situation. In other to do that we need some previous considerations.

First of all, if 1 < p0 < p1 < ∞ and α > 0 then (Lp0,q;b0 , L
p1),α) is an ordered

couple. Indeed,

Lp1),α ↪→ Lp1,∞(log L)
− α

p1 ↪→ Lp0,q;b0 .

We will also need the following technical lemma.

Lemma 5.4. [21, Lemma 6.1] If σ + 1
q < 0 with 1 ≤ q < ∞ or q = ∞ and σ ≤ 0,

then

‖�σ(t)‖L̃q(0,u) ∼ �
σ+ 1

q (u), u ∈ (0, 1). (5.4)

If σ + 1
q > 0 with 1 ≤ q < ∞, or q = ∞ and σ ≥ 0, then

‖�σ(t)‖L̃q(u,1) ∼ �
σ+ 1

q (u), u ∈ (0, 1/2). (5.5)

Notice also that if b(t) ∼ a(t) for all t ∈ (0, 1/2), then the monotonicity
properties of the K-functional and the properties of the slowly varying functions
imply that

Xθ,b,E = Xθ,a,E .

Thus, for any 0 < θ < 1 and any r.i. space E,

Xθ,‖�σ(t)‖L̃q(u,1),E
= X

θ,�
σ+ 1

q (u),E
. (5.6)

Corollary 5.5. Let E, E0 be r.i. spaces, b, b0 ∈ SV (0, 1), 1 < p0 < p1 < ∞ and

β > 0. Consider the function ρ(u) = u
1

p0
− 1

p1 b0(u)�
β

p1 (u), u ∈ (0, 1).

a) If 0 < θ < 1, then
(
Lp0,b0,E0 , L

p1),β
)
θ,b,E

= Lp,Bθ,E , (5.7)

where 1
p = 1−θ

p0
+ θ

p1
and Bθ(u) = b1−θ

0 (u)�
−βθ
p1 (u)b(ρ(u)), u ∈ (0, 1).
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b) If θ = 0, then
(
Lp0,b0,E0 , L

p1),β
)
0,b,E

= (L1, L∞)L
1− 1

p0
,b◦ρ,E,b0,E0

. (5.8)

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then
(
Lp0,b0,E0 , L

p1),β
)
1,b,E

(5.9)

= (L1, L∞)R
1− 1

p1
,B1,E,1,Lp1

∩ (L1, L∞)R,R
1− 1

p1
,b◦ρ,E,�

− β
p1 (u),L∞,1,Lp1

where B1(u) = �
−β
p1 (u)b(ρ(u)), u ∈ (0, 1).

Proof. Let 0 < θ < 1. Using (5.1), (5.2) and Theorem 4.5 a) we obtain that
(
Lp0,b0,E0 , L

p1),β
)
θ,b,E

=
(
(L1, L∞)1− 1

p0
,b0,E0

, (L1, L∞)R
1− 1

p1
,�

− β
p1 (u),L∞,1,Lp1

)
θ,b,E

= (L1, L∞)θ̃,Bθ,E ,

where θ̃ = 1 −
(

1−θ
p0

+ θ
p1

)
and

Bθ(u) = b1−θ
0 (u)‖�

− β
p1 (t)‖θ

L̃∞(0,u)
b

(
u

1
p0

− 1
p1

b0(u)

‖�−β/p1(t)‖L̃∞(0,u)

)
, u ∈ (0, 1).

We may apply (5.1) to obtain (5.7). The proofs of the cases θ = 0, 1 can be done
similarly. �

In particular, the choice in (5.8) of E = L1, E0 = Lp0 and functions b0 ≡ 1,

b(u) = �
α
p′
0

−1
(u), u ∈ (0, 1), gives the following result.

Corollary 5.6. Let 1 < p0 < p1 < ∞ and α, β > 0, then
(
Lp0 , L

p1),β
)
0,�

α
p′
0

−1
(u),L1

= L(p0,α. (5.10)

Now, we state the interpolation formulae for a couple formed by a grand and
a small Lebesgue space. The result recovers Theorem 5.1 from [30], and completes
it with the extreme cases θ = 0, 1. Moreover, for 0 < θ < 1, this is a special case
of [1, Theorem 6.5].

Theorem 5.7. Let 1 < p0 < p1 < ∞, 1 ≤ r ≤ ∞ and α, β > 0.

a) If 0 < θ < 1, then
(
L(p0,α, Lp1),β)θ,r = Lp,r(log L)A,

where 1
p = 1−θ

p0
+ θ

p1
and A = α(1−θ)

p′
0

− βθ
p1

.

b) If θ = 0, then
(
L(p0,α, Lp1),β)0,r = (L1, L∞)L

1− 1
p0

,�
α
p′
0 (u),Lr,1,Lp0

∩ (Lp0 , L
p1),β)L

0,1,Lr,�
α
p′
0

−1
(u),L1

.

c) If θ = 1 and b ∈ SV (0, 1) is such that ‖b‖L̃r(0,1) < ∞, then

(
L(p0,α, Lp1),β)1,b,Lr

= (L1, L∞)R
1− 1

p1
,B1,Lr,1,Lp1

∩ (L1, L∞)R,R
1− 1

p1
,b◦ρ,Lr,�

− β
p1 (u),L∞,1,Lp1

,

where ρ(u) = u
1

p0
− 1

p1 �
α
p′
0
+ β

p1 (u) and B1(u) = �
− β

p1 (u)b(ρ(u)), u ∈ (0, 1).
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Proof. Let 0 < θ < 1. Applying equality (5.10), Theorem 5.12 from [24] and (5.5)
we obtain the identity

(
L(p0,α, Lp1),β

)
θ,r

=
(
(Lp0 , L

p1),β)
0,�

α
p′
0

−1
(u),L1

, Lp1),β
)
θ,r

=
(
Lp0 , L

p1),β)
θ,�

α(1−θ)
p′
0 (u),Lr

.

Now use (5.7) to establish a). The limiting case θ = 1 follows from (5.9).
Finally, assume that θ = 0. Then, (5.10) together with Theorem 5.13 from

[24] and (5.5) establish that
(
L(p0,α, Lp1),β)0,r =

(
(Lp0 , L

p1),β)
0,�

α
p′
0

−1
(u),L1

, Lp1),β
)
0,r

=
(
Lp0 , L

p1),β)
0,�

α
p′
0 (u),Lr

∩ (
Lp0 , L

p1),β)L
0,1,Lr,�

α
p′
0

−1
(u),L1

.

Now, applying (5.8) we have that
(
L(p0,α, Lp1),β)0,r = (L1, L∞)L

1− 1
p0

,�
α
p′
0 (u),Lr,1,Lp0

∩ (Lp0 , L
p1),β)L

0,1,Lr,�
α
p′
0

−1
(u),L1

.

�
Now, we identify the spaces

(
L log L, Lp1),β

)
θ,b,E

and
(
L1, L

p1),β
)
θ,b,E

for

1 < p1 < ∞, β > 0 and all possible values of θ ∈ [0, 1]. Remember that

(L1, L∞)0,1,L1 = L log L (5.11)

and Lp1),β ↪→ L log L ↪→ L1 which makes (L log L, Lp1),β) and (L1, L
p1),β) ordered

couples.

Corollary 5.8. Let E be an r.i. space, b ∈ SV (0, 1), 1 < p1 < ∞ and β > 0.

Consider the function ρ(u) = u
1− 1

p1 �
1+ β

p1 (u), u ∈ (0, 1).

a) If 0 < θ < 1, then
(
L log L, Lp1),β

)
θ,b,E

= Lp,Bθ,E , (5.12)

where 1
p = 1 − θ + θ

p1
and Bθ(u) = �

1−θ− βθ
p1 (u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 0, then
(
L log L, Lp1),β

)
0,b,E

= (L1, L∞)0,B0,E ∩ (L1, L∞)L
0,b◦ρ,E,1,L1 ,

where B0(u) = �(u)b(ρ(u)), u ∈ (0, 1).
c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
L log L, Lp1),β

)
1,b,E

= (L1, L∞)R
1− 1

p1
,B1,E,1,Lp1

∩ (L1, L∞)R,R
1− 1

p1
,b◦ρ,E,�

− β
p1 (u),1,Lp1

,

where B1(u) = �
− βθ

p1 (u)b(ρ(u)), u ∈ (0, 1).

Proof. We prove a). By equalities (5.2), (5.11) and Theorem 4.6, we have that
(
L log L, Lp1),β

)
θ,b,E

=
(
(L1, L∞)0,1,L1 , (L1, L∞)R

1− 1
p1

,�
− β

p1 (u),L∞,1,Lp1

)
θ,b,E

= (L1, L∞)θ̃,Bθ,E ,
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where θ̃ = θ
(
1 − 1

p1

)
and

Bθ(u) = ‖1‖1−θ

L̃1(u,1)
‖�

− β
p1 (t)‖θ

L̃∞(0,u)
b
(
u

1− 1
p1

‖1‖L̃1(u,1)

‖�−β/p1(t)‖L̃∞(0,u)

)
, u ∈ (0, 1).

Besides, it follows from equivalences (5.4) and (5.5) that

Bθ(u) ∼ �
1−θ− βθ

p1 (u)b(u
1− 1

p1 �
1+ β

p1 (u)), u ∈ (1, 1/2).

Hence, (5.6) and (5.1) yield (5.12). The remaining cases can be proved similarly.
�

Moreover, Theorem 4.7 enables us to identify the space
(
L1, L

p1),β
)
θ,b,E

,

0 ≤ θ ≤ 1.

Corollary 5.9. Let E be an r.i. space, b ∈ SV (0, 1), 1 < p1 < ∞ and β > 0.

Consider the function ρ(u) = u
1− 1

p1 �
β

p1 (u), u ∈ (0, 1).

a) If 0 ≤ θ < 1, then
(
L1, L

p1),β
)
θ,b,E

= Lp,Bθ,E

where 1
p = 1 − θ + θ

p1
and Bθ(u) = �

− βθ
p1 (u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
L1, L

p1),β
)
1,b,E

= (L1, L∞)R
1− 1

p1
,B1,E,1,Lp1

∩ (L1, L∞)R,R
1− 1

p1
,b◦ρ,E,�

− β
p1 (u),1,Lp1

where B1(u) = �
− β

p1 (u)b(ρ(u)), u ∈ (0, 1).

Our results also allow to interpolate couples formed by small Lebesgue spaces
and ultrasymmetric spaces embedded onto them. Observe that Proposition 5.6 of
[12] and Lemma 5.1 establish that if 1 < p0 < p1 < ∞, α > 0 and β > 1, then

Lp1,b1,E1 ↪→ Lp0(log L)
βα

p′
0−1 ↪→ L(p0,α.

The proofs of the following results can be carried out using similar arguments to
those of the previous corollaries, so we omit the details.

Corollary 5.10. Let E, E1 be r.i. spaces, b ∈ SV (0, 1), 1 < p0 < p1 < ∞ and

α > 0. Consider the function ρ(u) = u
1

p0
− 1

p1 �
α
p′
0 (u)b−1

1 (u), u > 0.

a) If 0 < θ < 1, then
(
L(p0,α, Lp1,b1,E1

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
+ θ

p1
and Bθ(u) = �

α(1−θ)
p′
0 (u)bθ

1(u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 0, then
(
L(p0,α, Lp1,b1,E1

)
0,b,E

= (L1, L∞)L
1− 1

p0
,B0,E,1,Lp0

∩ (L1, L∞)L,L
1− 1

p0
,b◦ρ,E,�

α
p′
0

−1
(u),L1,1,Lp0

,

where B0(u) = �
α
p′
0 (u)b(ρ(u)), u ∈ (0, 1).

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
L(p0,α, Lp1,b1,E1

)
1,b,E

= (L1, L∞)R
1− 1

p1
,b◦ρ,E,b1,E1

.



MJOM General Reiteration Theorems for R and L Classes Page 29 of 36 193

In particular,
(
L(p0,α, Lp1

)
1,�

−β
p1 (u),L∞

= Lp1),β .

We are also able to interpolate the small Lebesque space L(p0,α with the
Lorentz–Zygmund spaces L∞,q(log L)β and Lβ

exp. These spaces consist of all mea-
surable functions f on (0, 1) for which the respective norms

‖f‖∞,q,β =
( ∫ 1

0

(
�β(t)f∗(t)

)q dt

t

)1/q
, if β +

1

q
< 0, (1 ≤ q < ∞)

‖f‖Lβ
exp

= sup
0<t<1

�β(t)f∗(t), if β ≤ 0, (q = ∞)

are finite (see [7]). For simplicity, we jointly denote them by L∞,q,β , when 1 ≤
q ≤ ∞. They are ultrasymmetric spaces (see [25, Example 4.4]) and they can be
identified as interpolation spaces between L1 and L∞ in the following way

(L1, L∞)1,�β(u),Lq
= L∞,q,β .

Corollary 5.11. Let E be an r.i. space, b ∈ SV (0, 1), 1 < p0 < ∞ and 1 ≤ q1 ≤ ∞.
Assume that α > 0 and β + 1

q1
< 0, or β ≤ 0 if q1 = ∞, and consider the function

ρ(u) = u
1

p0 �
α
p′
0

−(β+ 1
q1

)
(u), u ∈ (0, 1).

a) If 0 < θ < 1, then
(
L(p0,α, L∞,q1,β

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
and Bθ(u) = �

(1−θ) α
p′
0
+θ(β+ 1

q1
)
(u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 0, then
(
L(p0,α, L∞,q1,β

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,B0,E,1,Lp0

∩ (
L1, L∞

)L,L
1− 1

p0
,b◦ρ,E,�

α
p′
0

−1
(u),L1,1,Lp0

,

where B0(u) = �
α
p′
0 (u)b(ρ(u)), u ∈ (0, 1).

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
L(p0,α, L∞,q1,β

)
1,b,E

=
(
L1, L∞

)
1,B1,E

∩ (
L1, L∞

)R
1,b◦ρ,E,�β(u),Lq1

where B1(u) = �
β+ 1

q1 (u)b(ρ(u)), u ∈ (0, 1).

Finally, we can apply Theorem 4.10 to deduce:

Corollary 5.12. Let E be an r.i. space, b ∈ SV (0, 1), 1 < p0 < ∞ and α > 0.

Consider the function ρ(u) = u
1

p0 �
α
p′
0 (u), u ∈ (0, 1).

a) If 0 < θ < 1, or θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
L(p0,α, L∞

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
and Bθ(u) = �

α(1−θ)
p′
0 (u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 0, then
(
L(p0,α, L∞

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,B0,E,1,Lp0

∩ (
L1, L∞

)L,L
1− 1

p0
,b◦ρ,E,�

α
p′
0

−1
(u),L1,1,Lp0

,
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where B0(u) = �
α
p′
0 (u)b(ρ(u)), u ∈ (0, 1).

5.3. Generalized Gamma Spaces.

Our results can also be applied to the Generalized Gamma spaces with double
weight defined in [30].

Definition 5.13. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and w1, w2 two weights on (0, 1)
satisfying the following conditions:

(c1) There exist K12 > 0 such that w2(2t) ≤ K12w2(t), for all t ∈ (0, 1/2). The
space Lp(0, 1; w2) is continuously embedded in L1(0, 1).

(c2) The function
∫ t

0
w2(s)ds belongs to L

q
p (0, 1; w1).

The Generalized Gamma space with double weights GΓ(p, q, w0, w1) is the set of
all measurable functions f on (0, 1) such that

‖f‖GΓ =

( ∫ 1

0

w1(t)
( ∫ t

0

w2(s)(f
∗(s))p ds

) q
p
dt

) 1
q

< ∞.

These spaces are a generalization of the GΓ(p, q, w0) := GΓ(p, q, w0, 1), in-
troduced in [31], while the spaces GΓ(p, ∞, w0, w1) appeared in [32].

If we assume that uw1(u) and w2 are slowly varying functions, we can identify
the Generalized Gamma space as an L-space in the following way

GΓ(p, q, w1, w2) = (L1, L∞)L
1− 1

p
,(uw1(u))

1
q ,Lq,(w2(u))

1
p ,Lp

.

Thus, we can apply the results from §4 to interpolate these spaces with ultrasym-
metric spaces, with Lorentz-Zygmund spaces L∞,q(log L)β , Lβ

exp and also with
L∞. We present here only the first case.

Corollary 5.14. Let E, E1 be r.i. spaces and b, b1, uw1(u), w2 ∈ SV (0, 1). Let 1 <
p0 < p1 < ∞, 1 ≤ q0 ≤ ∞ and consider the function

ρ(u) = u
1

p0
− 1

p1

(w2(u))
1

p0 ‖(tw1(t))
1

q0 ‖L̃q0 (u,1)

b1(u)
, u ∈ (0, 1).

a) If 0 < θ < 1, then(
GΓ(p0, q0, w1, w2), Lp1,b1,E1

)
θ,b,E

= Lp,Bθ,E

where 1
p = 1−θ

p0
+ θ

p1
and

Bθ(u) =
(
(w2(u))

1
p0 ‖(tw1(t))

1
q0 ‖L̃q0 (u,1)

)1−θ
bθ
1(u)b(ρ(u)), u ∈ (0, 1).

b) If θ = 0 then(
GΓ(p0,q0, w1, w2), Lp1,b1,E1

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,B0,E,(w2(u))

1
p0 ,Lp0

∩ (
L1, L∞

)L,L
1− 1

p0
,b◦ρ,E,(uw1(u))

1
q0 ,Lq0 ,(w2(u))

1
p0 ,Lp0

,

where B0(u) = ‖(tw1(t))
1

q0 ‖L̃q0 (u,1)b(ρ(u)), u ∈ (0, 1).

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then
(
GΓ(p0, q0, w1, w2), Lp1,b1,E1

)
1,b,E

=
(
L1, L∞

)R
1− 1

p1
,b◦ρ,E,b1,E1

.

The results from [26] allow to obtain the range p0 > p1.
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5.4. A - and B -Type Spaces.

Finally, we consider the A and B-type spaces studied by Pustylnik in [46].

Definition 5.15. Given 1 < p < ∞, α < 1 and E an r.i. space. The space Ap,α,E is
the set of all measurable functions f on (0, 1) such that

‖f‖Ap,α,E
=

∥∥∥�α−1(t)

∫ 1

t

s
1
p f∗∗(s)

ds

s

∥∥∥
Ẽ

< ∞

assumed that the function (1 + u)α−1 belongs to E (i.e. ‖�α−1(t)‖Ẽ(0,1) < ∞.)

The space Bp,b,E is the set of all measurable functions f on (0, 1) such that

‖f‖Bp,α,E
=

∥∥ sup
0<s<t

s
1
p �α−1(s)f∗∗(s)

∥∥
Ẽ

< ∞.

The space of B-type for α = 0 first appeared in [16]. General versions of
these spaces were studied in [48]. The main advantage of the A and B-type spaces
is their optimality in the weak interpolation [46,49].

The A and B-type spaces can be seen as R and L-spaces, respectively. In-
deed,

Ap,α,E = (L1, L∞)R
1− 1

p
,�α−1(t),E,1,L1

and Bp,α,E = (L1, L∞)L
1− 1

p
,1,E,�α−1(t),L∞ .

Then, we can apply the results from Sect. 4 to obtain the following interpolation
formulae.

Corollary 5.16. Let E, E0, E1 be r.i. spaces, b, b0 ∈ SV (0, 1), 1 < p0 < p1 < ∞,

β < 1 and assume that (1 + u)β−1 belongs to E1. Consider the function ρ(u) =

u
1

p0
− 1

p1 b0(u)‖�β−1(t)‖−1

Ẽ1(0,u)
, u ∈ (0, 1).

a) If 0 < θ < 1, then
(
Lp0,b0,E0 , Ap1,β,E1

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
+ θ

p1
and Bθ(u) = b1−θ

0 (u)‖�β−1(t)‖θ
Ẽ1(0,u)

b(ρ(u)), u ∈ (0, 1).

b) If θ = 0, then
(
Lp0,b0,E0 , Ap1,β,E1

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,b◦ρ,E,b0,E0

.

c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then
(
Lp0,b0,E0 , Ap1,β,E1

)
1,b,E

=
(
L1, L∞

)R
1− 1

p1
,B1,E,1,L1

∩ (
L1, L∞

)R,R
1− 1

p1
,b◦ρ,E,�β−1(u),E1,1,L1

,

where B1(u) = ‖�β−1(t)‖Ẽ1(0,u)b(ρ(u)), u ∈ (0, 1).

Corollary 5.17. Let E, E0, E1 be r.i. spaces, b, b1 ∈ SV (0, 1), 1 < p0 < p1 < ∞
and α < 1. Consider the function ρ(u) = u

1
p0

− 1
p1 �α−1(u)ϕE0(�(u))b−1

1 (u), u ∈
(0, 1).

a) If 0 < θ < 1, then
(
Bp0,α,E0 , Lp1,b1,E1

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
+ θ

p1
and Bθ(u) =

(
�α−1(u)ϕE0(�(u))

)1−θ
bθ
1(u)b(ρ(u)), u ∈

(0, 1).
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b) If θ = 0, then

(
Bp0,α,E0 , Lp1,b1,E1

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,B0,E,�α−1(u),L∞

∩(
L1, L∞

)L,L
1− 1

p0
,b◦ρ,E,1,E0,�α−1(u),L∞

,

where B0(u) = ϕE0(�(u))b(ρ(u)), u ∈ (0, 1).
c) If θ = 1 and ‖b‖Ẽ(0,1) < ∞, then

(
Bp0,α,E0 , Lp1,b1,E1

)
1,b,E

= (L1, L∞)R
1− 1

p1
,b◦ρ,E,b1,E1

.

In particular, the B-type spaces (or A-type) can be seen as limiting inter-
polation spaces between the ultrasymmetric spaces and A-type spaces (or B-type,
respectively).

Corollary 5.18. Let E0, E1 be r.i. spaces, 1 < p0 < p1 < ∞ and α, β < 1. Then

(Lp0,�α−1(u),L∞ , Ap1,β,E1)0,1,E0 = Bp0,α,E0

and

(Bp0,α,E0 , Lp1,1,L1)1,�β−1(u),E1
= Ap1,β,E1 .

Finally, arguing as in Theorem 5.7 we characterize ultrasymmetric spaces as
interpolation spaces between A and B-type spaces.

Corollary 5.19. Let E, E0, E1 be r.i. spaces, 1 < p0 < p1 < ∞, α, β < 1 and
assume that (1 + u)β−1 belongs to E1. Consider the function

ρ(u) = u
1

p0
− 1

p1
�α−1(u)ϕE0(�(u))

‖�β−1(t)‖Ẽ1(0,u)

, u ∈ (0, 1).

a) If 0 < θ < 1, then
(
Bp0,α,E0 , Ap1,β,E1

)
θ,b,E

= Lp,Bθ,E ,

where 1
p = 1−θ

p0
+ θ

p1
and Bθ(u) =

(
�α−1(u)ϕE0(�(u))

)1−θ‖�β−1(t)‖θ
Ẽ1(0,u)

b(ρ(u)), u ∈ (0, 1).
b) If θ = 0, then

(
Bp0,α,E0 , Ap1,β,E1

)
0,b,E

=
(
L1, L∞

)L
1− 1

p0
,B0,E,�α−1(u),L∞

∩ (
Lp0,�α−1(u),L∞,

Ap1,β,E1

)L
0,b(uϕE0 (�(u))),E,1,E0

,

where B0(u) = ϕE0(�(u))b(ρ(u)), u ∈ (0, 1).
c) If θ = 1 and b ∈ SV (0, 1) is such that ‖b‖Ẽ(0,1) < ∞, then

(
Bp0,α,E0 , Ap1,β,E1

)
1,b,E

=
(
L1, L∞

)R
1− 1

p1
,B1,E,1,L1

∩ (
L1, L∞

)R,R
1− 1

p1
,b◦ρ,E,�β−1(u),E1,1,L1

,

where B1(u) = ‖�β−1(t)‖Ẽ1(0,u)b(ρ(u)), u ∈ (0, 1).
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Final Remarks. After this paper was completed, we had knowledge of the
paper by Leo Doktorski [18]. This paper contains limiting reiteration formulae
involving R and L spaces. Although it has some intersection with our results,
there are substantial differences. One of these is that the interpolation parameters
remain within the scale of Lebesgue spaces rather than the richer family of r.i.
spaces. However, this restriction allows the author to obtain results in the quasi-
Banach case, which we do not.

Acknowledgements
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