
Mediterr. J. Math. (2022) 19:5
https://doi.org/10.1007/s00009-021-01907-1
1660-5446/22/010001-16
published onlineNovember 22, 2021
c© The Author(s) 2021

The Strong Property (B) for Lp Spaces

Antonio Mart́ınez-Abejón

In memory of Edward Odell.

Abstract. Given a purely non-atomic, finite measure space (Ω, Σ, ν), it
is proved that for every closed, infinite-dimensional subspace V of Lp(ν)
(1 ≤ p < ∞) there exists a decomposition Lp(ν) = X1 ⊕ X2, such that
both subspaces X1 and X2 are isomorphic to Lp(ν) and both V ∩X1 and
V ∩ X2 are infinite-dimensional. Some consequences concerning dense,
non-closed range operators on L1 are derived.
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1. Introduction

To generalize a theorem of Dixmier concerning operator ranges into Hilbert
spaces [14] to Lp[0, 1] (1 < p < ∞), Cross, Ostrovskii, and Shevchik intro-
duced the following notion: a Banach space X is said to have property (B) if
for every closed, infinite-dimensional subspace V of X, there exists a projec-
tion P ∈ L(X), such that both intersections V ∩ P (X) and V ∩ (IX − P )(X)
are infinite-dimensional [10][Sect. 5]).

On one hand, the aforementioned authors observed in [10] that any space
containing an isomorphic copy of the hereditarily indecomposable space XGM

of Gowers and Maurey [18] does not have property (B). In particular, since
XGM is separable, neither C[0, 1] nor L∞[0, 1] have property (B). On the
other hand, they identified two natural classes of Banach spaces for which
property (B) holds.

(i) Banach spaces with an unconditional basis;
(ii) subprojective Banach spaces.
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Let us recall that a Banach space X is said to be subprojective if every closed,
infinite-dimensional subspace Y of X contains a closed, infinite-dimensional
subspace Z complemented in X. For more information about subprojective
spaces, see [16] and [28].

It is well known that the spaces Lp[0, 1] (henceforth, Lp for short) have
an unconditional basis if and only if 1 < p < ∞ (see [1][Theorem 6.1.6]
and [29]). Moreover, it is also known that Lp is subprojective if and only if
2 ≤ p < ∞ (see [30] and [1][Corollary 6.4.9]). An example of a subprojective
space with basis but without unconditional basis is the quasi-reflexive James
space J [1][Corollary 3.4.7].

It is straightforward from the comments above that Lp has property (B)
if 1 < p < ∞, and does not have it if p = ∞. Since L1 does not belong to
neither of types (i) nor (ii), Cross and his coauthors ask if L1 has property
(B) [10][Problem 6.3]).

It is well known that for any decomposition L1 = X1 ⊕ X2, at least one
of the factors Xi is isomorphic to L1 [15] and the other factor is a L1-space
[8], but it is unknown if it is isomorphic to a space other than L1, �1 or a
finite-dimensional space. These facts led Odell et al. to introduce the strong
property (B) and to ask if L1 has this property [27][Problem 4], where this
property is defined as follows:

Definition 1.1. A Banach space X has the strong property (B) if for every
closed, infinite-dimensional subspace V of X, there exists a projection P ∈
L(X), such that both spaces P (X) and (I − P )(X) are isomorphic to X and
both intersections V ∩ P (X) and V ∩ (I − P )(X) are infinite-dimensional.

Note that J does not have the strong property (B), because dimJ ∗∗/J =
1, and therefore, J cannot be isomorphic to J × J .

The central result in this paper (Theorem 3.3) positively answers the
question posed by Odell and his coauthors. Even more, it is proved that for
any finite measure space (Ω,Σ, ν) with no atom, Lp(Ω,Σ, ν) has the strong
property (B) for all 1 ≤ p < ∞ (Theorem 4.1 and Proposition 4.3). More-
over, as a consequence of Theorem 3.3, it is proved in Corollary 4.2 that the
aforementioned generalization of Dixmier’s theorem can be extended to L1.

The results presented in this article are based on three results: the dis-
covery of Aldous that every infinite-dimensional, reflexive subspace E of L1

contains a subspace isomorphic to �p for some 1 < p < ∞ [2], a theorem
by Dacunha–Castelle and Krivine that establishes that if that subspace E
contains an isomorph of �p then E contains �p almost isometrically [11], and
a change of density found by Berkes and Rosenthal [5].

The notation to be used throughout this paper is introduced next. Given
a topological space (S, τ), an ultrafilter U on a set of indices I and x0 ∈ S,
the convergence of (xi)i∈I ⊂ S to x0 following U is denoted xi

τ−→
i→U

x0 and

for short, by xi −→
U

x0 or x0 = limU xi. The notation xj
τ−→
j

x0 (xj −→
j

x0 if

there is no confusion) or limj xj = x0 is reserved for the usual convergence
of a sequence (xj)∞

j=1 to x0.
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Given a pair of Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ), the kernel and
the range of an operator T : X −→ Y are denoted N(T ) and R(T ), respec-
tively. Operators are linear and bounded maps; X and Y are isomorphic if
there is a bijective operator T : X → Y , in which case, it is denoted X 
 Y .
Given 1 ≤ p < ∞, X ⊕p Y denotes the Banach space X × Y endowed with
the norm ‖(x, y)‖p := (‖x‖p

X +‖y‖p
Y )1/p. A sequence (xn)∞

n=1 contained in X
is said to be equivalent to a basic sequence (yn)∞

n=1 ⊂ Y if the linear operator
from span {yn}∞

n=1 into span {xn}∞
n=1 that maps yn to xn is a bijective iso-

morphism, in which case (xn)∞
n=1 is also basic. For more information about

Banach spaces, see [1], [25] and [26].
Given a collection A of subsets of a set Ω, σ(A) denotes the σ-algebra

generated by A. Given A ⊂ Ω, the indicator function associated with A is
denoted χA.

Let (Ω,Σ, ν) be a measure space; a subset A ∈ Σ is said to be an atom
if ν(A) > 0 and ν(A ∩ B) is equal to ν(A) or 0 for all B ∈ Σ. A well-known
theorem of Sierpinski states that for a measure space (Ω,Σ, ν) with no atom,
given A ∈ Σ and given 0 ≤ λ ≤ ν(A), A contains a subset B ∈ Σ, such
that λ = ν(B). For A ∈ Σ, Σ(A) := {B ∩ A : B ∈ Σ} is a σ-algebra and
(A,Σ(A), ν |Σ(A) ) is a measure space; we will write ν rather than ν |Σ(A) if
there is no possible confusion. A density function is a measurable function
ϕ : Ω −→ [0,∞), such that

∫
Ω

ϕ dν = 1; if ϕ(t) > 0 for all t ∈ Ω, ϕ is said
to be a strictly positive density function. If ν(Ω) = 1, (Ω,Σ, ν) is called a
probability space and every ν-measurable function f : Ω −→ R is called a
random variable. If ν(Ω) < ∞, then (Ω,Σ, ν) is called a finite measure space.
Given 1 ≤ p < ∞, the Banach space of all (classes of) real-valued (alt.,
complex-valued) functions f for which |f |p is integrable with respect of ν
is denoted by Lp(Ω,Σ, ν) (alt., Lp(Ω,Σ, ν,C)), and in the case p = 1, its
weak topology is denoted as w. The unit interval [0, 1] is denoted by I, the
σ-algebra of borelian subsets of I is denoted by B, and the Lebesgue measure
on B is denoted by μ. Sometimes, if the context is clear, the shorter notation
Lp(ν) will be used instead of Lp(X, Σ, ν). The shorter form Lp will be used
to denote Lp(I,B, μ).

Given a random variable f , σ(f) denotes the sub-Σ-algebra generated
by f , that is, the sub-Σ-algebra generated by all the subsets {s ≤ f(t) < r}
{r, s} ⊂ R. Independent random variables are measurable functions that are
independent in the probabilistic sense. Given a random variable f and a sub-
σ-algebra A of Σ, f and A are said to be independent if σ(f) and A are
independent; and if g is another random variable, f and g are independent if
so are σ(f) and σ(g).

Given a probability space (Ω,Σ, ν), the conditional expectation of f ∈
L1(Ω,Σ, ν) relative to a sub-σ-algebra S of Σ—denoted E(f |S)—is the only
function in L1(Ω,S, ν |S ) that satisfies

∫
C

f dν =
∫

C E(f |S) dν for all C ∈ S;
the conditional expectation E(·|S) is a norm one operator from L1(Ω,Σ, ν)
onto L1(X,S, ν | S ); exactly, E(f |S) is the Radon–Nikodym derivative of f
with respect to ν |S ; f is said to be of zero mean if E(f) := E(f |{∅,Ω}) = 0,
that is, if

∫
Ω

f dν = 0. Section V in [13] and [4] covers all necessary facts
about conditional expectations needed here.
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2. Ultrapowers of L1 Spaces

This section begins with a short summary on ultrapowers of L1 spaces, whose
study was initiated by Dacunha–Castelle and Krivine [11]. For proofs and
details, see [21] and [17].

Let I be a set of indices. Through this paper, every ultrafilter U is a
countably uncomplete ultrafilter on I, that is, an ultrafilter for which there
exists a countable partition {In}∞

n=1 of I disjoint with U.
Let Ω be any non-empty set and let B(I,Ω) denote the set of all families

(ti)i∈I ⊂ Ω. Let ∼ be the equivalence relation in B(I,Ω) given by (ti)i∈I ∼
(si)i∈I if {i ∈ I : ti = si} ∈ U. The theoretic ultrapower of Ω following U is
the quotient ΩU := B(I,Ω)/ ∼. The element of ΩU with representative (ti)i∈I

will be denoted (ti)U. The theoretic ultraproduct of a family {Ai}i∈I where
Ai ⊂ Ω is the subset (Ai)U := {(ti)U : ti ∈ Ai, i ∈ I}. In accordance with
this definition, (Ai)U ∪ (Bi)U = (Ai ∪ Bi)U and (Ai)U ∩ (Bi)U = (Ai ∩ Bi)U.

Given a Banach space X, its ultrapower following U is the quotient
Banach space XU := �∞(I,X)/N where N is the subspace of all families
(xi)i∈I , such that limi→U xi = 0. The element of XU with representative
(xi)i∈I is denoted [xi]U or [xi] for short and its norm can be calculated as
‖[xi]‖ = limi→U ‖xi‖. The space X is canonically embedded into XU by means
of the isometry J : X −→ XU that maps each x to the constant class [x].
For simplicity, J is dropped in the notation, so Jx will be denoted x if the
context is clear.

Let (Ω,Σ, μ) be a probability space. The set ΣU := {(Ai)U : Ai ∈ Σ} is a
Boolean algebra. The smallest σ-algebra in ΩU containing ΣU will be denoted
σ(ΣU). The measure μ induces a probability measure μU on σ(ΣU) defined
on each element (Ai)U ∈ ΣU as μU

(
(Ai)U

)
:= limi→U μ(Ai) and extended to

each A ∈ σ(ΣU) as

μU(A) := inf{μU(C) : A ⊂ C, C ∈ ΣU} = sup{μU(C) : C ⊂ A, C ∈ ΣU}.

Each f = [fi] ∈ L1(μU) induces a signed measure νf on σ(ΣU) as follows:
given A ∈ ΣU

νf (A) := lim
i→U

∫

Ai

fi dμ, A = (Ai)U ∈ ΣU

and for each A ∈ σ(ΣU)

νf (A) := inf{νf (C) : A ⊂ C, C ∈ ΣU} = sup{νf (C) : C ⊂ A, C ∈ ΣU}.

The space L1(μU) is canonically embedded into L1(μ)U by means of the
isometry L : L1(μU) −→ L1(μ)U that maps each χ(Ai)U to [χAi

]. Unless it be
necessary, the notation L will be omitted, so, for f ∈ L1(μU), Lf will be also
denoted f . In turn, L1(μ) embeds into L1(μU) via the isometry D : L1(μ) −→
L1(μU) that maps χA to χ(AU) for all A ∈ Σ. For simplicity, the notation
D will be also omitted, and consequently, the element Df that maps each
(ti)U ∈ ΩU to

(
f(ti)

)U will be denoted f .
Given f = [fi] ∈ (

L1(μ)
)
U
, consider the Hahn decomposition νf =

wf +mf where wf and mf are the absolutely continuous part and the singular
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part of νf with respect to μU. Let gf be the Radon–Nikodym derivative of wf

with respect to μU, so that

wf (A) =
∫

A

gf dμU, A ∈ σ(ΣU).

The operator Q : L1(μ)U −→ L1(μ)U that maps each f to gf satisfies QL
is the identity on L1(μU). Hence, LQ is a norm one projection from L1(μ)U
on L1(μU), which determines a decomposition

L1(μ)U = L1(μU) ⊕1 L1

(
μ(U))

)

for certain measure μ(U). Given f ∈ L1(μ)U, the two following statements
hold [17]:

(a) f ∈ L1(μU) if and only if f has a relatively weakly compact representa-
tive (fi)i∈I ;

(b) f ∈ L1

(
μ(U)

)
if and only if f has a representative (fi)i∈I for which

limi→U μ({|fi| > 0}) = 0.

An ultrafilter U on N is said to be a p-point if every bounded sequence
(an)∞

n=1 of real numbers contains a convergent subsequence (akn
)∞
n=1, such

that {kn : n ∈ N} ∈ U [7] [Definition 4.6 and Theorem 4.7]; an ultrafilter U on
N is said to be rare if for every countable partition {Fn}∞

n=1 of N into finite
sets, there exists A ∈ U, such that for every positive integer n, A ∩ Fn has at
most one element [9]. In the case when U is a rare p-point over N, statements
(a) and (b) admit the following equivalent forms [17]:

(a’) f ∈ L1(μU) if and only if f has a representative weakly convergent
following U;

(b’) f ∈ L1

(
μ(U)

)
if and only if f has a representative (fn)n∈N, such that

fn · fm = 0 μ-a.e. for all n and all m �= n.

Obviously, if (fi)i∈I ⊂ L1(μ) is relatively weakly compact, then there exists
the weak limit w-limi→U fi ∈ L1(μ). However, there are ultrafilters W on the
set of positive integers N for which there exists f ∈ L1

(
μ(W)

) \ {0} and each
of its representatives is weakly convergent following W [17][Proposition 16];
with a similar construction, it is not difficult to find a weakly null family
(fi)i∈N ⊂ L1(μ) following W, such that (fi)i∈J is unbounded for all J ∈ W.

Moreover, the existence of rare p-points relies upon set theories accept-
ing the Continuum Hypothesis or some of its weaker forms such as Martin’s
axiom (see [17][Sect. 5] for a brief discussion).

The first result translates weak convergence in L1 into ultrapower and
probabilistic language. In spite of its simplicity, it is worthy of a proof.

Lemma 2.1. Let (Ω,Σ, μ) be a probability measure space, let U be an ultrafilter
on a set I, and let (fi)i∈I be a relatively weakly compact subset of L1(μ), so
that f := [fi] ∈ L1(μU). Then, fi

w−→
U

f if and only if f = E(f |Σ).

Proof. By definition of conditional expectation, f = E(f |Σ) if and only if∫
A

f dμ =
∫

A
f dμU for all A ∈ Σ. However, f ∈ L1(μU); hence,

∫
A
f dμU =

limi→U

∫
A

fi dμ. and the result follows. �
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According to Berkes and Rosenthal [5], the following result on extraction
of sequences can be derived from [11], but they do not offer any proof.

Let us recall that for 1 ≤ p ≤ 2, a p-stable random variable on a
probability space (Ω,Σ, ν) is a random variable f for which there exists a
constant c > 0, such that E(eitf(ω)) = e−c|t|p for all t ∈ R.

Proposition 2.2. Let E be a reflexive, infinite-dimensional subspace of L1.
Then, there is 1 < p ≤ 2, there is a normalized sequence (xn)∞

n=1 ⊂ E, and
there is a density function u, such that eitxn

w−→
n

e−|t|pup

for all real number
t.

Proof. Let μ denote the Lebesgue measure on I, so that L1 = L1(μ).
The main result in [2] establishes that E contains a subspace isomorphic

to �p for some 1 < p < ∞ (see [23] for an alternative proof). Thus, Théorèmes
0.1 and 0.2 in [11] provides us with an ultrafilter U on N, an element 0 ≤
u ∈ L1(μ) and a p-stable random variable v ∈ L1(μU), such that z := vu ∈
EU \ {0}, ‖z‖ = 1 and such that σ(v) and B are independent. (The fact that
u is non-negative follows from the identity u = E(Up|B)1/p where 0 ≤ U ∈
L1(μU) \ {0}. Indeed, u and v are, respectively, the functions Ū and V̄ that
occur at the end of the proof 3⇒4 of Théorème 0.2 in [11], page 348). Hence,
0 �= u ≥ 0, and dividing by

∫
I
u dμ if necessary, u can be assumed to be a

density function.
Let (xj)j∈N and (vj)j∈N be respective representatives of z and v, such

that {xj}∞
j=1 is normalized and relatively weakly compact. Thus

‖xj − uvj‖L1 −−−−−→
j→U

0. (2.1)

Since σ(v) and B are independent sub-σ-algebras of σ(BU), v is p-stable and
u is B-measurable; it follows:

E(eituv|B) = E(e−|t|pup |B) = e−|t|pup

, all t ∈ R.

Hence, Lemma 2.1 gives eituvj
w−→

j→U
e−|t|pup

for all t ∈ R, and therefore, from

(2.1)
eitxj

w−−−−−→
j→U

e−|t|pup

, all t ∈ R. (2.2)

Let {tn}∞
n=1 be a dense, countable subset of R, and for every positive integer

n, let Kn := {eitnxj : j ∈ N} ⊂ L1(I,B, μ,C).
As each Kn is countable and relatively weakly compact in L1(I,B, μ,C),

the weak topology is metrizable on every Kn
w

(see the proof of Eberlein–
Smulian Theorem in [12]). Moreover, by virtue of (2.2), e−|tn|pup

is a weak
limit point of Kn for every natural number n. Hence, for each n ∈ N, there
exists a local basis of decreasing weak neighborhoods {Vn

i }∞
i=1 of e−|tn|pup

.
This means that given a sequence (yi)∞

i=1 ⊂ Kn, if for every k ∈ N, there
exists a natural number i0, such that yi ∈ Vn

k for all i ≥ i0, then

yi
w−−−−−→
i

e−|tn|pup

. (2.3)

Next, we extract a subsequence (zj)∞
j=1 of (xj)∞

j=1, such that eitnzj
w−→
n

e−|tn|pup

for all n ∈ N as follows:
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Given any pair (k, n) of natural numbers, formula (2.2) yields

Jn
k := {j ∈ N : eitnxj ∈ Vn

k } ∈ U.

Fix any j1 ∈ J1
1 and assume that the natural numbers j1 < j2 < . . . < jk−1

satisfying jl ∈ ⋂l
m=1 Jm

l+1−m for all 1 ≤ l ≤ k − 1 have been already chosen.
Then, as

∅ �= A :=

[
k⋂

m=1

Jm
k+1−m

]

∩ {p ∈ N : p > jk−1} ∈ U,

we can pick jk ∈ A. Continuing this process recursively, as {Vn
i }∞

i=1 is de-
creasing, we get an increasing sequence (jk)∞

k=1 of natural numbers, such that
for zk := xjk

eitnzk ∈ Vn
k+1−n, for all k ≥ n, all n ∈ N. (2.4)

Then, it follows from (2.3) and (2.4) that:

eitnzj
w−−−−−→
n

e−|tn|pup

for all tn. (2.5)

Next, we will prove that (2.5) also holds for all t ∈ R. Fix a real number
τ and a balanced, weak neighborhood W ⊂ L1(I,B, μ,C) of 0. Choose ε > 0
and another balanced, weak neighborhood V ⊂ L1(I,B, μ,C) of 0 such that
B(0; ε) + V ⊂ W, where B(0; ε) is the closed ball of L1(I,B, μ,C) centered
at 0 of radius ε. Pick a sequence (τn)n in {tn}∞

n=1, such that τn −→
n

τ . The
Dominated Convergence Theorem gives a positive integer m0, such that

‖e−|τ |pup − e−|τn|pup‖L1 < ε/4 for all n ≥ m0. (2.6)

Next, as {zj}∞
j=1 is equiintegrable, there is K > 0 such that μ({ω : |zj(ω)| >

K}) < ε/8 for all j ∈ N. Moreover, for every x ∈ R, |eix−1| =
√

2
√

1 − cos x ≤
|x|. Thus

∫

I

|eiτnzj(ω) − eiτzj(ω)|dμ(ω) =
∫

I

|ei(τn−τ)zj(ω) − 1|dμ(ω) =
∫

{|zj(ω)|>K}
|ei(τn−τ)zj(ω) − 1|dμ(ω) +

∫

{|zj(ω)|≤K}
|ei(τn−τ)zj(ω) − 1|dμ(ω) ≤ ε

4
+ |τn − τ |K.

Therefore, there is m ≥ m0, such that
∫

I

|eiτnzj(ω) − eiτzj(ω)|dμ(ω) ≤ ε/2, for all n ≥ m and all j ∈ N. (2.7)

Next, (2.5) yields j0, such that

eiτmzj ∈ e−|τm|pup

+ V, for all j ≥ j0. (2.8)

Thus, for every j ≥ j0, consecutive applications of (2.7), (2.8) and (2.6) give

eiτzj ∈ eiτmzj + B(0; ε/2) ⊂ e−|τm|pup

+ V + B(0; ε/2) ⊂
e−|τ |pup

+ V + B(0; ε) ⊂ e−|τ |pup

+ W,

and by virtue of (2.3), the proof is done. �
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Given a sequence of random variables
(
xn(ω)

)
n

on a probability space
(Ω,Σ, ν), assume that for each real number t, there exists the limit of the
sequence (eitxn)n in the weak topology of L1(ν), and denote this limit by
h(t, ω): the function h(t, ω) is called the limit conditional characteristic func-
tion of (xn)n (page 498 in[5]).

Remark. The extraction of the subsequence (zj)j in the proof of Proposi-
tion 2.2 becomes simpler if the ultrafilter U were a p-point. Indeed, the metriz-
ability conditions of each (Kn, w) enable to take a subsequence (xkj

)j of (xj)j ,
such that eitnxkj

w−→
j→U

e−|tn|pup

and if U is a p-point, it can be proved this sub-

sequence satisfies Jn := {kj : j ∈ N} ∈ U. Thus, relabeling the subsequence
(xkj

)j taken from each Kn as (xn
j )j , we may assume that (xn

j )j ⊃ (xn+1
j )j for

all n. Then, a diagonalization argument shows that (zj)j := (xj
j)j satisfies

eitnzj
w−→
j

e−|tn|pup

for all n as required. However, it is necessary to point out

that the ultrafilter U in the proof of Proposition 2.2 is the one provided in the
proof of 3⇒4 of Théorème 0.2 in [11] and that ultrafilter is a product of two
ultrafilters, so it is not a p-point. These facts and a comparison of statements
(a), (b) to (a’) and (b’) clearly suggest an explicit proof for Proposition 2.2
was needed.

3. Decompositions of L1

Let us begin this section recalling that if (Ω, σ, ν) is an atomless finite measure
space, such that L1(ν) is separable, then L1(ν) 
 L1 (see §41 in[20] or I.B.1
in [31]).

Theorem 3.1. Let (fn)∞
n=1\{0} be a bounded sequence of independent random

variables with zero mean defined on an atomless probability space (Ω,Σ, ν)
for which L1(Ω,Σ, ν) is separable. Then, there exists a norm one projection
Q : L1(Ω,Σ, ν) −→ L1(Ω,Σ, ν) satisfying the following statements:

(i) R(Q) 
 L1 and (f2n−1)∞
n=1 ⊂ R(Q);

(ii) N(Q) 
 L1 and (f2n)∞
n=1 ⊂ N(Q).

Proof. Let Sn := σ(fn) for all n. Let Σe and Σo, respectively, denote the
sub-σ-algebras of Σ generated by ∪∞

n=1S2n and by ∪∞
n=1S2n−1.

Denote L1(Σe) := L1(Ω,Σe, ν |Σe
) and L1(Σo) := L1(Ω,Σo, ν |Σo

).
Since the random variables fn are independent, neither (Ω,Σo, μ | Σo

)
nor (Ω,Σe, μ |Σe

) has an atom. This fact and the separability of L1(ν) yields
L1 
 L1(Ω,Σ, ν) 
 L1(Σo) 
 L1(Σe). In addition, as Σe and Σo are inde-
pendent, then (see [4] or (2.18) and (2.21) in [22])

E(f2n|Σo) = E(f2n) (3.1)

E(f2n−1|Σo) = f2n−1, n ∈ N. (3.2)

Let Q be the norm one projection on L1(Ω,Σ, ν) given by the conditional
expectation Q(f) := E(f |Σo).
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It is straightforward from (3.2) that

L1 
 L1(Σo) = R(Q) ⊂ L1(Ω,Σ, ν). (3.3)

In particular, (f2n−1)∞
n=1 ⊂ R(Q) and (i) is proved.

To prove (ii), note that (3.1) implies that all Σe-measurable, integrable
functions with zero mean belong to N(Q). In particular, (f2n)∞

n=1 ⊂ N(Q),
so the proof will be completed as soon as it is demonstrated that N(Q) 
 L1.

Consider the norm one projection P defined on L1(Ω,Σ, ν) and given
by P (f) := E(f |Σe). The same arguments given for Q show

L1 
 R(P ) = L1(Σe) ⊂ L1(Ω,Σ, ν) (3.4)
P (f) = E(f) · χΩ for allf ∈ L1(Σo). (3.5)

The combination of (3.3), (3.1), (3.4), and (3.5) readily yields

PQ(f) = QP (f) = E(f), f ∈ L1(Ω,Σ, ν), (3.6)

and subsequently, P
(
R(Q)

) ⊂ R(Q) and P (N(Q)) ⊂ N(Q). This proves
that P |R(Q) and P |N(Q) are projections. Hence

L1 
 R(P ) = N(Q |R(P ) ) ⊕ R(Q |R(P ) ) =
[
N(Q) ∩ R(P )

] ⊕ R(QP ).

However, (3.6) yields dim R(QP ) = 1, so that N(Q) ∩ R(P ) is a hyperplane
of L1(Ω,Σ, ν). Thus, as L1 is primary [15], then L1 
 N(Q) ∩ R(P ), and

N(Q) = N(P |N(Q) ) ⊕ R(P |N(Q) )

=
[
N(Q) ∩ N(P )

] ⊕ [
R(P )∩N(Q)

] 
 [
N(Q) ∩ N(P )

] ⊕ L1.

Therefore, N(Q) is a complemented subspace of L1(Ω,Σ, ν) containing a
complemented subspace isomorphic to L1, and by means of Pelczyński de-
composition method (Theorem 2.2.3 in[1]), N(Q) 
 L1. The proof is done.

�

Lemma 3.2. Given a probability space (Ω,Σ, ν), a real number ε > 0 and an
equi-integrable sequence (fn)∞

n=1 in L1(Ω,Σ, ν), such that
∑∞

n=1 |fn(t)| < ∞
for ν-almost every t, there is a subsequence (fkn

)∞
n=1 of (fn)∞

n=1, such that
‖fkn

‖ < ε for all n.

Proof. If the result fails, then there exists ε > 0, such that ‖fn‖1 ≥ ε for
all but for finitely many n. Without loss of generality, we may assume that
‖fn‖1 ≥ ε for all n. Let

An := |fn|−1
(
(ε/2,∞)

)
.

Since ‖χAc
n
fn‖1 ≤ ‖χAc

n
fn‖∞ ≤ ε/2, it follows ‖χAn

fn‖1 ≥ ε/2, where Ac
n :=

Ω\An. But (χAn
fn)∞

n=1 is equi-itegrable, so there is δ > 0, such that ν(An) >
δ for infinitely many An. Pass to a subsequence (Ajn)∞

n=1, so that ν(Ajn) > δ
for all n. Thus

ν(lim sup
n

Ajn) = lim
n

ν

( ∞⋃

k=n

Ajn

)

≥ δ.

Hence, for all t ∈ lim supn Ajn , we get
∑∞

n=1 |fjn(t)| ≥ ∞ · ε/2 = ∞, a
contradiction. �
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Theorem 3.3. Let V be an infinite-dimensional, reflexive subspace of L1.
Then, L1 has two subspaces X and Y satisfying the following properties:

(i) L1 = X ⊕ Y ;
(ii) X 
 Y 
 L1;
(ii) X ∩ V and Y ∩ V are infinite-dimensional.

Proof. By Proposition 2.2, V contains a normalized sequence (fn)∞
n=1 for

which there exists a density function φ and a real number 1 < p ≤ 2, such
that eitfn

w−→
n

e−|t|pφp

for all t ∈ R. Let H(t, ω) := e−|t|pφ(ω)p and Ω :=
{ω : φ(ω) �= 0}.

Since V is reflexive and (fn)∞
n=1 is norm bounded, it follows that (fn)∞

n=1

is also bounded in probability, and passing to a subsequence if necessary,
(fn)∞

n=1 is determining (see the first Definition and Proposition 2.2, both in
Sect. 2 of [5]). Thus, as μ(Ω)φ is a strictly positive density on the probability
space (Ω,B(Ω), dP ), where dP := μ/μ(Ω), Lemma 3.3 in [5] yields ( fn|Ω

φ )n

is a determining sequence on the probability space (Ω,B(Ω), ν), where ν =
φ dμ, whose limit conditional characteristic function is h(t, ω) = h(t) :=
e−|t|p/μ(Ω)p .

As h(t) is the characteristic function of a p-stable random variable,
Theorem 3.1 in [5] (see its proof and also the comments at the beginning
of page 500 in [5]) shows (fn)n contains a subsequence (fkn

)n for which
there exists a normalized sequence (gn)∞

n=1 of independent, p-stable random
variables defined on (Ω,B(Ω), ν) whose common characteristic function is
e−|t|p/μ(Ω)p , and moreover

∞∑

n=1

∣
∣
∣
∣
fkn

φ
− gn

∣
∣
∣
∣ (ω) < ∞ for μ − a.e. ω ∈ Ω. (3.7)

The sequence (gn)n is basic; indeed, it is equivalent to the unit vector basis
of �p and the value of its basis constant is 1 (page 182 [26]).

Additionally, as eitfn|I\Ω
n−→
w

1 for all t ∈ R, where w denotes here the
weak topology of L1(Ωc,B(Ωc), dm), Ωc := I \ Ω and dm := dμ/μ(Ωc),
then E(eitfn|I\Ω ) −→

n
1 pointwise in the probability space (Ωc,B(Ωc), dm)

for all t ∈ R. This implies that (fn | I\Ω )n converges in probability to 0
(Theorem 25.3 in [6]). From here, it is very easy to pick a subsequence (fmn

)n

of (fkn
)n, such that

∞∑

n=1

|fmn
(t)| < ∞ for μ − a.e. t ∈ I \ Ω. (3.8)

Next, as (fn)∞
n=1 is equi-integrable, an application of Lemma 3.2 on (3.7) and

on (3.8) yields a pair of subsequences (xn)∞
n=1 ⊂ (fmn

)∞
n=1 and (yn)∞

n=1 ⊂
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(gn)∞
n=1, such that

∞∑

n=1

∫

Ω

∣
∣
∣
∣
xn

φ
− yn

∣
∣
∣
∣ φ dμ < ∞ (3.9)

∞∑

n=1

∫

I\Ω

|xn|dμ < ∞. (3.10)

Fix a sequence (εn)∞
n=1 of positive numbers, such that

∑∞
n=1 εn < 1/4. Pass-

ing to subsequences if necessary, we can assume by virtue of (3.9) and (3.10)
that

∫

Ω

∣
∣
∣
∣
xn

φ
− yn

∣
∣
∣
∣ φ dμ < εn, n ∈ N (3.11)

∫

I\Ω

|xn|dμ < εn, n ∈ N. (3.12)

The inequality (3.11) and the principle of small perturbations (Proposi-
tion 1.a.9 in [25]) prove that (xn

φ |Ω )n is a basic sequence equivalent to (yn)n

as sequences in L1(Ω,B(Ω), ν). However, the operator G : L1(Ω,B(Ω), μ) −→
L1(Ω,B(Ω), ν) that maps each f to f/φ is a bijective isometry, so (xnχΩ)n is a
basic sequence in L1(I,B, μ). Therefore, a second application of the principle
of small perturbations in combination with (3.12) yields a positive integer n0,
such that (xn)n = (xnχΩ + xnχI\Ω)∞

n=n0
is basic in L1(I,B, μ). Let (a∗

n)∞
n=n0

be the sequence of coordinate functionals on span {xn}∞
n=n0

associated with
(xn)∞

n=n0
and take a Hahn–Banach extension x∗

n ∈ L1(I)∗ of each a∗
n, so that

(x∗
n)∞

n=n0
is bounded.

As G is a surjective isometry, so is the operator

J : L1(I) −→ L1(Ω,B(Ω), ν) ⊕1 L1(I \ Ω,B(I \ Ω), μ)

that maps each f to
(

f
φ |Ω , f | I\Ω

)
. For every n ∈ N, let

zn :=
(

yn − xn

φ
|Ω , −xn | I\Ω

)

∈ L1(Ω, ν) ⊕1 L1(I \ Ω, μ).

It follows from (3.11) and (3.12) that ‖zn‖ < 2εn for all n.
Fix 0 < ε < 1. Thus, as J is a bijective isometry, J + K is a surjective

isomorphism for every operator K from L1(I) into L1(Ω, ν) ⊕1 L1(I \ Ω, μ)
with ‖K‖ < ε. For M = sup {‖x∗

n‖}∞
n=1, we can take a positive integer

n1 ≥ n0 large enough, so that
∑∞

n=n1
2εn < ε/M , and therefore, the operator

K : L1(I) −→ L1(Ω, ν) ⊕1 L1(I \ Ω, μ) that maps each x to
∑∞

n=n1
〈x∗

n, x〉zn

is well defined and ‖K‖ < ε. Hence, J + K is a bijective isomorphism and
(J + K)(xn) = (yn, 0) for all n ≥ n1.

Next, Theorem 3.1 provides a decomposition L1(Ω, ν) = Z1 ⊕ Z2, such
that Z1 
 Z2 
 L1(I) and each Zi contains infinitely many elements yn.
Therefore, the subspaces

X1 := (J + K)−1
(
Z1 ⊕1 L1(I \ Ω, μ)

)
,

X2 := (J + K)−1(Z2)
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are both isomorphic to L1(I) and each Xi contains infinitely many elements
xn. Hence, dim Xi ∩ V = ∞ for all 1 ≤ i ≤ 2, and the proof is done. �

4. The Strong Property (B) on Lp Spaces

We first prove that each Lp(I), 1 ≤ p < ∞, has the strong property (B).

Theorem 4.1. Let 1 ≤ p < ∞ and let V be an infinite-dimensional subspace
of Lp. Then, there exists a decomposition Lp = X1 ⊕ X2, such that both
subspaces X1 and X2 are isomorphic to Lp and both intersections V ∩ X1

and V ∩ X2 are infinite-dimensional.

Proof. The proof is organized into the cases (a) p = 1; (b) p = 2; (c) p ∈
(1, 2) ∪ (2,∞).
(a) It is well known that an infinite-dimensional subspace of L1 is either
reflexive or contains a subspace isomorphic to �1 and complemented in L1 [1]
[Proposition 5.6.2]. In the first case, when V is reflexive, the result follows
from Theorem 3.3. In the second case, V has a pair of subspaces E and Y ,
such that E 
 �1 and L1 = E⊕Y . Since L1 is primary (Corollary 5.5 in [15]),
Y is isomorphic to L1. Hence, E and Y can be decomposed as E = E1 ⊕ E2

and Y = Y1 ⊕Y2 where �1 
 E1 
 E2 and L1 
 Y1 
 Y2. Then, Xi := Ei ⊕Yi

for i = 1, 2 are the required spaces in the statement.
It is straightforward that L1 = X1 ⊕ X2, L1 
 L1 ⊕ �1 
 Xi and Ei is

an infinite-dimensional subspace of E ∩ Xi for i = 1, 2.
(b) The proof for this case is immediate, because L2 is a Hilbert space,
and therefore, each of its infinite-dimensional subspaces is complemented and
isomorphic to L2.
(c) Take a normalized basic sequence (xn)∞

n=1 in V and a sequence (εn)∞
n=1 of

positive real numbers, such that
∑∞

n=1 εn < 1/4. As (xn)∞
n=1 is weakly null, it

contains a subsequence (x′
n)∞

n=1 which can be approximated by a block basic
sequence of the Haar basis (hi)∞

i=0 in Lp, that is, there exist real numbers
λi and an increasing sequence (kn)∞

n=1 of non-negative integers with k1 = 0,
such that for yn :=

∑kn+1−1
i=kn

λihi

‖x′
n − yn‖ < εn for all n. (4.1)

Let (y∗
n)∞

n=1 ⊂ L∗
p be a sequence of Hahn-Banach extensions of the coordi-

nate functionals (a∗
n)∞

n=1 ⊂ span {yn}∞
n=1 associated with the basic sequence

(yn)∞
n=1.
Since the Haar basis of Lp is monotone, so is (yn)∞

n=1 and, therefore, as
‖yn‖ < 1 + 1/4, we have ‖y∗

n‖ < 2 + 1/2 for all n.
Thus, the operator K : Lp −→ Lp that maps each x to

∑∞
n=1〈y∗

n, x〉(x′
n−

yn) is well defined and ‖K‖ ≤ ∑∞
n=1 εn‖y∗

n‖ < 1/2 + 1/8 < 1.
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Consider the subspaces of Lp given by

Z1 := span{hi : k2n−1 ≤ i ≤ k2n − 1, n ∈ N}
Z2 := span{hi : k2n ≤ i ≤ k2n+1 − 1, n ∈ N}
Y1 := span{y2n−1 : n ∈ N} ⊂ Z1

Y2 := span{y2n : n ∈ N} ⊂ Z2

V1 := span{x′
2n−1 : n ∈ N}

V2 := span{x′
2n : n ∈ N}.

Note that (I +K)(yn) = x′
n. Hence, (I +K)(Y1) = V1 and (I +K)(Y2) = V2.

As ‖K‖ < 1, it follows that I + K is a bijective isomorphism, and there-
fore, Y1 
 V1 and Y2 
 V2; analogously, for W1 := (I + K)(Z1) and W2 :=
(I + K)(Z2), we have Wi 
 Zi for i = 1, 2. Moreover, since (hi)∞

i=0 is uncon-
ditional, then Lp = W1 ⊕ W2 and one of the following two cases happen (see
[19] and also [3][Theorem 1, page 129]:)

(i) both subspaces W1 and W2 are isomorphic to Lp;
(ii) one of the subspaces W1, W2 is isomorphic to Lp and the other is iso-

morphic to �p.
If (i) holds, since Vi ⊂ Wi for i = 1, 2, the subspaces X1 := W1 and X2 := W2

satisfy the statement of the theorem.
If (ii) holds, assume W1 
 Lp and W2 
 �p. Then, a similar argument

to one given in case (a) works: since V2 ⊂ W2 
 �p, W2 can be decomposed as
W2 = F1⊕F2⊕G where F1 
 F2 
 �p and F1⊕F2 ⊂ V2 [1][Proposition 2.2.1]).
Decompose W1 as W1 = H1 ⊕ H2 with H1 
 H2 
 Lp. The subspaces
X1 := H1⊕F1 and X2 := H2⊕F2⊕G are both isomorphic to Lp, Lp = X1⊕X2

and Fi ⊂ V ∩ Xi are infinite-dimensional for i = 1, 2. The proof is complete.
�

Cross and his coauthors proved the following result for Lp with 1 < p <
∞ from the fact that these spaces have property (B). Thus, their proof also
works for L1:

Corollary 4.2. Given any Banach space Y and an operator T ∈ L(L1, Y ),
such that R(T ) is dense and non-closed in Y , there exists a pair of operators
T1 and T2 in L(L1, Y ) satisfying the following conditions:

(i) R(Ti) is dense and non-closed in Y for i = 1 and i = 2;
(ii) R(T ) = R(T1) + R(T2);
(iii) R(T1) ∩ R(T2) = {0}.
Proof. Since L1 has property (B) and is separable, Theorem 5.3 in [10] yields
the desired result. �

Theorem 4.1 can be extended to finite measure spaces with no atom.

Proposition 4.3. For every purely non-atomic, finite measure space (Ω,Σ, ν)
and every 1 ≤ p < ∞, the space Lp(Ω,Σ, ν) has the strong property (B).

Proof. Let V be an infinite-dimensional subspace of Lp(Ω,Σ, ν), and let E be
an infinite-dimensional, separable subspace of V . Let {xj}j∈N be a countable
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dense subset of E. Let Aj,a,b := {ω ∈ Ω: a < xj(ω) < b} and let M be
the sub-σ-algebra of Σ generated by {Aj,a,b : j ∈ N, a ∈ Q, b ∈ Q}. Let
M := Lp(Ω,M, ν |M ), so that M 
 Lp(I).

As observed in Proposition III.A.2 in [31], E is a separable subspace
of M , and M is a complemented subspace of Lp(Ω,Σ, ν) via the projection
E(·|M). Therefore, E ⊂ M ⊕ N = Lp(Ω,Σ, ν).

It is immediate from Theorem 9, page 127 in [24] that Lp(I)×Lp(Ω,Σ, ν) 

Lp(Ω,Σ, ν) and Lp(Ω,Σ, ν) × Lp(Ω,Σ, ν) 
 Lp(Ω,Σ, ν).

Hence, by virtue of Theorem 4.1, M can be decomposed as M = A1 ⊕
A2 ⊕B where A1 
 A2 
 B 
 Lp(I) and the intersections E ∩A1 and E ∩A2

are infinite-dimensional.
Thus

E ⊂ Lp(Ω,Σ, ν) = A1 ⊕ A2 ⊕ (B ⊕ N).
However, B⊕N can be decomposed as D1⊕D2 where D1 
 D2 
 Lp(Ω,Σ, ν),
which leads to

E ⊂ A1 ⊕ A2 ⊕ D1 ⊕ D2 = (A1 ⊕ D1) ⊕ (A2 ⊕ D2) = Lp(Ω,Σ, ν).

Clearly, Lp(Ω,Σ, ν) 
 Ai ⊕ Di and V ∩ (Ai ⊕ Di) is infinite-dimensional for
i = 1, 2, which proves that Lp(Ω,Σ, ν) has the strong property (B). �
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Mathématiques 92, 143–153 (1968)

[10] Cross, R.W., Ostrovskii, M.I., Shevchik, V.V.: Operator Ranges in Banach
spaces. I. Math. Nachrichten 173, 91–114 (1995)

[11] Dacunha-Castelle, D., Krivine, J.L.: Sous-espaces de L1. Israel J. Math. 26(3–
4), 320–351 (1977)

[12] Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Math.
92. Springer-Verlag, 1984

[13] Diestel, J., Uhl, J.: Vector measures. Math. surveys and monographs, Amer.
Math. Soc. vol. 15, 1977

[14] Dixmier, J.: Étude sur le Varietés et les Opérateurs de Julia. J. Math. Pures
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