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Abstract. Given a purely non-atomic, finite measure space (2,3, v), it
is proved that for every closed, infinite-dimensional subspace V' of L, (v)
(1 < p < 00) there exists a decomposition L,(v) = X1 & X, such that
both subspaces X1 and X5 are isomorphic to L,(v) and both VNX; and
V' N X2 are infinite-dimensional. Some consequences concerning dense,
non-closed range operators on L; are derived.
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1. Introduction

To generalize a theorem of Dixmier concerning operator ranges into Hilbert
spaces [14] to L,[0,1] (1 < p < o), Cross, Ostrovskii, and Shevchik intro-
duced the following notion: a Banach space X is said to have property (B) if
for every closed, infinite-dimensional subspace V of X, there exists a projec-
tion P € L(X), such that both intersections VN P(X) and V N (Ix — P)(X)
are infinite-dimensional [10][Sect. 5]).

On one hand, the aforementioned authors observed in [10] that any space
containing an isomorphic copy of the hereditarily indecomposable space Xanm
of Gowers and Maurey [18] does not have property (B). In particular, since
XgwMm is separable, neither C[0,1] nor Ly[0,1] have property (B). On the
other hand, they identified two natural classes of Banach spaces for which
property (B) holds.

(i) Banach spaces with an unconditional basis;
(ii) subprojective Banach spaces.
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Let us recall that a Banach space X is said to be subprojective if every closed,
infinite-dimensional subspace Y of X contains a closed, infinite-dimensional
subspace Z complemented in X. For more information about subprojective
spaces, see [16] and [28].

It is well known that the spaces L,[0,1] (henceforth, L, for short) have
an unconditional basis if and only if 1 < p < oo (see [1][Theorem 6.1.6]
and [29]). Moreover, it is also known that L, is subprojective if and only if
2 <p < oo (see [30] and [1][Corollary 6.4.9]). An example of a subprojective
space with basis but without unconditional basis is the quasi-reflexive James
space J [1][Corollary 3.4.7].

It is straightforward from the comments above that L, has property (B)
if 1 < p < oo, and does not have it if p = oo. Since L; does not belong to
neither of types (i) nor (i), Cross and his coauthors ask if L; has property
(B) [10][Problem 6.3]).

It is well known that for any decomposition L; = X; & X, at least one
of the factors X; is isomorphic to L; [15] and the other factor is a £i-space
[8], but it is unknown if it is isomorphic to a space other than L, ¢; or a
finite-dimensional space. These facts led Odell et al. to introduce the strong
property (B) and to ask if Ly has this property [27][Problem 4], where this
property is defined as follows:

Definition 1.1. A Banach space X has the strong property (B) if for every
closed, infinite-dimensional subspace V' of X, there exists a projection P €
L(X), such that both spaces P(X) and (I — P)(X) are isomorphic to X and
both intersections V N P(X) and V N (I — P)(X) are infinite-dimensional.

Note that J does not have the strong property (B), because dim J**/J =
1, and therefore, J cannot be isomorphic to J x J.

The central result in this paper (Theorem 3.3) positively answers the
question posed by Odell and his coauthors. Even more, it is proved that for
any finite measure space (2, %, v) with no atom, L,(£2, %, v) has the strong
property (B) for all 1 < p < oo (Theorem 4.1 and Proposition 4.3). More-
over, as a consequence of Theorem 3.3, it is proved in Corollary 4.2 that the
aforementioned generalization of Dixmier’s theorem can be extended to L.

The results presented in this article are based on three results: the dis-
covery of Aldous that every infinite-dimensional, reflexive subspace E of L,
contains a subspace isomorphic to £, for some 1 < p < oo [2], a theorem
by Dacunha—Castelle and Krivine that establishes that if that subspace E
contains an isomorph of ¢, then E contains ¢, almost isometrically [11], and
a change of density found by Berkes and Rosenthal [5].

The notation to be used throughout this paper is introduced next. Given
a topological space (S,7), an ultrafilter 4l on a set of indices I and z( € S,
the convergence of (x;);er C S to zq following i is denoted x; L;i o and

11—

. . T .
for short, by x; = Lo or Tp = limg 2;. The notation x; —7 %o (x; 7 %o if

there is no confusion) or lim; x; = x¢ is reserved for the usual convergence
o0
of a sequence (z;)32; to zo.
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Given a pair of Banach spaces (X, |- || x) and (Y, || - |ly), the kernel and
the range of an operator T: X — Y are denoted N(T') and R(T), respec-
tively. Operators are linear and bounded maps; X and Y are isomorphic if
there is a bijective operator T: X — Y, in which case, it is denoted X ~ Y.
Given 1 < p < 00, X @, Y denotes the Banach space X x Y endowed with
the norm ||(z,9)]l, := (|z% + [yl%)*/?. A sequence (z,,)2°; contained in X
is said to be equivalent to a basic sequence (y,)52; C Y if the linear operator
from span {y,},. , into span{z,} ., that maps y, to z, is a bijective iso-
morphism, in which case (z,)52; is also basic. For more information about
Banach spaces, see [1], [25] and [26].

Given a collection A of subsets of a set 2, 0(A) denotes the o-algebra
generated by A. Given A C €, the indicator function associated with A is
denoted x 4.

Let (2,3, v) be a measure space; a subset A € ¥ is said to be an atom
if v(A) > 0 and v(A N B) is equal to v(A) or 0 for all B € ¥. A well-known
theorem of Sierpinski states that for a measure space (€2, 2, v) with no atom,
given A € ¥ and given 0 < XA < v(A4), A contains a subset B € X, such
that A = v(B). For A € ¥, £(A) := {BN A: B € ¥} is a o-algebra and
(A,X(A),v |5y ) is a measure space; we will write v rather than v | x4 if
there is no possible confusion. A density function is a measurable function
@: Q2 — [0,00), such that [, pdv = 1;if @(t) > 0 for all t € Q, ¢ is said
to be a strictly positive density function. If v(Q2) = 1, (2,X,v) is called a
probability space and every v-measurable function f: 2 — R is called a
random variable. If v() < oo, then (Q, X, v) is called a finite measure space.
Given 1 < p < oo, the Banach space of all (classes of) real-valued (alt.,
complex-valued) functions f for which |f|? is integrable with respect of v
is denoted by L,(2,%,v) (alt., L,(Q,3,r,C)), and in the case p = 1, its
weak topology is denoted as w. The unit interval [0,1] is denoted by I, the
o-algebra of borelian subsets of I is denoted by B, and the Lebesgue measure
on B is denoted by p. Sometimes, if the context is clear, the shorter notation
L,(v) will be used instead of L, (X, %, v). The shorter form L, will be used
to denote L, (I, B, i).

Given a random variable f, o(f) denotes the sub-3-algebra generated
by f, that is, the sub-Y-algebra generated by all the subsets {s < f(t) < r}
{r,s} C R. Independent random variables are measurable functions that are
independent in the probabilistic sense. Given a random variable f and a sub-
o-algebra A of ¥, f and A are said to be independent if o(f) and A are
independent; and if g is another random variable, f and g are independent if
so are o(f) and o(g).

Given a probability space (£2,X,v), the conditional expectation of f €
L1(9,%,v) relative to a sub-o-algebra S of ¥—denoted E(f|S)—is the only
function in L (Q, S, v|s ) that satisfies [, fdv = [, E(f|S)dv for all C € S;
the conditional expectation E(-|S) is a norm one operator from L;(2, ¥, v)
onto L1(X,S,v|s); exactly, E(f|S) is the Radon-Nikodym derivative of f
with respect to v|s; f is said to be of zero mean if E(f) := E(f|{0,Q}) =0,
that is, if [, fdv = 0. Section V in [13] and [4] covers all necessary facts
about conditional expectations needed here.
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2. Ultrapowers of L, Spaces

This section begins with a short summary on ultrapowers of L, spaces, whose
study was initiated by Dacunha—Castelle and Krivine [11]. For proofs and
details, see [21] and [17].

Let I be a set of indices. Through this paper, every ultrafilter 4 is a
countably uncomplete ultrafilter on I, that is, an ultrafilter for which there
exists a countable partition {I,}>2; of I disjoint with &l.

Let  be any non-empty set and let B(1,2) denote the set of all families
(t:)ier C Q. Let ~ be the equivalence relation in B(I, ) given by (¢;)ier ~
(8i)icr if {i € I:t; = s;} € . The theoretic ultrapower of ) following U is
the quotient QY := B(I,9Q)/ ~. The element of O with representative (¢;);cr
will be denoted (¢;)*. The theoretic ultraproduct of a family {4;};c; where
A; C Qs the subset (A4;)% := {(t;)": t; € A;, i € I}. In accordance with
this deﬁnition, (Az)il @] (.Bl)u = (Az @] BZ)}J and (AZ)LI n (B,L)u = (Az N Bz)u

Given a Banach space X, its ultrapower following i is the quotient
Banach space Xy := £o(I, X)/N where N is the subspace of all families
(zi)ier, such that lim; g x; = 0. The element of Xy with representative
(24)ier is denoted [z;]y or [z;] for short and its norm can be calculated as
[[[z:]|l = lim;—g ||2;]|. The space X is canonically embedded into X by means
of the isometry J : X — Xy that maps each x to the constant class [z].
For simplicity, J is dropped in the notation, so Jx will be denoted x if the
context is clear.

Let (€, %, 1) be a probability space. The set g := {(4;)": 4; € X} isa
Boolean algebra. The smallest o-algebra in Q containing ¥y will be denoted
0(Xy). The measure p induces a probability measure pg on o(Xg) defined
on each element (A;)" € Sy as g ((A;)") := lim; g 1(A;) and extended to
each A € 0(Xy) as

pg(A) == inf{uy(C): ACC, C e Xy} =sup{uu(C): C C A, C € Xy}.

Each f = [f;] € Li(py) induces a signed measure vg on o(Xy) as follows:
given A € 3y

ve(d) o=l | fdi A= (40 € By

and for each A € o(Xy)
ve(A) = inf{re(C): ACC, C e Xy} =sup{s(C): C C A, C € Xy}

The space L1 (py) is canonically embedded into Lq (u)y by means of the
isometry L: Ly (ps) — L1(p)y that maps each x(4,)u to [xa,]. Unless it be
necessary, the notation L will be omitted, so, for f € Ly (py), Lf will be also
denoted f. In turn, L;(u) embeds into Ly (pg) via the isometry D: Li(u) —
Li(pgy) that maps xa to x(auy for all A € X. For simplicity, the notation

D will be also omitted, and consequently, the element Df that maps each
()4 € Q% to (f(t;))" will be denoted .

Given f = [f] € (Ll(u))u, consider the Hahn decomposition v¢ =
wg +myg where wg and myg are the absolutely continuous part and the singular
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part of vg with respect to py. Let gr be the Radon-Nikodym derivative of w¢
with respect to uyg, so that

we(A) = / ge dps, A€ o(By).
A

The operator Q: Li(u)y — L1 (u)y that maps each f to g satisfies QL
is the identity on Lj(puy). Hence, LQ is a norm one projection from Lj (1)
on Lj(uy), which determines a decomposition

Ly(u)y = L (pg) ®1 Ly (u(41)))

for certain measure u(H). Given f € Li(u)y, the two following statements
hold [17]:
(a) £ € Li(uy) if and only if f has a relatively weakly compact representa-
tive (fi)ier;
(b) £ € Li(u(Y)) if and only if f has a representative (f;)ic; for which
lim; .y p({|fi] > 0}) = 0.
An ultrafilter & on N is said to be a p-point if every bounded sequence
(an)S2 of real numbers contains a convergent subsequence (ag, )22 ;, such
that {ky: n € N} € 4 [7] [Definition 4.6 and Theorem 4.7]; an ultrafilter { on
N is said to be rare if for every countable partition {F},}>2 ; of N into finite
sets, there exists A € 4, such that for every positive integer n, AN F), has at
most one element [9]. In the case when §l is a rare p-point over N, statements
(a) and (b) admit the following equivalent forms [17]:

(a’) £ € Li(uy) if and only if f has a representative weakly convergent
following ;

(b") £ € Ly (p(8h)) if and only if f has a representative (f,)nen, such that
fn - fm =0 p-a.e. for all n and all m # n.

Obviously, if (f;)ier C L1(u) is relatively weakly compact, then there exists
the weak limit w-lim; ¢ f; € L1(u). However, there are ultrafilters 20 on the
set of positive integers N for which there exists f € Ly (4(20)) \ {0} and each
of its representatives is weakly convergent following 20 [17][Proposition 16];
with a similar construction, it is not difficult to find a weakly null family
(fi)ien C L1 (p) following 20, such that (f;);cs is unbounded for all J € 20.

Moreover, the existence of rare p-points relies upon set theories accept-
ing the Continuum Hypothesis or some of its weaker forms such as Martin’s
axiom (see [17][Sect. 5] for a brief discussion).

The first result translates weak convergence in L into ultrapower and
probabilistic language. In spite of its simplicity, it is worthy of a proof.

Lemma 2.1. Let (2, %, u) be a probability measure space, let 4 be an ultrafilter
on a set I, and let (f;)ier be a relatively weakly compact subset of Li(u), so

that £ := [f;] € L1(uy). Then, f; % [ if and only if f =E(f|2).

Proof. By definition of conditional expectation, f = E(f|X) if and only if
Jofdu = [, fdpy for all A € ¥. However, f € Ly(ug); hence, [, fduy =
lim; g [, fi dp. and the result follows. O
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According to Berkes and Rosenthal [5], the following result on extraction
of sequences can be derived from [11], but they do not offer any proof.

Let us recall that for 1 < p < 2, a p-stable random variable on a
probability space (€2, %,v) is a random variable f for which there exists a
constant ¢ > 0, such that E(e®*/ () = e=ltl” for all t € R.

Proposition 2.2. Let FE be a reflexive, infinite-dimensional subspace of L.
Then, there is 1 < p < 2, there is a normalized sequence (x,)5%, C E, and
there is a density function u, such that e**» % e~ 1" for all real number
t.

Proof. Let u denote the Lebesgue measure on I, so that L1 = Ly (u).

The main result in [2] establishes that F contains a subspace isomorphic
to £, for some 1 < p < oo (see [23] for an alternative proof). Thus, Théorémes
0.1 and 0.2 in [11] provides us with an ultrafilter { on N, an element 0 <
u € Li(p) and a p-stable random variable v € Ly (py), such that z := vu €
E¢\ {0}, ||z|]| = 1 and such that o(v) and B are independent. (The fact that
u is non-negative follows from the identity u = E(U?|B)Y/? where 0 < U €
Ly(py) \ {0}. Indeed, u and v are, respectively, the functions U and V that
occur at the end of the proof 3=4 of Théoreme 0.2 in [11], page 348). Hence,
0 # u > 0, and dividing by fﬂud,u if necessary, u can be assumed to be a
density function.

Let (x;)jen and (v;)jen be respective representatives of z and v, such
that {z;}32, is normalized and relatively weakly compact. Thus

lzj = wvjllzy —=5— 0 (2.1)
Since o(v) and B are independent sub-o-algebras of o(By), v is p-stable and
u is B-measurable; it follows:

E(eV|B) = B(e 1" |B) = 711" all t e R.
Hence, Lemma 2.1 gives e't*vi 2 ¢~ [t"v" for all ¢ € R, and therefore, from

j—u
(2.1)

e # eI all teR. (2.2)

Let {t,}52; be a dense, countable subset of R, and for every positive integer
n, let K, := {e!"%i: j € N} C Ly(I, B, u,C).

As each K, is countable and relatively weakly compact in Ly (I, B, u, C),
the weak topology is metrizable on every K," (see the proof of Eberlein—
Smulian Theorem in [12]). Moreover, by virtue of (2.2), e~ l»I"*" is a weak
limit point of K, for every natural number n. Hence, for each n € N, there
exists a local basis of decreasing weak neighborhoods {V'}5°, of e~ltnl"",
This means that given a sequence (y;)2, C K,, if for every k € N, there
exists a natural number iy, such that y; € V}! for all ¢ > 7g, then

Yi —>1: e~ ltnl"u” (2.3)

)00 .\ oo itnz; W
Next, we extract a subsequence (2;)32; of (z;)72;, such that e'"* —

e Itnl”u" for all n € N as follows:
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Given any pair (k,n) of natural numbers, formula (2.2) yields
JP={j € N: ™% c Y} e 4.
Fix any j; € Ji and assume that the natural numbers j; < jo < ... < jr_1

satisfying j; € mlm=1 Sy forall 1 <1 <k —1 have been already chosen.
Then, as

k
N J,ﬁl_m] N{peN:p>ji 1} el

m=1

0#A:=

we can pick ji € A. Continuing this process recursively, as {V'}22, is de-
creasing, we get an increasing sequence (ji )52 ; of natural numbers, such that
for zj, := x;,

itk ¢ Viii_n, forall k>n,allneN. (2.4)
Then, it follows from (2.3) and (2.4) that:
etnZ) + eIt " v for all ¢, (2.5)

Next, we will prove that (2.5) also holds for all ¢ € R. Fix a real number
7 and a balanced, weak neighborhood W C Ly (I, B, i, C) of 0. Choose £ > 0
and another balanced, weak neighborhood V C Ly (I, B, i, C) of 0 such that
B(0;e) +V C W, where B(0;¢) is the closed ball of L (I, B, s, C) centered
at 0 of radius e. Pick a sequence (75)n in {tn};Z,, such that 7, — 7. The

Dominated Convergence Theorem gives a positive integer my, such that
e IT1"w" —e=Imnl”u")| L < /4 for all n > my. (2.6)

Next, as {z;}32; is equiintegrable, there is K > 0 such that p({w: [z;(w)| >

K}) < e/8forall j € N. Moreover, for every z € R, |[e—1| = v/2¢/1 — cos = <
|z|. Thus

/H|6i'rnzj(w) . ei'rzj(w)| du(w) _ /]I|€i(7—"7‘r)zj(w) . 1| du(w) _

/ e85 _ 1 dp(w) +
{1z (W)[>K}
/ =) 1] du(w) < S + | — 7K.
{lz @)K} 4
Therefore, there is m > mg, such that
/|ei7"21(“’) — @ dp(w) <e/2, forall n>mandall j eN. (2.7)
1
Next, (2.5) yields jo, such that
emmFi g eI T Ly for all  j > jo. (2.8)
Thus, for every j > jo, consecutive applications of (2.7), (2.8) and (2.6) give
e e e 4+ B(0;e/2) C e 1™ 4Ly 4 B(0;£/2) C
e " 1V + B(0;e) c e T 4w,
and by virtue of (2.3), the proof is done. O
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Given a sequence of random variables (:cn(w))n on a probability space
(Q,3,v), assume that for each real number ¢, there exists the limit of the
sequence (e*7), in the weak topology of L;(v), and denote this limit by
h(t,w): the function h(t,w) is called the limit conditional characteristic func-
tion of (z,), (page 498 in[5]).

Remark. The extraction of the subsequence (z;); in the proof of Proposi-
tion 2.2 becomes simpler if the ultrafilter 4 were a p-point. Indeed, the metriz-
ability conditions of each (K, w) enable to take a subsequence (zx; ); of (z;);,
such that """ igl e~ Itn1”4" and if 4 is a p-point, it can be proved this sub-
j*}
sequence satisfies J,, := {k;: j € N} € 4. Thus, relabeling the subsequence
(z;); taken from each K, as (z7);, we may assume that (z'); D (;v?“)j for
g) ; satisfies
eitnzi s o= Itnl"u” for all n as required. However, it is necessary to point out

all n. Then, a diagonalization argument shows that (z;); := (z

J
that the ultrafilter 4 in the proof of Proposition 2.2 is the one provided in the
proof of 3=-4 of Théoréme 0.2 in [11] and that ultrafilter is a product of two
ultrafilters, so it is not a p-point. These facts and a comparison of statements
(a), (b) to (a’) and (b’) clearly suggest an explicit proof for Proposition 2.2
was needed.

3. Decompositions of L,

Let us begin this section recalling that if (2, o, ) is an atomless finite measure
space, such that L, (v) is separable, then L;(v) ~ L; (see §41 in[20] or I.B.1
in [31]).

Theorem 3.1. Let (f,)52,\{0} be a bounded sequence of independent random
variables with zero mean defined on an atomless probability space (2, %, v)
for which Li(Q,3,v) is separable. Then, there exists a norm one projection
Q: L1(,X,v) — L1(Q,X,v) satisfying the following statements:

(i) R(Q) ~ Ly and (f2n—1)5Z1 C R(Q);
(ii) N(Q) =~ Ly and (f2n)72: € N(Q)-

Proof. Let S,, := o(f,) for all n. Let ¥, and X,, respectively, denote the
sub-o-algebras of ¥ generated by US2 ;Say, and by US; Sap—1.
Denote L1(3,) := L1(, X, v|x, ) and L1(3,) := L1(2, X, V|5, ).
Since the random variables f,, are independent, neither (,%,, 1 |s, )
nor (2, %, s, ) has an atom. This fact and the separability of L, (v) yields
Ly ~ L1(Q,2%,v) ~ Li1(3,) ~ Li(Z.). In addition, as ¥, and ¥, are inde-
pendent, then (see [4] or (2.18) and (2.21) in [22])

]E(f2n|zo) - E(f2n) (31)
E(f2n-1]20) = fon—1, n € N. (3.2)

Let @ be the norm one projection on L (€2, X, v) given by the conditional
expectation Q(f) := E(f|Z,).
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It is straightforward from (3.2) that
Li~ Li(5,) = R(Q) C Ly (2,3, v). (3.3)

In particular, (fon—1)52; C R(Q) and (i) is proved.

To prove (ii), note that (3.1) implies that all ¥.-measurable, integrable
functions with zero mean belong to N(Q). In particular, (f2,)22, C N(Q),
so the proof will be completed as soon as it is demonstrated that N(Q) ~ L;.

Consider the norm one projection P defined on Li(Q2,%,v) and given
by P(f) := E(f|2¢). The same arguments given for @) show

Li ~ R(P) = Ly(S.) € Ly(Q,3, ) (3.4)
P(f)=E(f) xo  for allf € Ly(5,). (35)

The combination of (3.3), (3.1), (3.4), and (3.5) readily yields
PQ(f) = QP(f) =E(f), [fe€Li(2% ), (3.6)

and subsequently, P(R(Q)) C R(Q) and P (N(Q)) C N(Q). This proves
that P|gg) and P|y(g) are projections. Hence

Ly ~ R(P) = N(Q|r(p)) ® R(Q| rpy) = [N(Q) N R(P)] & R(QP).

However, (3.6) yields dim R(QP) = 1, so that N(Q) N R(P) is a hyperplane
of L1(Q,%,v). Thus, as Ly is primary [15], then Ly >~ N(Q) N R(P), and

N(@Q)=N(P|n)) ®R(P|Ng))
= [N@Q)NN(P)] @ [R(P)NN(Q)] ~ [N(Q)NN(P)] & L.

Therefore, N(Q) is a complemented subspace of L;(€2,X,v) containing a

complemented subspace isomorphic to L, and by means of Pelczynski de-

composition method (Theorem 2.2.3 in[1]), N(Q) ~ Ly. The proof is done.
O

Lemma 3.2. Given a probability space (Q,%,v), a real number e > 0 and an
equi-integrable sequence (f,)52 in L1 (0,2, v), such that Y " |fn(t)] < oo
for v-almost every t, there is a subsequence (fi, )22 of (fn)2,, such that
I fe, |l <& for all n.

Proof. If the result fails, then there exists € > 0, such that ||f,|1 > € for
all but for finitely many n. Without loss of generality, we may assume that
I fnll1 > € for all n. Let

A, = |fn|_1((6/2,oo)).
Since [[xac fulli < [Ixag fulloo < €/2, it follows ||x 4, full1 > /2, where A, :
O\ A,,. But (x4, fn)22, is equi-itegrable, so there is § > 0, such that v (A, )
d for infinitely many A Pass to a subsequence (A4;, )5 ;, so that v(4,, ) >
for all n. Thus

o Vi

n=1»

v(limsup 4;, ) = li}lny (U Ajn) >0
n k—n

Hence, for all ¢ € limsup, A;,, we get > >~ [fj. (t)] > o0 -e/2 = o0,
contradiction.

O
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Theorem 3.3. Let V' be an infinite-dimensional, reflexive subspace of L.
Then, L1 has two subspaces X and 'Y satisfying the following properties:

() Li=XaY;
(i) X 2V ~ Ly;
(i) XNV and Y NV are infinite-dimensional.

Proof. By Proposition 2.2, V' contains a normalized sequence (f,)22; for
which there exists a density function ¢ and a real number 1 < p < 2, such
that e'/n = e 7" for all t € R. Let H(t,w) := e M¢@)" and Q :=

{w: ¢(w) # 0}.

Since V is reflexive and (f,,)5%; is norm bounded, it follows that (f,)5%
is also bounded in probability, and passing to a subsequence if necessary,
(fn)22 is determining (see the first Definition and Proposition 2.2, both in
Sect. 2 of [5]). Thus, as ()¢ is a strictly positive density on the probability
space (9, B(Q2), dP), where dP := u/u(Q), Lemma 3.3 in [5] yields (%)n
is a determining sequence on the probability space (2, B(Q2),v), where v =
¢ dp, whose limit conditional characteristic function is h(t,w) = h(t) :=
et /n(@)”

As h(t) is the characteristic function of a p-stable random variable,
Theorem 3.1 in [5] (see its proof and also the comments at the beginning
of page 500 in [5]) shows (f,), contains a subsequence (f%, )n for which
there exists a normalized sequence (g,)22; of independent, p-stable random
variables defined on (€2, B(Q2),r) whose common characteristic function is
e~ It/ “and moreover

Zi

n=1

(w) < o0 for p—a.e. we Q. (3.7)

The sequence (gy,), is basic; indeed, it is equivalent to the unit vector basis
of ¢, and the value of its basis constant is 1 (page 182 [26]).

Additionally, as e*/rlne % 1 for all ¢ € R, where w denotes here the
weak topology of Lq(2¢,B(Q°), dm), Q° := I\ Q and dm := du/u(92°),
then E(e!frine) — 1 pointwise in the probability space (2, B(€2¢), dm)
for all ¢ € R. This implies that (f, | o )n converges in probability to 0

(Theorem 25.3 in [6]). From here, it is very easy to pick a subsequence (fp,, )n
of (fx, )n, such that

o0

Z | frn,, ()] < 00 for p —ae. tel\ Q. (3.8)

n=1

Next, as (f,)22 is equi-integrable, an application of Lemma 3.2 on (3.7) and
on (3.8) yields a pair of subsequences (2,,)22, C (fm, )52, and (y,)22, C
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(gn)2% 1, such that

Ln

e Yn| pdp < 00 (3.9)

>,
Z /H\Q |xn|dp < 0. (3.10)
n=1

Fix a sequence (e,)72, of positive numbers, such that Y | &, < 1/4. Pass-
ing to subsequences if necessary, we can assume by virtue of (3.9) and (3.10)
that

/ x—n—yn odu < en, neN (3.11)

al @

/ |z, |du < e,, neN. (3.12)
I\Q

The inequality (3.11) and the principle of small perturbations (Proposi-
tion 1.a.9 in [25]) prove that (%2, )n is a basic sequence equivalent to (yn)n
as sequences in L1 (€2, B(Q2), v). However, the operator G: L1(92, B(Q2), u) —
L1(9Q,B(Q),v) that maps each f to f/¢ is a bijective isometry, so (2, xq)n is &
basic sequence in Ly (I, B, u). Therefore, a second application of the principle
of small perturbations in combination with (3.12) yields a positive integer ng,
such that (), = (TpXa + TaXnQ)nen, 18 basic in Ly (I, B, u). Let (a},)n%,,
be the sequence of coordinate functionals on span {z,};2,, associated with
()5, and take a Hahn-Banach extension x;, € Ly (I)* of each ay,, so that
(75,)5,,, s bounded.
As (G is a surjective isometry, so is the operator

J: Ly(I) — Li(Q, B(Q),v) @1 L1 (T\ Q, B(I\ ©2), p)

that maps each f to (£ la, flne ) For every n € N, let

Ln
Zn = (yn - Elﬂ ) —$n|ﬂ\sz) € L1(Qv) &1 Li(I\ Q, ).

It follows from (3.11) and (3.12) that ||z,| < 2&, for all n.

Fix 0 < & < 1. Thus, as J is a bijective isometry, J + K is a surjective
isomorphism for every operator K from L;(I) into L1 (2, v) &1 Li(I\ Q, 1)
with [|[K|| < e. For M = sup{||z}||}32,, we can take a positive integer
n1 > ng large enough, so that > °7  2en < e/M, and therefore, the operator

K: Li(I) — Li(,v) &1 Li(I\ Q, ) that maps each 2 to Y 07 (x5, )2,
is well defined and ||K|| < €. Hence, J + K is a bijective isomorphism and
(J + K)(z) = (yn,0) for all n > ny.

Next, Theorem 3.1 provides a decomposition L (Q,v) = Z; & Z, such
that Z; ~ Zy ~ L1(I) and each Z; contains infinitely many elements y,,.

Therefore, the subspaces

X = (J—|—K)71(Z1 D1 Ll(]I\Qa,u))v
Xo = (J+K) ' (2)

—~
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are both isomorphic to Li(I) and each X; contains infinitely many elements
ZT,. Hence, dim X; NV = oo for all 1 <14 < 2, and the proof is done. O

4. The Strong Property (B) on L, Spaces

We first prove that each L,(I), 1 < p < oo, has the strong property (B).

Theorem 4.1. Let 1 < p < oo and let V' be an infinite-dimensional subspace
of Ly. Then, there exists a decomposition L, = X;1 @ Xa, such that both
subspaces X1 and X5 are isomorphic to L, and both intersections V N X
and V N Xy are infinite-dimensional.

Proof. The proof is organized into the cases (a) p = 1; (b) p = 2; (¢) p €
(1,2) U (2,00).
(a) Tt is well known that an infinite-dimensional subspace of L, is either
reflexive or contains a subspace isomorphic to ¢; and complemented in L; [1]
[Proposition 5.6.2]. In the first case, when V is reflexive, the result follows
from Theorem 3.3. In the second case, V' has a pair of subspaces F and Y,
such that E ~ ¢; and L1 = E®Y . Since L; is primary (Corollary 5.5 in [15]),
Y is isomorphic to Li. Hence, F and Y can be decomposed as F = E; & Fs
andY =Y, ®Y; where /1 ~ Fy ~ Es and Ly ~ Y] ~ Y5. Then, X; := E;®Y;
for i = 1,2 are the required spaces in the statement.

It is straightforward that L1 = Xy & Xo, L1 ~ L1 ® {1 ~ X; and E; is
an infinite-dimensional subspace of EN X; for ¢ =1, 2.
(b) The proof for this case is immediate, because Lo is a Hilbert space,
and therefore, each of its infinite-dimensional subspaces is complemented and
isomorphic to Lo.
(¢) Take a normalized basic sequence (z,,)52; in V and a sequence (g,,)52; of
positive real numbers, such that >~ 7, &, < 1/4. As (2,)22; is weakly null, it
contains a subsequence (z/,)%° ; which can be approximated by a block basic
sequence of the Haar basis (h;)52, in L,, that is, there exist real numbers
A; and an increasing sequence (k)5 ; of non-negative integers with k; = 0,
such that for y,, := Zk"kifl il

7, = ynll < en for all n. (4.1)

Let (y;)nz1 C Lj be a sequence of Hahn-Banach extensions of the coordi-
nate functionals (a%)2° ; C span {y, }>2, associated with the basic sequence
(Yn)ny-

Since the Haar basis of L, is monotone, so is (y,)52; and, therefore, as
lynll <1 + 1/4, we have ||yi] <2 + 1/2 for all n.

Thus, the operator K : L, — L,, that maps each z to Y~ (yx, z)(x], —
yn) is well defined and ||K|| < Y07 &, |lyil <1/2 + 1/8 < 1.
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Consider the subspaces of L,, given by
Zl = span{hi: k2n—l S 7 S an — 1, n e N}
Zy :=span{h;: kop <1< kapt1 — 1, n € N}
Y7 :=span{yan_1: n € N} C 73
Yo :=span{ys,: n € N} C Zy
V1 :=span{ab, ,:n € N}
Vs, := span{xh,: n € N}.
Note that (I + K)(y,) = «,. Hence, (I+ K)(Y1) =V and (I + K)(Y3) = Va.
As ||[K|| < 1, it follows that I + K is a bijective isomorphism, and there-
fore, Y1 ~ V7 and Y ~ Vb; analogously, for Wy := (I + K)(Z;) and Wy :=
(I + K)(Z3), we have W; ~ Z; for i = 1,2. Moreover, since (h;)2, is uncon-
ditional, then L, = W; @ W5 and one of the following two cases happen (see
[19] and also [3][Theorem 1, page 129]:)
(i) both subspaces W7 and Ws are isomorphic to Ly;
(ii) one of the subspaces Wy, Ws is isomorphic to L, and the other is iso-
morphic to £,.
If (i) holds, since V; C W; for i = 1,2, the subspaces X; := W; and X, := Wy
satisfy the statement of the theorem.

If (ii) holds, assume Wy ~ L, and Wy ~ £,,. Then, a similar argument
to one given in case (a) works: since Vo C Wy ~ £,,, W5 can be decomposed as
Wy = F1®&Fo®G where Fy ~ Fy ~ {,, and F1&F, C Vs [1][Proposition 2.2.1]).
Decompose Wi as Wi = H; & Hy with Hy ~ Hy ~ L,. The subspaces
X1 = H1®F and X5 := Hy@Fy®G are both isomorphic to Ly, L, = X1 05X,
and F; C V N X, are infinite-dimensional for ¢ = 1,2. The proof is complete.

O

Cross and his coauthors proved the following result for L, with 1 <p <
oo from the fact that these spaces have property (B). Thus, their proof also
works for L:

Corollary 4.2. Given any Banach space Y and an operator T € L(L1,Y),
such that R(T) is dense and non-closed in'Y, there exists a pair of operators
Ty and Ty in L(L1,Y) satisfying the following conditions:

(i) R(T;) is dense and non-closed in'Y fori=1 andi=2;

(i) R(T) = R(T1) + R(T2);

(iii) R(Ty) N R(T») = {0}.

Proof. Since L has property (B) and is separable, Theorem 5.3 in [10] yields
the desired result. O

Theorem 4.1 can be extended to finite measure spaces with no atom.

Proposition 4.3. For every purely non-atomic, finite measure space (€, 3, v)
and every 1 < p < oo, the space L,(Q2,3,v) has the strong property (B).

Proof. Let V be an infinite-dimensional subspace of L, (€, X, v), and let E be
an infinite-dimensional, separable subspace of V. Let {z,},en be a countable
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dense subset of E. Let A, := {w € Q:a < z;(w) < b} and let M be
the sub-o-algebra of ¥ generated by {A;.p:j € N, a € Q, b € Q}. Let
M = L,(Q, M,v| s ), so that M ~ L,(I).

As observed in Proposition II1I.A.2 in [31], F is a separable subspace
of M, and M is a complemented subspace of L,(£2,3,v) via the projection
E(:|M). Therefore, E C M & N = L,(Q,3,v).

It is immediate from Theorem 9, page 127 in [24] that L, (I)x L, (Q, X, v) ~
L,(,%,v) and L,(Q,3,v) x L,(Q,3,v) ~ L,(,3,v).

Hence, by virtue of Theorem 4.1, M can be decomposed as M = A; @
Ay @ B where Ay ~ Ay ~ B ~ L,(I) and the intersections ENA; and EN Ay
are infinite-dimensional.

Thus

ECL,(0Xv)=A &A,&(BaN).
However, B&N can be decomposed as D@Dy where Dy ~ Dy ~ L,(Q, X, v),
which leads to

ECAl@AQ@Dl@DQ:(Al@Dl)@(AQ@Dg):LP(Q,E,Z/).

Clearly, L,(,2,v) ~ A; & D; and V N (A; @ D;) is infinite-dimensional for
i = 1,2, which proves that L,(£2,%,v) has the strong property (B). O
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