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Abstract. A functionally-fitted Numerov-type method is developed for
the numerical solution of second-order initial-value problems with oscil-
latory solutions. The basis functions are considered among trigonomet-
ric and hyperbolic ones. The characteristics of the method are studied,
particularly, it is shown that it has a third order of convergence for the
general second-order ordinary differential equation, y′′ = f (x, y, y′), it is
a fourth order convergent method for the special second-order ordinary
differential equation, y′′ = f (x, y). Comparison with other methods in
the literature, even of higher order, shows the good performance of the
proposed method.

Mathematics Subject Classification. Primary 65L05; Secondary 65L20.

Keywords. Block method, convergence analysis, functionally-fitted
approach, numerov-type method, trigonometric functions, hyperbolic
functions.

1. Introduction

Conventionally, second-order differential equations (DEs) whether solving an-
alytically or numerically, can be reduced into an equivalent system of first-
order equations to leverage on methods constructed for first-order systems
(see Enright [7], Lambert [28], Brugnano et al. [5] and Fatunla [12] for a
numerical point of view). According to Onumanyi et al. [31] and Awoyemi
[4], the approach of reducing a second-order differential equation to a system
of first-order differential equations is marred by a large human effort and
a more demanding storage memory during implementation. It is even more
complex when writing a computer code for the method, particularly the sub-
routine needed to supply starting values required for such method, due to the
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large dimension of the resulting first-order system. Twizell and Khaliq [42],
Coleman and Duxbury [6], Hairer and his collaborators [18,19], and Lambert
and Watson [29], established that solving second-order Differential Equations
directly saves about half of the storage space. Hence, the direct solution of
second-order DEs is more preferable.

In what follows we will consider a Functionally-Fitted Block Numerov’s
Method (FFBNM) for the integration of second-order Initial-Value Problem
(IVP) systems of the form

y′′ = f (x, y, y′), y (x0) = y0, y′ (x0) = y′
0, (1.1)

whose solution is assumed to be oscillatory or periodic, and the frequency
is approximately known in advance, with f :R × R

m×R
m → R

m a smooth
function that satisfies a Lipschitz condition, being m the dimension of the
system.

As noticed before, solving the problem in (1.1) directly is preferable,
since about half of the storage space can be saved, especially, if the dimension
of the system is large (see Coleman and Duxbury [6]).

Many prominent authors including Simos [39], Coleman and Duxbury
[6], Achar [3], Franco [14–17], Wang et al. [46], Van Daele et al. [43], Wang
et al. [47,48], Fang et al. [8–11,49], Tsitouras [41], Li et al. [30], Jator et
al. [21–27], Ramos et al. [32–38,40], among others, have presented numerical
methods for directly solving the equation in (1.1) without transforming it into
an equivalent system of first-order ODEs. However, the above contributions
did not consider that the approximate interpolating function was a linear
combination of monomial, trigonometric terms and hyperbolic terms. We
emphasize that we will introduce a method which approximates the solution
of the IVP in (1.1) considering that the method is exact when the solution is in
the space generated by σ (x)= {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)}. This
functional basis is motivated by its easiness to analyze and its expectations
to provide improved approximations for second-order initial-value problems
with periodic or oscillatory solutions.

The rest of the paper is organized as follows: the theoretical and basic
elements of the FFBNM are discussed in Sect. 2. The basic properties of the
FFBNM are studied in Sect. 3. Some numerical examples are considered in
Sect. 4 to illustrate the performance of the method, and finally, Sect. 5 puts
and end to the paper with some conclusions.

2. Development of the FFBNM

In this section, we develop a Continuous Block Method of Numerov type
(CBNM) on the interval [xn, xn+2] to produce a discrete Block Numerov
Method. To do this we consider m = 1, that is, the scalar case, although,
as can be seen in the numerical section, the method can be applied in a
component-wise formulation for solving differential systems. Three comple-
mentary formulas as a by-product via the CBNM formula to approximate
the first derivatives are generated too, to form the Block Numerov Method.
The CBNM has the general form
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τ(x) =
1∑

j=0

αj(x, u)yn+j + h2
2∑

j=0

βj(x, u)fn+j , (2.1)

where u = ωh , and αj , βj are coefficients to be determined uniquely, that
depend on the parameter frequency ω and the step size h. As usual, yn+j , y

′
n+j

are numerical approximations to the exact values y (xn+j) , y′(xn+j), and
fn+j = f

(
xn+j , yn+j , y

′
n+j

)
.

We consider that the true solution y(x) is locally approximated on the
block interval [xn, xn+2] by a solution τ(x) of the form

τ(x) = a0 + a1sin (ωx) + a2cos (ωx) + a3sinh (ωx) + a4cosh (ωx), (2.2)

where the coefficients ai will be obtained demanding that the following system
of equations is satisfied

{
τ (xn+j) = yn+j , j = 0, 1,
τ ′′(xn+j) = fn+j , j = 0, 1, 2.

(2.3)

Now we state the main result that aids the construction of the CBNMs
as follows:

Theorem 2.1. Let τ(x) be the function given in (2.2) which satisfies the sys-
tem in (2.3). The continuous approximation that will be used to obtain the
FFBNM is given by

τ (x) = ΘT
(
ς−1

)T
[
(Ω−1)

T
σ(x)

]
, (2.4)

where ς and Ω are 5 × 5 non-singular lower and upper triangular matrices
given by

ς =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
ς2,1 1 0 0 0
ς3,1 ς3,2 1 0 0
ς4,1 ς4,2 ς4,3 1 0
ς5,1 ς5,2 ς5,3 ς5,4 1

⎤

⎥⎥⎥⎥⎦
, Ω =

⎡

⎢⎢⎢⎢⎣

Ω1,1 Ω1,2 Ω1,3 Ω1,4 Ω1,5

0 Ω2,2 Ω2,3 Ω2,4 Ω2,5

0 0 Ω3,3 Ω3,4 Ω3,5

0 0 0 Ω4,4 Ω4,5

0 0 0 0 Ω5,5

⎤

⎥⎥⎥⎥⎦
,

σ(x) and Θ are vectors defined by σ (x)=(σ0 (x) , σ1 (x) ,σ2 (x) ,σ3 (x) , σ4 (x))T ,
with {σj (x)}4j=0 = {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)} and

Θ=(yn,yn+1,fn,fn+1,fn+2)
T , respectively (the superscript T denotes the trans-

pose).

Proof. Define the following non-singular matrix as the matrix containing the
evaluation of the basis functions at the grid points,

V =

⎡

⎢⎢⎢⎢⎣

σ0(xn) σ1(xn) σ2(xn) σ3(xn) σ4(xn)
σ0(xn+1) σ1(xn+1) σ2(xn+1) σ3(xn+1) σ4(xn+1)
σ′′
0 (xn) σ′′

1 (xn) σ′′
2 (xn) σ′′

3 (xn) σ′′
4 (xn)

σ′′
0 (xn+1) σ′′

1 (xn+1) σ′′
2 (xn+1) σ′′

3 (xn+1) σ′′
4 (xn+1)

σ′′
0 (xn+2) σ′′

1 (xn+2) σ′′
2 (xn+2) σ′′

3 (xn+2) σ′′
4 (xn+2)

⎤

⎥⎥⎥⎥⎦
.
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To solve the system of equations in (2.3), we require that the coefficients in
(2.1) are expressed in terms of the assumed basis functions as follows

αj (x, u) =
4∑

i=0

αi,j (x, u)σi (x) , j = 0, 1. (2.5)

βj (x, u) =
4∑

i=0

βi,j (x, u)σi (x) , j = 0, 1, 2. (2.6)

Substituting equations (2.5) and (2.6) into the equation (2.1) yields

τ (x) =
4∑

i=0

{
1∑

j=0

αi,j(x, u)yn+j+h2
2∑

j=0

βi,j(x, u)fn+j

}
σi(x). (2.7)

Letting

Δi=
1∑

j=0

αi,j (x, u)yn+j+h2
2∑

j=0

βi,j (x, u)fn+j , i = 0(1)4,

equation (2.7) becomes

τ (x) =
4∑

i=0

Δiσi (x) = ΔT σ (x) , (2.8)

where Δ = (Δ0,Δ1,Δ2,Δ3,Δ4)
T is a vector of undetermined coefficients.

Imposing the conditions in equation (2.3) on equation (2.8), a system of
five equations expressed as V Δ=Θ is obtained, being the undetermined co-
efficients ascertained simultaneously through the LU decomposition method.
Factorizing V into a product of a non-singular lower matrix, ς, and a non-
singular upper triangular one, Ω, and using the LU decomposition method
we obtain

Δ=Ω−1(ς−1Θ).

It follows from (2.8) that

τ (x) =
(
Ω−1(ς−1Θ)

)T
σ (x) = ΘT

(
ς−1

)T
[
(Ω−1)

T
σ(x)

]
,

which is the desired result in (2.4). �

Remark 2.2. The specific form of matrices ς, Ω and V is provided in the
Appendix.

Remark 2.3. We emphasize that equation (2.4) is of the form presented in
equation (2.1), which together with its first derivative provide the main for-
mula and three complementary formulas of the Functionally-Fitted Block
Numerov Method (FFBNM).
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2.1. Specification of FFBNM

The main formula and the three complementary formulas that form the
block method FFBNM are obtained by evaluating the equation in (2.4) at
x = xn+2, and its first derivative at the set of points {xn, xn+1, xn+2}. The
resulting formulas are given by

h y′
n = α0,3yn + α1,3yn+1 + h2 (β0,3 (u) fn + β1,3 (u) fn+1 + β2,3 (u) fn+2) ,

h y′
n+1 = α0,2yn + α1,2yn+1 + h2 (β0,2 (u) fn + β1,2 (u) fn+1 + β2,2 (u) fn+2) ,

h y′
n+2 = α0,1yn + α1,1yn+1 + h2 (β0,1 (u) fn + β1,1 (u) fn+1 + β2,1 (u) fn+2) ,

yn+2 − 2yn+1 + yn = h2 (β0 (u) fn + β1 (u) fn+1 + β2 (u) fn+2) . (2.9)

The coefficients of these formulas are as follow:

α1,3 = −α0,3 =
u

2
(cot(u) + coth(u))

β0,3 =
b03

2u sinh (u) (− cosh (u) + cos (u)) sin (u)

β1,3 =
b13

2u sinh (u) (− cosh (u) + cos (u)) sin (u)

β2,3 =
(− cos (u) + 1) sinh (u) − sin (u) (cosh (u) − 1)

u (sin (u) sinh (2u) − sinh (u) sin (2u))
(2.10)

with

b03 = (− sinh (u) cos (u) − sin (u) (cos (u) − 1)) cosh (u) − sin (u)

+
(
(cos (u))2 + cos (u) − 1

)
sinh (u) + sin (u) (cosh (u))2 ,

b13 = ((− sin (u) − sinh (u)) cos (u) + 2 sinh (u)) cosh (u)

− sinh (u) (cos (u))2 + 2 sin (u) cos (u) − sin (u) (cosh (u))2 .

α1,2 = −α0,2 =
u

2
(csc(u) + csch(u))

β0,2 =
sinh (2u) + sin (2u) − 2 sinh (u) − 2 sin (u)

2u (sin (u) sinh (2u) − sinh (u) sin (2u))

β1,2 = − (sin (u) + sinh (u)) (2 cos (u) cosh (u) − cosh (u) − cos (u))
2u sinh (u) (cosh (u) − cos (u)) sin (u)

β2,2 =
(cos (u) − 1) sinh (u) + sin (u) (cosh (u) − 1)

u (sin (u) sinh (2u) − sinh (u) sin (2u))
(2.11)

α1,1 = −α0,1 =
u

2
(cot(u) + coth(u))

β0,1 =
b01

2u sinh (u) (− cosh (u) + cos (u)) sin (u)

β1,1 = − b11
2u (sin (u) sinh (2u) − sinh (u) sin (2u))

β2,1 =
cosh (2u) sin (u) + cos (2u) sinh (u) − cosh (u) sin (u) − sinh (u) cos (u)

u (sin (u) sinh (2u) − sinh (u) sin (2u))
(2.12)
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with

b01 = sin (u) − (sinh (u) cos (u) + sin (u) (cos (u) − 1)) cosh (u)

+
(
− (cos (u))2 + cos (u) + 1

)
sinh (u) − sin (u) (cosh (u))2 ,

b11 = 2 cosh (2u) sin (2u) − cosh (2u) sin (u) + 2 sinh (2u) cos (2 u) − sin (u)
− sinh (2u) cos (u) − cos (2 u) sinh (u) − sin (2u) cosh (u) − sinh (u) ,

β0 =
cos (u) + cosh (u) − 2
u2 (cosh (u) − cos (u))

β1 =
(4 cos (u) − 2) cosh (u) − 2 cos (u)

u2 (− cosh (u) + cos (u))

β2 =
cos (u) + cosh (u) − 2
u2 (cosh (u) − cos (u))

(2.13)

Remark 2.4. We note that the two coefficients β0 and β2 of the main formula
of the FFBNM are the same, and thus it is a symmetric formula. The plots
of these coefficients are shown in Fig. 1.

For small values of u, the coefficients of the FFBNM may be subject to heavy
cancellations. In that case the Taylor series expansion of the coefficients must
be used (see Lambert [28]). The series expansion of each of the coefficients,
up to the twelfth order of approximation, is as follows

α1,3 = −α0,3 = 1 − u4

45
− u8

4725
− 1382u12

638512875

β0,3 = − 7
24

− 73u4

40320
− 1717u8

95800320
− 85829u12

464950886400

β1,3 = −1
4

− 53u4

8640
− u8

17920
− 1238269u12

2092278988800

β2,3 =
1
24

+
37u4

120960
+

331u8

95800320
+

145043u12

4184557977600
(2.14)

α1,2 = −α0,2 = 1 +
7u4

360
+

127u8

604800
+

1414477u12

653837184000

β0,2 =
1
8

+
211u4

120960
+

571u8

31933440
+

772349u12

4184557977600

β1,2 =
5
12

+
25u4

4032
+

535u8

9580032
+

1501u12

2536095744

β2,2 = − 1
24

− 37u4

120960
− 331u8

95800320
− 145043u12

4184557977600
(2.15)

α1,1 = −α0,1 = 1 − u4

45
− u8

4725
− 1382u12

638512875

β0,1 =
1
24

− 283u4

120960
− 227u8

13685760
− 71527u12

380414361600

β1,1 =
13
12

− 979u4

60480
− 1217u8

47900160
− 15431u12

22992076800

β2,1 =
3
8

− u4

4480
+

17u8

3548160
+

4841u12

154983628800
(2.16)
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Figure 1. Graphical representation of coefficients βi of FF-
BNM
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β0 =
1
12

− 11u4

60480
+

37u8

79833600
− 7463u12

6276836966400

β1 =
5
6

− 23u4

6048
+

17u8

1596672
− 17291u12

627683696640

β2 =
1
12

− 11u4

60480
+

37u8

79833600
− 7463u12

6276836966400
(2.17)

It is worth to note here that as u → 0 in the power series expansion of
the coefficients (or in the coefficients themselves), the fourth order Numerov
method given by

yn+2 − 2 yn+1 + yn =
h2

12
(fn + 10 fn+1 + fn+2)

is recovered from the main method of the FFBNM.

3. Basic Properties of the FFBNM

This section discuses the basic properties of the FFBNM which include the
Local Truncation Error, Order, Error Constant, Zero-Stability, Convergence,
Linear Stability and Region of Stability.

3.1. Local Truncation Error, Order and Consistency of the FFBNM

Theorem 3.1. The local truncation error of the main formula in the FFBNM
method has the form

LTE = C6h
6
(
ω4y′′(xn) − y(6)(xn)

)
+ O

(
h7

)
,

where C6 is the so called error constant.

Proof. For the main formula, with the assumption that y (x) is a sufficiently
differentiable function, we consider the Taylor series expansions of y (xn + jh),
j = 0, 1, and y′′ (xn + jh) , j = 0, 1, 2. We replace in the formula the ap-
proximate values for the exact ones, that is, yn+j → y (xn + jh) , fn+j →
y′′ (xn + jh) and substitute the coefficients β0 (u) , β1 (u) and β2 (u) given in
(2.13) into the last formula in (2.9). After simplifying, we obtain

LTE = y (xn + 2h) −
(

y(xn) − 2y(xn + h) + h2
2∑

j=0

βj (u)y′′ (xn + jh)

)

= C6h
6
(
ω4y′′(xn) − y(6)(xn)

)
+ O

(
h7

)
.

Following this procedure, the local truncation error is obtained for each of
the formulas in (2.9). These errors are given by

LTE =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−h5

45

(
y(5) (xn) − ω4y′ (xn)

)
+ O

(
h6

)

7h5

360

(
y(5) (xn) − ω4y′ (xn)

)
+ O

(
h6

)

−h5

45

(
y(5) (xn) − ω4y′ (xn)

)
+ O

(
h6

)

−h6

240

(
y(6) (xn) − ω4y′′ (xn)

)
+ O

(
h7

)

(3.1)
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which indicates that the order of the main formula is p = 4 and the order
of each complimentary formula is p = 3. The order of convergence of the
FFBNM will be analyzed below. �

Theorem 3.2. The local truncation error of the main formula of the FFBNM
preserves its basis functions, that is, when the solution of the problem in (1.1)
is a linear combination of the basis functions {σi}4i=0 the local truncation
error vanishes.

Proof. Solving the differential equation y(6) (x) − ω4y′′ (x) = 0 results in
the following fundamental set of solutions {1, x, sin(ωx), cos(ωx), sinh(ωx),
cosh(ωx)}, which contains the basis functions of the FFBNM, from which
the statement follows immediately. �

Remark 3.3. Following the definition by Lambert [28], a numerical approach
for solving (1.1) is said to be consistent if it has an order greater than one.
We thus have that the FFBNM is consistent.

3.2. Analysis of Convergence of the FFBNM

The analysis of convergence of the FFBNM is done following the guidelines
by Jain and Aziz [20], Jator and Li [24] and Abdulganiy et al. [1].

Theorem 3.4. Let Y be a vector that approximates the true solution vec-
tor Y , where Y is the solution of the system obtained from the FFBNM
given by the equations in (2.9) on the successive block intervals [x0, x2],
[x2, x4], . . . , [xN−2, xN ], with N even.

If we denote by E = (e1, . . . , eN , he′
1, . . . , he′

N )T the error vector, where
ej = y (xj) − yj and he′

j = hy′ (xj) − hy′
j , j = 1, 2, . . . , N , assuming that the

exact solution is sufficiently differentiable on [x0, xN ], then, for sufficiently
small h the FFBNM is a third-order convergent method, that is,

‖E‖ =
∥∥Y − Y

∥∥ = O(h3).

Proof. Let the (2N × N)-matrices of coefficients obtained from the FFBNM
method be defined as follows:

P1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1,3 0 0 0 0 0 0 · · · 0 0 0
−α1,2 0 0 0 0 0 0 · · · 0 0 0
−α1,1 0 0 0 0 0 0 · · · 0 0 0
−2 1 0 0 0 0 0 · · · 0 0 0
0 −α0,3 −α1,3 0 0 0 0 · · · 0 0 0
0 −α0,2 −α1,2 0 0 0 0 · · · 0 0 0
0 −α0,1 −α1,1 0 0 0 0 · · · 0 0 0
0 1 −2 1 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · −α0,3 −α1,3 0
0 0 0 0 0 0 0 · · · −α0,2 −α1,2 0
0 0 0 0 0 0 0 · · · −α0,1 −α1,1 0
0 0 0 0 0 0 0 · · · 1 −2 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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P2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · · 0 0 0
1 0 0 0 0 0 0 · · · 0 0 0
0 1 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0
0 1 0 0 0 0 0 · · · 0 0 0
0 0 1 0 0 0 0 · · · 0 0 0
0 0 0 1 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · 1 0 0
0 0 0 0 0 0 0 · · · 0 1 0
0 0 0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q = h2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1,3 β2,3 0 0 0 0 0 · · · 0 0 0
β1,2 β2,2 0 0 0 0 0 · · · 0 0 0
β1,1 β1,2 0 0 0 0 0 · · · 0 0 0
β1 β2 0 0 0 0 0 · · · 0 0 0
0 β0,3 β1,3 β2,3 0 0 0 · · · 0 0 0
0 β0,2 β1,2 β2,2 0 0 0 · · · 0 0 0
0 β0,1 β1,1 β2,1 0 0 0 · · · 0 0 0
0 β0 β1 β2 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · β0,3 β1,3 β2,3

0 0 0 0 0 0 0 · · · β0,2 β1,2 β2,2

0 0 0 0 0 0 0 · · · β0,1 β1,1 β2,1

0 0 0 0 0 0 0 · · · β0 β1 β2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the 2N -vector containing the known values given by

C = (−α0,3y0 + hy′
0 − h2β0,3f0,−α0,2y0 − h2β0,2f0,

−α0,1y0 − h2β0,1f0, y0 − h2β0f0, 0, . . . ., 0)T .

Let consider the vectors of exact values

Y = (y(x1), . . . , y(xN ), hy′(x1), . . . , hy′(xN )),
F = (f(x1, y(x1), y′(x1)), . . . , f(xN , y(xN ), y′(xN ))),

the vectors of approximate values

Ȳ = (y1, . . . , yN , hy′
1, . . . , hy′

N ),
F̄ = (f1, . . . , fN ),

and the vector of local truncation errors L(h) = (L1, . . . , L2N ).

Remark 3.5. Note that to form the global method the formulas in (2.9) are
considered for n = 0, 2, 4, . . . , N − 2, so we have a total of 2N formulas and
2N unknowns. Thus, we have a total of 2N truncation errors provided by
the formulas in (3.1), which form the vector L(h).

Taking the (2N × 2N)-matrix P = (P1|P2), the exact form of the system
formed by the formulas in (2.9) along the two-step block intervals on [x0, xN ]
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is

PY − QF + C = L(h). (3.2)

On the other hand, the system may be written as

P Y − QF̄ + C = 0. (3.3)

Subtracting equation (3.3) from equation (3.2) we obtain

P (Y − Y) − Q(F − F̄ ) = L(h), (3.4)

and having in mind that E = (e1, . . . , eN , he′
1, . . . , he′

N )T , the above equation
becomes

PE − Q
(
F − F̄

)
= L(h). (3.5)

Applying the Mean-Value Theorem, we obtain that F − F̄ = JE, where J is
the (N × 2N)-matrix given as

J =

⎛

⎜⎜⎜⎜⎝

∂f
∂y (ξ1) 0 · · · 0 0 1

h
∂f
∂y′ (ξ1) 0 · · · 0

0 ∂f
∂y (ξ2) · · · 0 0 0 1

h
∂f
∂y′ (ξ2) · · · 0

...
...

. . .
...

...
...

...
. . .

...
0 0 · · · ∂f

∂y (ξN ) 0 0 0 · · · 1
h

∂f
∂y′ (ξN )

⎞

⎟⎟⎟⎟⎠

and the partial derivatives are applied at intermediate points {ξi}N
i=1, which

are on each corresponding line joining (xi, y(xi), y′(xi)) to (xi, yi, y
′
i). In view

of this, the equation in (3.5) can be written as

(P − QJ)E = L(h).

Let M denote the matrix M = −QJ . Then, we have that

(P + M)E = L(h). (3.6)

For sufficiently small h, the matrix P+M is invertible (see [20,24]). Therefore,
if we denote by

(P + M)−1 = D, (3.7)

and consider the maximum norm, we can obtain after expanding in Taylor
series the terms in D that ‖D‖ = O(h−2). Finally, we have that

‖E‖ = ‖DL(h)‖ = ‖D‖‖L(h)‖
= |O(h−2)| |O(h5)| = O(h3).

Therefore, the FFBNM is a third-order convergent method. �

Remark 3.6. In case of a special second-order equation, that is, y′′ = f(x, y),
where the first derivative is absent, we can proceed similarly. Nevertheless, in
view of the form of the vector L(h) we see that, assuming sufficient smooth-
ness, we obtain a higher order of convergence:

|ej | = |y(xj) − yj | = |O (
h−2

) | |O (
h6

) | = O
(
h4

)
, j = 1, 2 . . . N.
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3.3. Stability of the FFBNM

Following Fatunla [13], the FFBNM can be represented in the following block
matrix form(

A(1) ⊗ I
)

Yμ+1 =
(
A(0) ⊗ I

)
Yμ + h2

(
B(1) ⊗ I

)
Fμ+1

+h2
(
B(0) ⊗ I

)
Fμ (3.8)

where Yμ+1 =
(
yn+1, yn+2, hy′

n+1, hy′
n+2

)T
, Yμ =

(
yn−1, ynhy′

n−1, hy′
n

)T ,

Fμ+1 =
(
fn+1, fn+2, hf ′

n+1, hf ′
n+2

)T , Fμ =
(
fn−1, fn, hf ′

n−1, hf ′
n

)T , I is the
identity matrix of dimension four, ⊗ denotes the Kronecker product of matri-
ces, and A(0), A(1), B(0), B(1) are 4×4 matrices obtained from the coefficients
of the method, and given by

A(1) =

⎛

⎜⎜⎝

−α1,3 0 0 0
−α1,2 0 1 0
−α1,1 0 0 1
−2 1 0 0

⎞

⎟⎟⎠ , A(0) =

⎛

⎜⎜⎝

0 α0,3 0 −1
0 α0,2 0 0
0 α0,1 0 0
0 −1 0 0

⎞

⎟⎟⎠ ,

B(1) =

⎛

⎜⎜⎝

β1,3 β2,3 0 0
β1,2 β2,2 0 0
β1,1 β2,1 0 0
β1 β2 0 0

⎞

⎟⎟⎠ , B(0) =

⎛

⎜⎜⎝

0 β0,3 0 0
0 β0,2 0 0
0 β0,1 0 0
0 β0 0 0

⎞

⎟⎟⎠ .

3.3.1. Zero Stability of the FFBNM.

Definition 3.7. A block method is zero-stable if the roots of its first charac-
teristic polynomial, ρ(R) = det(RA(1) − A(0)), are of modulus less than or
equal to one, and for those which modulus one the multiplicity is not greater
than two (see Fatunla [12]).

Proposition 3.8. The FFBNM is zero-stable.

Proof. From the normalized first characteristic polynomial of the FFBNM,
we have that

RA(1) − A(0) =

⎡

⎢⎢⎣

−Rα1,3 −α0,3 0 1
−Rα1,2 −α0,2 R 0
−Rα1,1 −α0,1 0 R
−2R R + 1 0 0

⎤

⎥⎥⎦,

so that the characteristic equation is ρ(R) = det(RA(1) − A(0)) = 0, that
is, −ηR2 (R − 1)2 = 0, with η = α0,1. Consequently, according to the above
definition the method is zero-stable. �

3.3.2. Linear Stability of the FFBNM. Applying the FFBNM specified by
the formulas in (2.9) to the test equation y′′ = λ2y and letting z = λh yields

Yμ+1 = M(z, u)Yμ, (3.9)

where

M(z, u) = (A(1) − zB(1))−1(A(0) + zB(0)) (3.10)
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Figure 2. z − u stability region for the FFBNM

is the so-called stability matrix or amplification matrix, which determines the
stability of the FFBNM. The amplification matrix M(z, u) for FFBNM has
eigenvalues given by (ϕ1, ϕ2, ϕ3, ϕ4) = (0, 0, 0, ϕ4), where ϕ4 (z, u) = p4(z,u)

q4(z,u)

is the stability function.

Definition 3.9. The region of linear stability of the method is the domain
in the z − u plane in which the spectral radius of the amplification matrix,
ρ (M (z, u)), verifies |ρ (M (z, u))| ≤ 1 (see Jator [27]).

The z − u stability region constructed for the FFBNM is plotted in Fig. 2.

4. Implementation of the FFBNM

The FFBNM is implemented in a block-by-block fashion for solving the prob-
lem in (1.1) on [x0, xN ]. We use the formulas in (2.9) to obtain the approxima-
tions yn+1, yn+2, and y′

n+1, y
′
n+2, simultaneously over the sequence of non

overlapping intervals [x0, x2], [x2, x4] , . . . , [xN−2, xN ], with N even. When
the method is applied on [x0, x2] the approximate values {y1, y2, y

′
1, y

′
2} are

obtained simultaneously, assuming that y0 and y′
0 are known from the IVP

in (1.1); on the next interval [x2, x4] we obtain the values {y3, y4, y
′
3, y

′
4}

simultaneously, since y2 and y′
2 are known from the previous block. This

process continues until we obtain the numerical solution of equation (1) on
the entire interval of integration. We emphasizes that this procedure makes
the FFBNM a self-starting method which does not suffer the disadvantage of
predictor-corrector modes. We also note that the computations were carried
out using a written code in Maple 2016.2 on a Laptop with

1. 64 bit Windows 10 Pro Operating System,
2. Intel (R) Celeron CPU N3060 @ 1.60GHz processor, and
3. 4.00GB RAM memory.
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Table 1. Comparison of results for example 1

FFBNM EM8 HLMM BTDF8 BTDF10

NFE CD NFE CD NFE CD NFE CD NFE CD

126 9.1 2000 5.7 301 7.1 212 5.5 282 7.2
251 11.2 3000 8.2 601 9.5 422 8.3 562 11.0
501 12.7 4000 9.6 1201 11.5 842 10.9 1122 11.8
751 13.9 5000 10.5 1801 11.8 1262 11.8 1682 11.9
1001 14.1 6000 10.9 2401 11.8 1682 11.8 2242 11.9
1251 15.2 7000 11.1 3601 11.9 2522 11.9 3362 11.9

For non-linear problems, the code was enhanced by the feature fsolve in
Maple 2016.2.

4.1. Numerical Examples

This subsection examines the effectiveness of the FFBNM. Seven well-known
numerical examples with oscillating solutions that have appeared in the lit-
erature are considered. In the numerical investigations, we used two cri-
teria: accuracy and efficiency. A measure of accuracy is investigated us-
ing the maximum error of the approximate solution defined as ErrMax =
max‖y (xn) − yn‖∞ , where y(xn) is the exact solution and yn is the nu-
merical solution obtained using the FFBNM. The computational efficiency
criterion is specified at each of the considered examples.

4.2. Example 1

Consider the nonlinear Duffing equation given by

y′′ + y + y3 = B cos (Ωx) ,

whose exact solution is unknown. Its approximate theoretical solution ob-
tained by Van Dooren [44] is given by y (x) = C1 cos (Ωx) + C2 cos (3Ωx) +
C3 cos (5Ωx) + C4 cos (7Ωx) and the suitable initial conditions are y (0) =
C0, y

′ (0) = 0, where Ω = 1.01, B = 0.002, C0 = 0.200426728069, C1 =
0.200179477536, C2 = 0.246946143×10−3, C3 = 0.304016×10−6, C4 = 0.374×
10−9. This problem has been considered by Tsitouras [41], Jator [21] and Ja-
tor et al. [27] in the interval

[
0, 20.5π

1.01

]
, with ω = 1.01 using an explicit eighth

order method (EM8), a seventh order hybrid method (HLMM), and two third
derivative block methods of orders eighth and tenth (BTDF8 and BTDF10),
respectively. Table 1 shows the maximum norm of the global error for the
y-component of FFBNM given in the form 10−CD, where CD denotes the
number of decimal digits in comparison with the aforementioned methods.

The accuracy of FFBNM together with its efficiency, measured by
log10 (ErrMax), against the logarithm of the number of function evalua-
tions, log10 (NFE), are presented be means of the efficiency curves in Fig. 3.
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Table 2. Comparison of Results for Example 2

FFBNM TRI5 DIS6 TFARKN

N CD NFE N CD NFE N CD NFE N(rej) CD NFE

40 6.9 41 40 4.7 230 40 3.2 300 29(6) 2.8 250
80 7.1 81 80 6.9 300 80 5.3 450 88(9) 5.3 450
160 8.8 161 160 8.1 500 160 7.6 700 262(8) 7.9 1000

320 10.6 321 320 10.0 950 320 9.5 1250 811(4) 10.4 3250

As is evident from the results in Table 1 and the efficiency curves in
Figure 3, the FFBNM is a more efficient integrator for the considered non-
linear Duffing equation than the other methods used for comparison, even
for the higher order method BTDF10 in Jator et al. [27].

4.3. Example 2

Consider the nonlinear perturbed system on the range [0, 10] with ε = 10−3

y′′
1 = εϕ1 (x) − 25y1 − ε

(
y2
1 + y2

2

)
y1 (0) = 1, y′

1 (0) = 0, y′′
2

= εϕ2 (x) − 25y2 − ε
(
y2
1 + y2

2

)
y2 (0) = ε, y′

2 (0) = 5,

where

ϕ1 (x) = 1 + ε2 + 2ε sin
(
5x + x2

)
+ 2 cos

(
x2

)
+

(
25 − 4x2

)
sin

(
x2

)
,

ϕ2 (x) = 1 + ε2 + 2ε sin
(
5x + x2

) − 2 sin
(
x2

)
+

(
25 − 4x2

)
cos

(
x2

)
.

The solution in closed form is given by y1 (x) = cos (5x)+ε sin
(
x2

)
, y2 (x) =

sin (5x)+ε cos
(
x2

)
, which represents a periodic motion of constant frequency

with a small perturbation of variable frequency. This problem was selected
to show the performance of the FFBNM on a nonlinear perturbed system.
Thus, we choose ω = 5 as the fitting frequency. The errors of the FFBNM were
compared with a fifth order Trigonometrically-Fitted Runge–Kutta–Nyström
(TFARKN) method by Fang et al. [9], a fifth order trigonometrically-fitted
explicit method (TRI5) by Fang and Wu [8], and a sixth order hybrid method
with dissipation order seven (DIS6) in [17], as presented in Table 2.
Details of the results given in Table 2 and the efficiency curves plotting the
log10 (ErrMax) versus the log10 (NFE) in Fig. 4, reveal that the FFBNM is
an efficient integrator for the nonlinear perturbed system.

4.4. Example 3

Consider the periodically forced nonlinear IVP
{

y′′ + y3 + y = (cos (t) + ε sin (10t))3 − 99ε sin (10t) , 0 ≤ t ≤ 1000
y (0) = 1, y′ (0) = 10ε

with ε = 10−10 and whose analytic solution y (t) = cos (t) + ε sin (10t) de-
scribes a periodic motion of low frequency with a small perturbation of high
frequency. For this problem, ω = 1 is selected. The results of FFBNM in
comparison to the TFARKN by Fang et al. [9], the EFRK by Franco [14]
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Figure 3. The graphical representation of solution to Exam-
ple 1 and efficiency curves
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Figure 4. The graphical representation of solution to Exam-
ple 2, and efficiency curves
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Figure 5. The graphical representation of solution to Exam-
ple 3, and efficiency curves
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Table 3. Comparison of numerical results for example 3

FFBNM TFARKN EFRK EFRKN

Error NFE Error NFE Error NFE Error NFE

1.04 × 10−15 161 2.63 × 10−2 300 1.26 × 10−6 8000 7.94 × 10−6 2000
4.84 × 10−16 195 4.47 × 10−6 400 1.58 × 10−7 14000 1.58 × 10−7 5000
1.29 × 10−16 271 3.72 × 10−8 600 1.58 × 10−8 22000 1.26 × 10−8 9000
3.74 × 10−20 2071 1.17 × 10−13 4200 6.31 × 10−9 38000 1.00 × 10−9 19000

Table 4. Comparison of numerical results for example 4

FFBNM ETFFSH6S ARK4 ARK3/4 RK6

Error NFE Error NFE Error NFE Error NFE Error NFE

7.37 201 4.0 1202 3.4 200 3.6 200 1.6 8000
8.66 401 6.8 2399 4.8 400 4.4 400 3.2 12000
10.19 801 8.4 4786 5.9 700 5.7 700 5.2 24000
11.41 1601 10.2 9550 7.0 1200 6.9 1200 6.8 45000

and the EFRKN by Franco [15] are displayed in Table 3. The accuracy of the
FFBNM with the exact solution and its efficiency in terms of number of func-
tion evaluation as compared with the aforementioned methods are displayed
in Fig. 5.

It is apparent from the data in Table 3 and the plots in Fig. 5 that the
FFBNM is an efficient numerical integrator for this problem when compared
with the TFARKN, EFRK and EFRKN methods.

4.5. Example 4

As a fourth test problem, we consider the Duffing equation

y′′ +
(
ω2 + κ2

)
y = 2κ2y3, y (0) = 1, y′ (0) = ω,

whose solution in closed form is given by y (t) = sn
(
ωt; k

ω

)
and represents a

periodic motion in terms of the Jacobian elliptic function sn . In our exper-
iment, we take κ = 0.03, and ω = 5 as the fitting parameter. This Problem
was solved in the interval [0,100] with step sizes h = 1

2i for ETFFSH6S, a six
stage explicit trigonometrically method of order seven by Li et al. [30], ARK4
and ARK3/8, both adapted RK methods of fourth order and four stages by
Franco [15], and the RK6, the Butcher’s sixth-order method given in Hairer
et al. [19]. Table 4 shows the − log10 (MaxErr) of the numerical results. The
accuracy of FFBNM in comparison with the exact results and the numeri-
cal results for h = 1

2i , i = 2, 3, 4, 5 with the above mentioned methods are
presented in Fig. 6.
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Figure 6. The graphical representation of solution to Exam-
ple 4, and efficiency curves
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Table 5. Comparison of numerical results for example 5

FFBNM BNM TFC

N Error N Error N Error

1000 1.73 × 10−3 1000 3.59 × 10−3 5012 1.0 × 10−6

2000 1.44 × 10−8 2000 6.31 × 10−5 10000 1.3 × 10−8

4000 5.67 × 10−11 4000 1.01 × 10−6 17783 3.2 × 10−9

8000 9.90 × 10−12 8000 1.60 × 10−8 50119 1.0 × 10−10

16000 2.49 × 10−12 16000 2.68 × 10−10

Figure 7. Efficiency curves for Example 5

4.6. Example 5

We consider the following perturbed two-body problem
⎧
⎨

⎩
y′′
1 = −y1

r3 − 2(ε+ε2)y1

r5 , y1 (0) = 1, y′
1 (0) = 0,

y′′
2 = −y2

r3 − 2(ε+ε2)y2

r5 , y1 (0) = 0, y′
1 (0) = 1 + ε,

with r =
√

y2
1 + y2

2 , whose exact solution is given by y1 = cos (x + εx) , y2 =
sin (x + εx).

This system represents a motion on a perturbed circular orbit in the
complex plane which occurs in classical mechanics and flexible body dynam-
ics. The numerical results of the FFBNM on this problem with ω = 1.01
are compared with the Trigonometric Fourier Collocation (TFC) method by
Wang [47] and the method BNM developed by Jator and Oladejo [23] on
[0, 1000]. The results given in Table 5 and the graphical representations in
Fig. 7 taking ε = 10−3, show that FFBNM is an accurate method for this
perturbed Kepler’s equation.
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Table 6. Comparison of numerical results for Example 6

FFBNM ExtGauss2 Gauss3 ExtGauss3

Error CPU Error CPU Error CPU Error CPU

6.17 0.034 5.90 0.040 5.40 0.150 7.00 0.090
8.21 0.070 7.10 0.050 7.10 0.290 9.40 0.140
10.01 0.150 8.30 0.110 9.00 0.375 11.4 0.300
11.87 0.370 9.50 0.210 10.60 0.730 12.00 0.600

Table 7. Comparison of numerical results for Example 7

FFBNM BNM AZD AME MAM

Error NFE Error NFE Error NFE Error NFE Error NFE

5.65 101 2.18 101 2.58 1406 3.58 938 3.00 938
8.34 201 3.28 201 4.50 4688 4.92 3750 4.54 3750
9.89 401 4.25 401 6.83 12188 6.75 11250 6.42 9375
12.24 801 5.32 801 8.41 39375 8.63 34688 8.29 30000

4.7. Example 6

As our sixth experiment, we investigate the prevalent non-linear scalar Van
der Pol equation given by

y′′ + y = δ
(
1 − y2

)
y′,

with initial values

y (0) = 2 +
1
96

δ2 +
1033

552960
δ4 +

1019689
55738368000

δ2, y′ (0) = 0.

In our computations, we took the parameter δ as δ = 10−3 and the fitting
frequency as ω = 1. The integration of the problem was carried out in the
interval [0, 100]. For the comparison of the error of different methods, we use
step lengths h = 1

2i , i = 1, 2, 3, 4. Since the analytic solution of this problem
does not exists, we used a reference numerical solution which was obtained
by Anderson and Geer [2] and Verhulst [45]. The Maximum global error,
− log10 (‖y (x) − yn‖∞), of the FFBNM compared with the Gauss methods
studied in [49] are displayed in Table 6, while the efficiency curves are shown
in Fig. 8, respectively. Whereas from the Table 6 and Fig. 8 it is evident that
the FFBNM outperformed the ExtGauss2 of the same order and Gauss3 of
order six, it competes favourably well with the ExtGauss3 of order six. In
fact, the efficiency in terms of computational time of the FFBNM is almost
half the computational time of the ExtGauss3.
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Figure 8. Efficiency curves for Example 6

Figure 9. Efficiency curves for Example 7

4.8. Example 7

As our last example, we investigate the linear periodic problem studied in
[10,16]

y′′ + ωy =
(
(ω)2 − 4x2

)
cos(x2) − 2 sin(x2), y(0) = 1, y′(0) = ω

whose solution in closed form y(x) = cos(x2) + sin(ωx) represents a periodic
motion that involves a constant frequency and a variable frequency.

For this problem, we integrate in the interval [0, 5], taking the princi-
pal frequency as ω = 50. The numerical results stated in the Table 7 and
Fig. 9 have been computed with the step lengths h = 0.1

2i , i = 1, 2, 3, 4. As
can be seen in Table 7 and Fig. 9, the BNM, which is the limit method of
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the FFBNM, is not as accurate as the other fourth order methods AZONN-
EVELD4(3), AMERSON4(3)and MAMERSON4(3) (abbreviated AZD, AME
and MAM respectively, for easy readability) presented in [16] but uses fewer
number of function evaluations. However, the FFBNM performs better than
its limiting method and some of the existing methods in the literature.

5. Conclusions

The numerical solution of oscillatory problems finds its best performance in
the use of adapted methods. This article has developed a trigonometrically
adapted method of Numerov type. Their characteristics have been studied,
and some numerical examples have been presented, comparing the results of
the proposed method with other methods appeared in the literature. These
results allow us to conclude that the proposed method is competitive to solve
problems whose solutions are oscillatory.
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Appendix: Specification of entries of The Lower Triangular
Matrix ς, The Upper Triangular Matrix Ω, and Matrix V

ς =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
sin(ω xn+1)
sin(ω xn) 1 0 0 0

−ω2 0 1 0 0
−ω2 sin(ω xn+1)

sin(ω xn) −ω2 sinh(ω xn+1)
sinh(ω xn) 1 0

−ω2 sin(ω xn+2)
sin(ω xn) −ω2 sin(ω xn−ω xn+2)

sin(ω xn−ω xn+1)
ς53 ς54 1

⎤

⎥⎥⎥⎥⎥⎥⎦

with
ς53 =

sinh
(
ω xn+1

)
sin

(
ω xn − ω xn+2

)
+ sinh

(
ω xn+2

)
sin

(
ω xn − ω xn+1

) − sinh (ω xn) sin
(
ω xn+1 − ω xn+2

)

2 sin
(
ω xn − ω xn+1

)
sinh (ω xn)

,

ς54 =
sin

(
ω xn − ω xn+2

)
sinh

(
ω xn − ω xn+1

)
+ sin

(
ω xn − ω xn+1

)
sinh

(
ω xn − ω xn+2

)

2 sin
(
ω xn − ω xn+1

)
sinh

(
ω xn − ω xn+1

) .

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

sin (ω xn) cos (ω xn) sinh (ω xn) cosh (ω xn) 1

0
sin(ω xn−ω xn+1)

sin(ω xn)
Ω23

sin(ω xn)
Ω24

sin(ω xn)

sin(ω xn)−sin(ω xn+1)
sin(ω xn)

0 0 2 ω2 sinh (ω xn) 2 cosh (ω xn) ω2 ω2

0 0 0 2
ω2 sinh(ω xn−ω xn+1)

sinh(ω xn)

ω2 sinh(ω xn)−ω2 sinh(ω xn+1)
sinh(ω xn)

0 0 0 0 Ω55

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

with

Ω23 = sinh (ω xn+1) sin (ω xn) − sin (ω xn+1) sinh (ω xn) ,

Ω24 = cosh (ω xn+1) sin (ω xn) − sin (ω xn+1) cosh (ω xn) ,

Ω55 =
A

2 sin (ω(xn − xn+1)) sinh (ω(xn − xn+1))
where
A = ω

2
(sin (ω(xn − xn+2)) sinh (ω(xn − xn+1)) − sin (ω(xn − xn+1)) sinh (ω(xn − xn+2))

+ sin (ω(xn − xn+1)) sinh (ω(xn+1 − xn+2)) − sin (ω(xn+1 − xn+2)) sinh (ω(xn − xn+1))) .

V =

⎡

⎢⎢⎢⎢⎣

1 sin (ω xn) cos (ω xn) sinh (ω xn) cosh (ω xn)

1 sin (ω xn+1) cos (ω xn+1) sinh (ω xn+1) cosh (ω xn+1)

0 −ω2 sin (ω xn) −ω2 cos (ω xn) ω2 sinh (ω xn) cosh (ω xn)ω2

0 −ω2 sin (ω xn+1) −ω2 cos (ω xn+1) ω2 sinh (ω xn+1) cosh (ω xn+1)ω2

0 −ω2 sin (ω xn+2) −ω2 cos (ω xn+2) ω2 sinh (ω xn+2) cosh (ω xn+2)ω2

⎤

⎥⎥⎥⎥⎦
.
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