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Abstract. In this paper we introduce a general class of integral operators
that fix exponential functions, containing several recent modified oper-
ators of Gauss–Weierstrass, or Picard or moment type operators. Point-
wise convergence theorems are studied, using a Korovkin-type theorem
and a Voronovskaja-type formula is obtained.
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1. Introduction

The classical Bohman–Korovkin theorem (see [10,22,23]) is one of the pivotal
results of approximation theory and several convergence theorems known in
literature employ this basic tool. It states that a sequence of positive linear
operators Tnf acting on the set of the continuous functions over a compact
interval of the real line converges to the identity operator only if it converges
on a finite number of test functions which form a so-called Chebyshev sys-
tem. A complete treatment of the Korovkin theorem can be found in the
monographies [2,3].

In this respect, if a sequence of operators Tnf is such that Tnϕ = ϕ
for some continuous function ϕ, then to obtain the convergence appears very
simple, if the functions ϕ belong to a Chebyshev system. Thus, it is of inter-
est to define sequences of operators that have this property. In literature
the so-called King type operators, have this property, especially in case of
discrete operators (see e.g. [21]). In this paper we define an entire class of
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positive linear integral operators which fix exponential functions. This kind
of results were obtained by Agratini, Aral and Deniz [1], by Aral [6] and
recently by Yilmaz, Uysal and Aral [26], by considering modifications of spe-
cific operators (Picard, Gauss–Weiertsrass and moment-type operators). All
the operators considered in these papers are special case of our present the-
ory. Our approach includes also all the integral operators having a compactly
supported kernel. Thus it applies for example to spline-type operators [11,24].
Related results can be found in [16,18,19] and [17].

For our operators, we apply the Gadjiev version of Bohman–Korovkin
theorem (see [14,15]) in case of unbounded domains, for functions belonging
to certain weighted spaces of continuous functions. Setting for every n ∈ N

and a > 0,

Aa,n :=
∫ ∞

−∞
exp(at)Kn(t)dt, λn(x) := x − 1

a
log Aa,n,

we define

(Tnf)(x) = Aa,n

∫ ∞

−∞
exp(−at)f (λn(x) + t) Kn(t)dt,

where {Kn} is a family of non-negative functions (kernel) belonging to a
suitable function space. Setting for a > 0, expa(x) := eax for x ∈ R, we show
that (Tn expa)(x) = exp(ax) and (Tn exp2a)(x) = exp(2ax). Moreover we
show that Tnej → ej where ej(x) = xj , j = 0, 1, 2, so obtaining two uniform
convergence theorems in weighted spaces of continuous functions. Then, using
certain moduli of continuity we obtain certain quantitative estimates of the
convergence and finally a Voronovskaja-type asymptotic formula. These kinds
of asymptotic formulae are very useful also for applications, especially for
discrete operators, like e.g. sampling-type operators (see, e.g., [11–13]. For
integral operators of Mellin type see [7,8]). The last section is devoted to
several examples.

We recall here, that general approaches to convergence of integral oper-
ators was recently given in [9], and more recently in [20] and [25] in the frame
of nonlinear operators.

2. Basic Notations

Let us denote by R the set of real numbers, and by N the set of the positive
integers. By L1(R) we denote the space comprising all the Lebesgue integrable
functions on R with respect to the Lebesgue measure, and by L∞(R) the space
comprising all the essentially bounded functions on R. By C(R) we denote
the space of all the continuous functions defined on R. Finally, for r ∈ N, we
will say that a function f : R → R is locally of class Cr at a point x ∈ R

if there is a neighbourhood U of x such that f is (r − 1)-fold continuously
differentiable in U and f (r)(x) exists.
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3. The Class of Integral Operators

For any a > 0, we define the function expa(t) := eat, for t ∈ R.
We define now the function space

Lexpa
(R) := {g : R → R : g(·)ea|·| ∈ L1(R)}.

Let now {Kn} be a non negative kernel, that is, for every n ∈ N, Kn(t) ≥
0, for every t ∈ R, Kn ∈ L1(R), and

‖Kn‖1 =
∫ ∞

−∞
Kn(t)dt = 1.

In what follows we assume that Kn ∈ Lexpa
(R), for every sufficiently

large n ∈ N, namely for n ≥ n0, with n0 ∈ N. We set, for n ≥ n0,

Aa,n :=
∫ ∞

−∞
expa(t)Kn(t)dt, λn(x) := x − 1

a
log Aa,n.

Note that from the assumption Kn ∈ Lexpa
(R), we have Aa,n < +∞, A−a,n <

+∞ and if moreover for every n ∈ N, Kn is an even function, that is
Kn(t) = Kn(−t), for every t ∈ R, one has easily Aa,n = A−a,n. We introduce
now the sequence of integral operators defined by

(Tnf)(x) := Aa,n

∫ ∞

−∞
exp−a(t)f(λn(x) + t)Kn(t)dt

= Aa,n

∫ ∞

−∞
e−atf(λn(x) + t)Kn(t)dt, (3.1)

for every function f belonging to the domain D :=
⋂

n≥n0
dom Tn, where

dom Tn denotes the set of all the Lebesgue measurable functions f such that
(Tn|f |)(x) is convergent for almost all x ∈ R.

Note that if f ∈ L∞(R), then f ∈ D. Moreover, the functions expa and
exp2a both belong to D. We have the following

Proposition 3.1. Under the established assumptions on the kernel {Kn}, we
have

(Tn expa)(x) = expa(x), (Tn exp2a)(x) = exp2a(x). (3.2)

Proof. We have

(Tn expa)(x) = Aa,n

∫ ∞

−∞
e−atea(λn(x)+t)Kn(t)dt = Aa,neaλn(x)

∫ ∞

−∞
Kn(t)dt

= Aa,neaλn(x) = expa(x).

Analogously, we have

(Tn exp2a)(x) = Aa,n

∫ ∞

−∞
e−ate2a(λn(x)+t)Kn(t)dt

= Aa,ne2aλn(x)

∫ ∞

−∞
eatKn(t)dt

= Aa,n exp2a(x)
Aa,n

(Aa,n)2
= exp2a(x),

that is the assertion �
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Remark 3.2. In order to establish a connection with classical integral opera-
tors of convolution type of the form

(T 0
nf)(x) :=

∫ ∞

−∞
f(x + t)Kn(t)dt,

for continuous and bounded functions f ∈ D we have

lim
a→0+

(Tnf)(x) = (T 0
nf)(x).

whenever

lim
a→0+

1
a

log Aa,n = 0.

Indeed, under the above assumptions on the kernel {Kn}, it is easy to show
that lima→0+ Aa,n = 1, and lima→0+ λn(x) = x. Thus under the assumptions
on the function f the assertion follows by the Lebesgue theorem of dominated
convergence.

4. Pointwise and Uniform Convergence

In this section we will study the pointwise convergence of Tnf to f, where f
belongs to a suitable weighted space of continuous functions, as introduced
in [14], using a Korovkin-type theorem, established in [14] (see also [15]). In
order to do that, we introduce the following constants

B−a,n :=
∫ ∞

−∞
te−atKn(t)dt

C−a,n :=
∫ ∞

−∞
t2e−atKn(t)dt.

We call these constants the exponential moments of orders 1 and 2 respec-
tively. At the same way, we refer to A−a,n as the exponential moment of
order 0. We introduce the following subspace of Lexpa

(R), in which the above
moments are well-defined

L∗
expa

(R) := {g ∈ Lexpa
(R) : (c + d| · |)2ea|·|g(·) ∈ L1(R)},

with c, d positive constants. If Kn ∈ L∗
expa

(R), then B−a,n, C−a,n exist finite.
Let us introduce now the test functions e0(t) = 1, e1(t) = t, e2(t) =

t2, t ∈ R. Obviously, ej ∈ D, for j = 0, 1, 2.

We have the following

Proposition 4.1. Let Kn ∈ L∗
expa

(R), for sufficiently large n ∈ N. Then we
have

(Tne0)(x) = Aa,n A−a,n

(Tne1)(x) = Aa,n A−a,nx − 1
a
Aa,n A−a,n log Aa,n + Aa,n B−a,n

and
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(Tne2)(x) = Aa,n A−a,nx2 +
(

2Aa,n B−a,n − 2Aa,n A−a,n
1
a

log Aa,n

)
x

+ Aa,n A−a,n
1
a2

log2 Aa,n + Aa,n C−a,n − 2Aa,n B−a,n
1
a

log Aa,n.

Proof. We have

(Tne0)(x) = Aa,n

∫ ∞

−∞
e−atKn(t)dt = Aa,n A−a,n.

Next,

(Tne1)(x) = Aa,n

∫ ∞

−∞
e−at(λn(x) + t)Kn(t)dt

= Aa,n λn(x)
∫ ∞

−∞
e−atKn(t)dt + Aa,n

∫ ∞

−∞
te−atKn(t)dt

= Aa,n A−a,nx − Aa,n A−a,n
1
a

log Aa,n + Aa,n B−a,n.

Finally,

(Tne2)(x) = Aa,n

∫ ∞

−∞
e−at(λn(x) + t)2Kn(t)dt

= Aa,n (λn(x))2A−a,n + Aa,n C−a,n + 2Aa,n B−a,nλn(x)

= Aa,n A−a,nx2 + 2Aa,n

(
B−a,n − 1

a
A−a,n log Aa,n

)
x

+ Aa,n

(
A−a,n

1
a2

log2 Aa,n + C−a,n − 2
a
B−a,n log Aa,n

)
.

The proof is completed �

Corollary 4.2. Under the assumptions of Proposition 4.1, if moreover

lim
n→+∞ Aa,n = lim

n→+∞ A−a,n = 1, (4.1)

and

lim
n→+∞ B−a,n = lim

n→+∞ C−a,n = 0,

then

lim
n→+∞(Tnej)(x) = ej(x) (j = 0, 1, 2).

Proof. It is an immediate consequence of Proposition 4.1 �

Using Proposition 4.1 and Corollary 4.2, we now give a uniform con-
vergence result for the operators (Tnf) when f belongs to suitable weighted
spaces of continuous functions. The key tool is a Korovkin-type theorem
proved in [14] (see also [15]).

Given a continuous, strictly increasing function ϕ : R → R, we define
the function ρ(x) := 1 + ϕ2(x), and assume that limx→±∞ ρ(x) = +∞.

We will consider two particular cases: ϕ1(x) = x, and ϕ2(x) = expa(x),
and we set ρ1(x) := 1 + x2 and ρ2(x) := 1 + exp2a(x).
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Let us consider the spaces, for j = 1, 2

C0
ρj

(R) :=
{

f ∈ C(R) : lim
x→±∞

f(x)
ρj(x)

= �f ∈ R

}
.

Note that if f ∈ C0
ρj

(R), then |f(x)| ≤ Mfρj(x), for a suitable constant
Mf > 0 and x ∈ R. We define a norm on the space C0

ρj
(R) on setting

‖f‖ρj
:=

∥∥∥∥ f

ρj

∥∥∥∥
∞

.

We are ready to prove the main theorem of this section.

Theorem 4.3. Let j = 1, 2 and let f ∈ C0
ρj

(R). Then, under the assumptions
of Proposition 4.1 and Corollary 4.2, we have

lim
n→+∞ ‖Tnf − f‖ρj

= 0.

Proof. First, consider the case j = 1. The test functions ej obviously belong
to C0

ρ1
(R) and moreover

∥∥∥∥Tne0 − e0
ρ1

∥∥∥∥
∞

=
∥∥∥∥Aa,n A−a,n − 1

ρ1

∥∥∥∥
∞

≤ |Aa,n A−a,n − 1|, (4.2)

and the last term tends to 0 as n → +∞. Next,∥∥∥∥Tne1 − e1
ρ1

∥∥∥∥
∞

≤ |Aa,n A−a,n − 1| sup
x∈R

|x|
x2 + 1

+
1
a
Aa,n A−a,n| log Aa,n| + Aa,n |B−a,n|,

and so

lim
n→+∞

∥∥∥∥Tne1 − e1
ρ1

∥∥∥∥
∞

= 0.

Analogously, one can see that

lim
n→+∞

∥∥∥∥Tne2 − e2
ρ1

∥∥∥∥
∞

= 0.

For j = 2, taking into account of (4.2) and Proposition 3.1, we obtain again
the convergence on the test functions expk(ax), for k = 0, 1, 2. Applying
Theorem 2 in [14] we obtain the assertion �

5. Quantitative Estimates

For Kn ∈ L∗
expa

(R), we define the absolute exponential moment of order 1 of
Kn as

B̃−a,n :=
∫ ∞

−∞
e−at|t|Kn(t)dt.



MJOM A Class of Integral Operators Page 7 of 21 179

In the spaces C0
ρj

(R), j = 1, 2 we can define various modulus of continu-
ity. We begin with an estimate of the convergence expressed by Theorem 4.3,
in terms of the classical modulus of continuity ω defined by

ω(f, δ) := sup
|h|≤δ

|f(x + h) − f(x)| (δ > 0).

As it is well-known, for any uniformly continuous function f one has
limδ→0 ω(f, δ) = 0. We have the following estimate

Theorem 5.1. Let Kn ∈ L∗
expa

(R), for sufficiently large values of n ∈ N, and
let f ∈ C0

ρj
(R). Then for every δ > 0, we have

‖Tnf − f‖ρj
≤ ω (f, δ) Aa,n

(
A−a,n +

1
δ

∼
B−a,n +

1
aδ

A−a,n |log Aa,n|
)

+ ‖f‖ρj
|Aa,nA−a,n − 1| .

Proof. For every x ∈ R and δ > 0 we have

|(Tnf) (x) − f (x)| ≤ Aa,n

∫ ∞

−∞
e−atω

(
f,

∣∣∣∣t − 1
a

log Aa,n

∣∣∣∣
)

Kn (t) dt

+ |f (x)| |Aa,nA−a,n − 1| =: I1 + I2.

Thus we have to estimate only I1. In order to do that, we use the following
well-known property of ω (see e.g. [4])

ω (f, λδ) ≤ (1 + λ) ω (f, δ) (λ, δ > 0) .

Setting λ := |t− 1
a log Aa,n|

δ , we have

I1 ≤ Aa,nω (f, δ)
∫ ∞

−∞
e−at

(
1 +

∣∣t − 1
a log Aa,n

∣∣
δ

)
Kn (t) dt

≤ ω (f, δ) Aa,n

(
A−a,n +

1
δ

∫ ∞

−∞
e−at

(|t| + a−1 |log Aa,n|) Kn (t) dt

)

≤ ω (f, δ) Aa,n

(
A−a,n +

1
δ

∼
B−a,n +

1
aδ

A−a,n |log Aa,n|
)

.

Passing to norm, we get the desired result

‖Tnf − f‖ρj
≤ ω (f, δ) Aa,n

(
A−a,n +

1
δ

∼
B−a,n +

1
aδ

A−a,n |log Aa,n|
)

+ ‖f‖ρj
|Aa,nA−a,n − 1|

�

Corollary 5.2. Let the assumptions of Theorem 5.1 be satisfied, and (4.1)
holds. If moreover there is α > 0 such that (nαB̃−a,n)n, and (nα| log Aa,n|)n

are bounded sequences, then there exists an absolute constant M > 0 such
that

‖Tnf − f‖ρj
≤ Mω

(
f,

1
nα

)
+ |Aa,n A−a,n − 1| ‖f‖ρj

,

for sufficiently large values of n ∈ N.
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Proof. It is a consequence of Theorem 5.1 on setting δ = n−α �
Remark 5.3. Note that, under the assumptions of Corollary 5.2, if the func-
tion f satisfies a Lipschitz condition of order 1, and |Aa,n A−a,n−1| = O(n−α)
as n → +∞, then

‖Tnf − f‖ρj
= O(n−α) (n → +∞).

Now we state another estimate using a suitable weighted modulus of
continuity. In order to do that, we introduce the exponential moment of
order 4 of Kn ∈ L∗

expa
(R) setting

E−a,n :=
∫ ∞

−∞
e−att4Kn(t)dt.

In order to establish rate of convergence, we will use special kind of modulus
of continuity ω̃ which is compatible with the space C0

ρ1
(R). This weighted

modulus of continuity was first introduced in [27] for f ∈ C0
ρ1

(R+
0 ), then

considered in [5] for f ∈ C0
ρ1

(R) as follows:

ω̃(f, δ) = sup
x∈R,|h|≤δ

|f(x + h) − f(x)|
1 + (h + x)2

. (5.1)

For any function f ∈ C0
ρ1

(R), m ∈ N and λ, δ ∈ R
+, ω̃ has the following

properties (see [5,27]):
1. ω̃ (f, δ) is a monotonically increasing function of δ,
2. limδ→0+ ω̃ (f, δ) = 0,
3. ω̃ (f,mδ) ≤ mω̃ (f, δ) , for every m ∈ N,
4. ω̃ (f, λδ) ≤ (1 + λ) ω̃ (f, δ) for every λ > 0.

Theorem 5.4. Let Kn ∈ L∗
expa

be such that E−a,n exists finite. For f ∈
C0

ρ1
(R), there holds

‖Tnf − f‖ρ1

≤ 16Aa,nω̃
(
f,

√
C−a,n

)

×
{

C−a,n + (1 + C−a,n) A−a,n +
√

E−a,n + A−a,n

(
1 + C2−a,n

)}

+ ‖f‖ρ1
|Aa,nA−a,n − 1|

provided that
∣∣a−1 log Aa,n

∣∣ ≤ √
C−a,n for sufficiently large n ∈ N.

Proof. In view of Proposition 4.1, we have

|(Tnf) (x) − f(x)| ≤ Aa,n

∣∣∣∣
∫ ∞

−∞
e−atf (λn (x) + t)Kn (t) dt − f(x)

∫ ∞

−∞
e−atKn (t) dt

∣∣∣∣
+ |f(x)| |(Tne0) (x) − 1|

= Aa,n

∣∣∣∣
∫ ∞

−∞
[f (λn (x) + t) − f(x)] e−atKn (t) dt

∣∣∣∣
+ |f(x)| |Aa,nA−a,n − 1| .

For any δ > 0, properties of ω̃ enable us to write

|f (λn (x) + t) − f(x)| =
∣∣f (

x + t − a−1 log Aa,n

) − f (x)
∣∣
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≤
(
1 +

(
x + t − a−1 log Aa,n

)2)
ω̃

(
f,

∣∣t − a−1 log Aa,n

∣∣)

≤
(
1 +

(
x + t − a−1 log Aa,n

)2) (
1 +

∣∣t − a−1 log Aa,n

∣∣
δ

)
ω̃ (f, δ) .

In view of this observation, there holds

|(Tnf)(x) − f(x)| ≤ ω̃(f, δ)Aa,n

×
∫ ∞

−∞

(
1 +

(
x + t − a−1 logAa,n

)2) (
1 +

∣∣t − a−1 logAa,n

∣∣
δ

)
e−atKn(t)dt

+ |f(x)| |Aa,nA−a,n − 1| ≤ ω̃ (f, δ)Aa,n

×
∫ ∞

−∞

(
1 +

(
x + t − 1

a
logAa,n

)2) (
1 +

∣∣a−1 logAa,n

∣∣
δ

)
e−atKn (t) dt

+ ω̃ (f, δ)Aa,n

∫ ∞

−∞

(
1 +

(
x + t − 1

a
logAa,n

)2) |t|
δ

e−atKn (t) dt

+ |f(x)| |Aa,nA−a,n − 1| := J1 + J2 + |f(x)| |Aa,nA−a,n − 1| .

For J1, using the well-known inequality |a − b|p ≤ 2p−1 (|a|p + |b|p) ,
a, b ∈ R, p ≥ 1, we have

J1 ≤ ω̃ (f, δ)Aa,n

×
(
1 +

∣∣a−1 logAa,n

∣∣
δ

) {
A−a,n + 2C−a,n + 2

(
x − a−1 logAa,n

)2
A−a,n

}

≤ 4Aa,nω̃ (f, δ)

(
1 +

∣∣a−1 logAa,n

∣∣
δ

) {
C−a,n +

(
1 + x2 + a−2 log2 Aa,n

)
A−a,n

}
.

By the Cauchy–Schwarz inequality for J2, we have

J2 = ω̃(f, δ)Aa,n

∫ ∞

−∞

(
1 + (x + t − a−1 logAa,n)

2) |t|
δ

e−atKn(t)dt

≤ ω̃(f, δ)Aa,n

∫ ∞

−∞
(1 + (x + t − a−1 logAa,n)

2)2e−atKn(t)dt)1/2 (C−a,n)1/2

δ
.

Repeated application of the inequality |a − b|p ≤ 2p−1 (|a|p + |b|p) ,
a, b ∈ R, p ≥ 1 yields

(
1 +

(
x + t − a−1 log Aa,n

)2)2

≤ (
1 + 2

(
t2 + λ2

n(x)
))2

≤ 2
(
1 + 4

(
t2 + λ2

n (x)
)2) ≤ 2 + 16

(
t4 + λ4

n (x)
)

= 2 + 16t4 + 16
(
x − a−1 log Aa,n

)4
≤ 2 + 16t4 + 128

(
x4 + a−4 log4 Aa,n

)
.

Using above inequality, we have

J2 ≤ 16ω̃ (f, δ) Aa,n

(
E−a,n + A−a,n

(
1 + x4 + a−4 log4 Aa,n

))1/2 (C−a,n)1/2

δ
.

Collecting all inequalities we get

|(Tnf) (x) − f(x)|
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≤ 4Aa,nω̃ (f, δ)

(
1 +

∣∣a−1 logAa,n

∣∣
δ

) {
C−a,n +

(
1 + x2 + a−2 log2 Aa,n

)
A−a,n

}

+ 16ω̃ (f, δ)Aa,n

(
E−a,n + A−a,n

(
1 + x4 + a−4 log4 Aa,n

))1/2 (C−a,n)1/2

δ
+ |f(x)| |Aa,nA−a,n − 1| .

Choosing δ = (C−a,n)1/2 with
∣∣a−1 log Aa,n

∣∣ ≤ δ for sufficiently large n,
dividing both sides by 1 + x2 and taking supremum over all x, we obtain

‖Tnf − f‖ρ1

≤ 16Aa,n
∼
ω

(
f,

√
C−a,n

) {
C−a,n +

(
1 + a−2 log2 Aa,n

)
A−a,n

+
√

E−a,n + A−a,n

(
1 + a−4 log4 Aa,n

)}
+ |f(x)| |Aa,nA−a,n − 1|

≤ 16Aa,n
∼
ω

(
f,

√
C−a,n

)
{C−a,n + (1 + C−a,n) A−a,n

+
√

E−a,n + A−a,n

(
1 + (C−a,n)2

)}

+ ‖f‖ρ1
|Aa,nA−a,n − 1|

that is the assertion �

Remark 5.5. The estimate of Theorem 5.4 gives an evaluation of the con-
vergence in terms of the modulus of continuity with parameter

√
C−a,n,

under the further assumptions that C−a,n → 0 and |Aa,n A−a,n − 1| → 0 as
n → +∞. Thus one can obtain a corresponding corollary, as for Theorem 5.1
(see Corollary 5.2 and Remark 5.3).

6. An Asymptotic Formula

Here we establish two asymptotic formulae of Voronovskaya type for functions
f ∈ C0

ρj
(R), j = 1, 2, which are locally of class C2 at a point x. These kinds

of formulae give an exact evaluation of the order of pointwise convergence.
We examine the case j = 1.

Theorem 6.1. Let f ∈ C0
ρ1

(R) be locally of class C2 at a point x ∈ R. Let
Kn ∈ L∗

expa
(R), for sufficiently large values of n ∈ N, be a kernel satisfying

the assumptions of Corollary 4.2. Assume that there exist α > 0 such that
the kernel {Kn} satisfies further the following conditions:

(i) limn→+∞ nα(Aa,n A−a,n − 1) = �0, limn→+∞ nαB−a,n = �1,
limn→+∞ nαC−a,n = �2 and limn→+∞ nα 1

a log Aa,n = �3, with �j ∈ R,
for j = 0, 1, 2, 3.

(ii) For every η > 0,

lim
n→+∞ nα

∫
|t|≥η

e−at

(
t − 1

a
log Aa,n

)2

Kn(t)dt = 0.
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Then,

lim
n→+∞ nα[(Tnf)(x) − f(x)] = �0f(x) + (�1 − �3)f ′(x) +

�2
2

f ′′(x). (6.1)

Proof. Since f has a polynomial growth of order 2, and locally of class C2 at
the point x, using a local Taylor formula of the second order, we can write

f(λn(x) + t) = f

(
x − 1

a
log Aa,n + t

)
= f(x) + f ′(x)

(
t − 1

a
log Aa,n

)

+
f ′′(x)

2

(
t − 1

a
log Aa,n

)2

+ rx

(
t − 1

a
log Aa,n

)

×
(

t − 1
a

log Aa,n

)2

, (6.2)

where rx(y) is a bounded function such that limy→0 rx(y) = 0.
We write

(Tnf)(x) − f(x) = Aa,n

∫ ∞

−∞
e−at[f(λn(x) + t) − f(x)]Kn(t)dt

+ (Aa,n A−a,n − 1)f(x) =: I1 + I2.

As to I2 we have by assumptions that nαI2 → �0f(x) as n → +∞. Therefore
we evaluate now the term I1. Inserting (6.2) in I1, we can write

I1 = Aa,n

(
B−a,n − A−a,n

1
a

log Aa,n

)
f ′(x)

+Aa,n

(
C−a,n +

A−a,n

a2
log2 Aa,n − 2

a
B−a,n log Aa,n

)
f ′′(x)

2
+ Rx

=: I11 + I21 + Rx, (6.3)

where

Rx := Aa,n

∫ ∞

−∞
e−atrx

(
t − 1

a
log Aa,n

)(
t − 1

a
log Aa,n

)2

Kn(t)dt.

Now,

lim
n→+∞ nαI11 = (�1 − �3)f ′(x), lim

n→+∞ nαI21 =
�2
2

f ′′(x).

Thus we have to estimate the remainder term Rx.
Since limy→0 rx(y) = 0, given an arbitrary ε > 0, there is δ ∈]0, 1[

such that |rx(y)| < ε whenever |y| ≤ δ. We take now an index n such that
for n ≥ n, one has a−1| log Aa,n| < δ/2. Thus for |t| < δ/2, we have also
|t − a−1 log Aa,n| < δ. Thus∣∣∣∣rx

(
t − 1

a
log Aa,n

)∣∣∣∣ < ε (|t| < δ/2). (6.4)

Writing

Rx = Aa,n

{∫ δ/2

−δ/2
+

∫
|t|≥δ/2

}
e−atrx

(
t − 1

a
logAa,n

) (
(t − 1

a
logAa,n

)2

Kn(t)dt

=: R1 + R2,
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we have, by (6.4),

|R1| ≤ Aa,nε

(
C−a,n + A−a,n

1
a2

log2 Aa,n − 2B−a,n

a
log Aa,n

)
.

Therefore using the assumptions (i) we have, for a suitable absolute positive
constant M,

lim sup
n→+∞

nα|R1| ≤ Mε.

As to the term R2, using the boundedness of rx we can write

|R2| ≤ Aa,n‖rx‖∞
∫

|t|≥δ/2

e−at

(
t − 1

a
log Aa,n

)2

Kn(t)dt,

and by (ii) we obtain

lim
n→+∞ nα|R2| = 0.

This implies

lim sup
n→+∞

nα|Rx| ≤ Mε,

that is |Rx| → 0 as n → +∞. Thus the theorem is completely proved �

Theorem 5.4 works perfectly in several particular examples, as we will
see in the next section. But in certain situations, as for example, the moment-
type operators, formula (6.1) becomes

lim
n→+∞ nα[(Tnf)(x) − f(x)] = 0,

for a suitable constant α for which all the assumptions are satisfied. In case
of the moment-type operator, we have α = 1. If we try to take α = 2 some of
the assumptions (i) of Theorem 5.4 are not satisfied. This result is however
interesting, but it gives no exact information about the pointwise order of
approximation at a point x. Therefore, we will formulate a slight generaliza-
tion of the above theorem, in order to include also the case of moment-type
operators, by changing assumptions (i). We have the following

Theorem 6.2. Let f ∈ C0
ρ1

(R) be locally of class C2 at a point x ∈ R. Let
Kn ∈ L∗

expa
(R), for sufficiently large values of n ∈ N, be a kernel satisfying

the assumptions of Corollary 4.2. Assume that there exist α > 0 such that
the kernel {Kn} satisfies assumption (ii) of Theorem 5.4 and the following
conditions:

(j) limn→+∞ nα(Aa,n A−a,n − 1) = �0,
limn→+∞ nα

(
B−a,n − A−a,n

1
a log Aa,n

)
= λ1,

(jj) limn→+∞ nα
(
C−a,n + A−a,n

a2 log2 Aa,n − 2
aB−a,n log Aa,n

)
= λ2

Then,

lim
n→+∞ nα[(Tnf)(x) − f(x)] = �0f(x) + λ1f

′(x) +
λ2

2
f ′′(x). (6.5)

Proof. The proof is clearly exactly the same. �
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7. Examples

In this section we discuss some examples of kernels {Kn} for which the theory
developed can be applied.

(1) The Gauss–Weierstrass kernel
For n ∈ N, let us consider the kernel {Kn} with

Kn(t) =
√

n

π
e−nt2 (t ∈ R).

This kernel is defined by even functions. First we evaluate the exponen-
tial moments of orders 0, 1, 2. In order to do that, we first calculate the
coefficients Aa,n using a differentiation under the integral. By solving a
simple first order linear differential equation, we obtain

Aa,n = A−a,n =
√

n

π

∫ ∞

−∞
eate−nt2dt = ea2/(4n).

Hence Aa,n A−a,n = ea2/(2n). Taking α = 1, we obtain

lim
n→+∞ n(Aa,n A−a,n − 1) = lim

n→+∞ n(ea2/(2n) − 1) =
a2

2
.

Moreover, using partial integrations, one has

B−a,n = − a

2n
ea2/4n, C−a,n =

1
2n

Aa,n +
a2

4n2
Aa,n,

and so

lim
n→+∞ nB−a,n =

1
2
, lim

n→+∞ nC−a,n =
1
2
.

Next, we have

lim
n→+∞ n log Aa,n =

a2

4
,

therefore we have also

lim
n→+∞ n log2 Aa,n = 0.

Therefore, �1 − �3 = −3a/4, �2 = 1/2. Now we prove that the Gauss–
Weierstrass kernel satisfies also assumption (ii) of Theorem 5.4. Let
η > 0 be fixed. Let us set

J := n

∫
|t|≥η

e−at

(
t − 1

a
log Aa,n

)2

Kn(t)dt.

Then

J ≤ n

∫
|t|≥η

e−att2Kn(t)dt + n

(
1
a2

log2 Aa,n

) ∫
|t|≥η

e−atKn(t)dt

+ 2n
1
a
| log Aa,n|

∫
|t|≥η

e−at|t|Kn(t)dt =: J1 + J2 + J3.
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As to J1 we can write

J1 =
n
√

n√
π

∫
|t|≥η

e−att2e−nt2dt

=
n
√

n√
π

{∫ ∞

η

e−att2e−nt2dt +
∫ ∞

η

eatt2e−nt2dt

}

=: J1
1 + J2

1 .

For J1
1 we have by a suitable substitution,

J1
1 ≤ e−aη

√
π

∫ ∞

√
nη

v2e−v2
dv,

and so by the absolute continuity of the Lebesgue integral, we obtain

lim
n→+∞ J1

1 = 0.

Analogously,

J2
1 ≤ 1√

π

∫ ∞

√
nη

eavv2e−v2
dv,

and again, since the integrand in the right-hand side is Lebesgue inte-
grable, we obtain J2

1 → 0 as n → +∞. Next, we evaluate J2. We have
immediately

J2 ≤ n

a2
log2 Aa,nA−a,n → 0, (n → +∞).

Finally, we evaluate J3. Using the same reasonings as for the estimate
of J1, we have

J3 ≤ a
√

n

2
√

π

{
e−aη

∫ ∞

η

te−nt2dt +
∫ ∞

η

eatte−nt2dt

}

=: J1
3 + J2

3 .

As for J1 we obtain easily that J1
3 → 0, J2

3 → 0 as n → +∞. Con-
cluding, we obtain assumption (ii) of Theorem 5.4. Therefore all the
assumptions introduced are satisfied with α = 1. The asymptotic for-
mula of Theorem 5.4 reads

lim
n→+∞ n((Tnf)(x) − f(x)) =

a2

2
f(x) − 3a

4
f ′(x) +

1
4
f ′′(x),

which is a result of [26].
(2) The Picard Kernel

For n ∈ N, let us consider the kernel {Kn} with

Kn(t) =
√

n

2
e−√

n|t| (t ∈ R).

Also this kernel is defined by even functions. Let us evaluate the expo-
nential moments of order 0, 1, 2. First we have

Aa,n = A−a,n =
n

n − a2
, and A2

a,n =
(

n

n − a2

)2
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and from sufficiently large values of n, Aa,n is positive. Moreover

lim
n→+∞ n(Aa,nA−a,n − 1) = 2a2, lim

n→+∞ n log Aa,n = a2.

Now, we evaluate the moment B−a,n. Using elementary calculation,
based on partial integration, we can see that

B−a,n = − 2an

(n − a2)2
, C−a,n =

√
n

(
1

(a +
√

n)3
+

1
(
√

n − a)3

)
.

Therefore,

lim
n→+∞ nB−a,n = −2a, lim

n→+∞ nC−a,n = 2.

Finally we check assumption (ii) of Theorem 5.4. We proceed as in the
previous example. Let η > 0 be fixed and set

J := n

∫
|t|≥η

e−at

(
t − 1

a
log Aa,n

)2

Kn(t)dt.

We have

J ≤ n
√

n

2

{∫
|t|≥η

e−att2e−√
n|t|dt +

1
a2

log2
n

n − a2

∫
|t|≥η

e−ate−√
n|t|dt

+
2
a

log
n

n − a2

∫
|t|≥η

e−at|t|e−√
n|t|dt

}
=: J1 + J2 + J3.

Using now elementary calculations, based on suitable substitutions, it
is easy to see that

J1 ≤ e−aη

2

∫ ∞

√
nη

u2e−u/2du +
1
2

∫ ∞

√
nη

u2e−u/2du,

for every n such that 1 − a/
√

n > 1/2. Thus, J1 → 0 as n → +∞.
Next, let us consider J2. We have easily

J2 ≤ n

a2
log2

n

n − a2
A−a,n,

and so J2 → 0 as n → +∞. Finally, as to J3 we have

J3 ≤ e−aη
√

n

a
log

n

n − a2

∫ ∞

√
nη

ve−vdv +
√

n

a
log

n

n − a2

∫ ∞

√
nη

ue−u/2du,

for every n such that 1 − a/
√

n > 1/2. Therefore, J3 → 0 as n → +∞,
and assumption (ii) is satisfied. Therefore all the assumptions intro-
duced are satisfied with α = 1. The asymptotic formula of Theorem 5.4
reads

lim
n→+∞ n((Tnf)(x) − f(x)) = 2a2f(x) − 3af ′(x) + f ′′(x)

which is a result of [6].
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(3) The moment kernel
For n ∈ N let us consider the kernel {Kn} with

Kn(t) = nχ[0,1/n](t) (t ∈ R).

This kernel is not even, and the functions Kn have compact support. We
calculate now the coefficients Aa,n, A−a,n, B−a,n and C−a,n and some
their properties. We have

Aa,n = n

∫ 1/n

0

eatdt =
n

a
(ea/n − 1), A−a,n =

n

a
(1 − e−a/n),

and so

lim
n→+∞ Aa,n = lim

n→+∞ A−a,n = 1, lim
n→+∞

1
a
n log Aa,n =

1
2
.

Moreover,

lim
n→+∞ n(Aa,nA−a,n − 1) = 0.

Next,

B−a,n = −e−a/n

a
+

n

a2
(1 − e−a/n), C−a,n = −e−a/n

an
+

2
a
B−a,n,

and both tend to zero as n → +∞. Now,

lim
n→+∞ nB−a,n = 1/2, lim

n→+∞ nCa,n = 0.

Concerning assumption (ii) of Theorem 5.4, since the functions Kn have
supports [0, 1/n] for any given η > 0, one can find an integer n0 such
that for any n ≥ n0 the set {t : |t| ≥ η} does not intersect the interval
[0, 1/n], and so denoting Hn,η := {t : |t| ≥ η} ∩ [0, 1/n], we have

∫
Hn

e−at

(
t − 1

a
log Aa,n

)2

dt = 0

This implies that assumption (ii) is trivially satisfied. Therefore all the
assumptions introduced are satisfied with α = 1. The asymptotic for-
mula of Theorem 5.4 reads

lim
n→+∞ n((Tnf)(x) − f(x)) = 0.

This result is not fully satisfactory, due to the fact that we have no
a precise order of pointwise approximation. Therefore we now employ
Theorem 6.2 with α = 2. In order to do that, we have to check the
assumptions (j) and (jj). As to (j), we first calculate the limit

lim
n→+∞ n2

(
B−a,n − 1

a
log Aa,n

)
,

which can be written as

lim
n→+∞

n2

a2

(
−ae−a/n + a

n

a
(1 − e−a/n) − a log

(n

a
(ea/n − 1)

))
.
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This can be interpreted as a restriction of the limit

lim
x→0

a

x2

(
−e−x +

1 − e−x

x
− log

(
ex − 1

x

))
.

The above limit can be solved using elementary techniques, based on
the L’Hospital rule and its value is given by −3a/8. Now, in order to
calculate λ1 we write

n2

(
B−a,n − A−a,n

1
a

log Aa,n

)

= n2

(
B−a,n − 1

a
log Aa,n

)
+ n2 1

a
log Aa,n (1 − A−a,n),

thus we consider only the limit

lim
n→+∞ n2 1

a
log Aa,n (1 − A−a,n).

Since as we have seen before limn→+∞(n/a) log Aa,n = 1/2, we have to
calculate only limn→+∞ n(1 − A−a,n) and it is not difficult to see that
its value is given by a/2. Thus, finally we obtain λ1 = −a/8.

Now we proceed to the calculation of λ2. At first we calculate the
limit

lim
n→+∞ n2C−a,n.

Again this limit can be considered as a restriction of the limit

lim
x→0

1
x2

(
−xe−x − 2e−x + 2

1 − e−x

x

)
,

and using an analogous elementary approach, its value is given by 1/3.
Next, using the previous results, we have immediately

lim
n→+∞ n2A−a,n

a2
log2 Aa,n =

1
4
,

and

lim
n→+∞

2
a
n2B−a,n log Aa,n = 1/2.

Thus, we have λ2 = 1/12.
The last limit �0 = limn→+∞ n2(Aa,n A−a,n − 1) can be obtained

with the same reasonings as a restriction of the limit

lim
x→0

a2 ex + e−x − 2 − x2

x4

which is given by a2/12. Concluding, the Voronovskaya formula (6.5)
with α = 2 for the moment type operator is given by (see also [26])

lim
n→+∞ n2[(Tnf)(x) − f(x)] =

a2

12
f(x) − a

8
f ′(x) +

1
24

f ′′(x).
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(4) A spline kernel
For n ∈ N let us consider the kernel {Kn} with

Kn(t) = n(1 − |nt|)χ[−1/n,1/n](t) (t ∈ R).

For this kernel we have, by elementary calculations

Aa,n = A−a,n = n

∫ 1/n

−1/n

eat(1 − n|t|)dt =
2n2

a2
(cosh(a/n) − 1),

and so

lim
n→+∞ A±a,n = 1, lim

n→+∞ n2(Aa,nA−a,n − 1) =
a2

6
,

and limn→+∞ n2 log Aa,n = a2/12. Next,

B−a,n = n

∫ 1/n

−1/n

te−at(1 − n|t|)dt = −2n

a2
sinh(a/n) +

4n2

a3
(cosh(a/n) − 1),

and

lim
n→+∞ n2B−a,n = −a

6
.

As to C−a,n we have

C−a,n = n

∫ 1/n

−1/n

t2(1 − n|t|)e−atdt

=
2
a2

cosh(a/n) − 8n

a3
sinh(a/n) +

12n2

a4
(cosh(a/n) − 1),

and so

lim
n→+∞ n2C−a,n =

1
6
.

Finally, since the functions Kn have compact supports [−1/n, 1/n], we
easily see, as in the previous example, that (ii) of Theorem 5.4 is satis-
fied. Thus, all the assumptions used in the previous theory are satisfied
with α = 2. The corresponding asymptotic formula is given by

lim
n→+∞ n2((Tnf)(x) − f(x)) =

a2

6
f(x) − a

4
f ′(x) +

1
12

f ′′(x).

Remark 7.1. The kernel of Example (4) is generated by the spline function
of second order, defined by

β2(x) = (1 − |x|)χ[−1,1](x) (x ∈ R).

The functions Kn are given by Kn(x) = nβ2(nx), for x ∈ R. The spline
functions of order k are given by the formula (see e.g. [11,24])

βk(x) =
1

(k − 1)!

k∑
j=0

(−1)j

(
k

j

)(
k

2
+ x − j

)k−1

+

,

where for any real number r, r+ denotes its positive part. The theory may
be applied also to any kernel generated by the spline βk.
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Remark 7.2. Note that the kernels of any of the previous examples satisfy
the assumptions of Theorem 5.4, in particular the inequality

1
a
| log Aa,n| ≤ √

C−a,n,

for every a > 0 and sufficiently large n ∈ N. First, note that since in any
of the above examples Aa,n ≥ 1, we have log Aa,n ≥ 0. For the modified
Gauss–Weierstrass kernel, one has easily

√
C−a,n >

a

2n
>

1
a

log Aa,n.

For the modified Picard kernel, one can employ the calculations of the limits
in Example (2): since nC−a,n → 2 as n → +∞, and

lim
n→+∞

√
n

a
log Aa,n = 0,

for sufficiently large values of n we obtain the assertion. Similar arguments
can be used for the remaining examples.

Remark 7.3. Further examples can be obtained using Phillips type operators
and Post-Widder type operators which act on functions defined over the posi-
tive real axis, (see [16,18,19] in which some modified version are introduced).

Remark 7.4. Our approach may be applied also in case of general exponential
functions of the form a−x for a > 1 as studied in [17] for Baskakov-type
operators that act on functions defined over the positive real axis.
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