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Abstract. Multivalued ∗-nonexpansive mappings are studied in Banach
spaces. The demiclosedness principle is established. Here we focus on the
problem of solving a variational inequality which is defined on the set of
fixed points of a multivalued ∗-nonexpansive mapping. For this purpose,
we introduce two algorithms approximating the unique solution of the
variational inequality.
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1. Introduction

The notion of ∗-nonexpansive maps seems to be interesting because the ∗-
nonexpansivity holds when given two sets that are images of two different
points of the domain; it is possible to choose for each set (at least) a closest
point to the corresponding point of the domain so that the distance between
these two does not exceed the distance between the starting points. Therefore,
it is an idea that immediately calls back the usual nonexpansivity of the
single-valued case.

More precisely, let X be a Banach space and let C be a subset of X.
Let K(C) be the family of compact subsets of C.

Definition 1.1. [10] A mapping W : C → K(C) is said to be ∗-nonexpansive
if for all x, y ∈ C and xW ∈ Wx such that ‖x−xW ‖ = d(x,Wx), there exists
yW ∈ Wy with ‖y − yW ‖ = d(y,Wy) such that

‖xW − yW ‖ ≤ ‖x − y‖
Recall that a point x ∈ C is said to be a fixed point for a multivalued

mapping W if x ∈ Wx.
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The concept of ∗-nonexpansive multivalued maps was introduced by
Husain and Latif [10] in 1988; it is a generalisation of the known notion of
nonexpansiveness for single-valued maps. In general, ∗-nonexpansive multi-
valued maps may neither be continuous (Example 1.1 in [9]) nor nonexpansive
with respect to the definition obtained by means of Hausdorff metric(see also
[26]).

However, ∗-nonexpansivity and multivalued nonexpansivity are not so
far. In Theorem 3 of [15], it is proved that a multivalued map W : C → K(C)
is ∗-nonexpansive if and only if the metric projection

PW (x) :=
{

ux ∈ Wx : ‖x − ux‖ = inf
y∈Wx

‖x − y‖
}

is nonexpansive.
Existence results of fixed points for multivalued mappings are, in gen-

eral, subtle and sometimes, surprising. For instance, the multivalued improve-
ment of the classical Banach contraction principle, proved by Nadler in 1969
[18], guarantees the existence of a fixed point for a multivalued contraction,
but not its uniqueness. Again, unlike to the single-valued case, the set of fixed
points of a multivalued nonexpansive mapping W : C → K(C) on a strictly
convex Banach space is not, in general, a convex set, see [12] Section 3, and
the same holds for ∗-nonexpansive mappings too.

Xu, 1991 [26], has proved two existence results of fixed points for ∗-
nonexpansive on strictly convex Banach spaces; Lopez-Acedo and Xu in [15]
(1995) have obtained existence result in the setting of Banach space satisfying
Opial condition.

Other surprising results, compared to the single-valued case, can be
found in the literature about the approximation of fixed points of multival-
ued mappings. We refer to a well-known counterexample due to Pietramala,
proved in [20] (1991): she proved that Browder approximation Theorem 1
in [2] cannot be extended to the genuine multivalued case even on a finite
dimensional space R

2.
The problem that we are concerned within this paper is the following:

given a reflexive Banach space X and a closed subset C ⊂ X, to find x∗ ∈ C
such that

〈Ax∗, j(y − x∗)〉 ≥ 0, ∀y ∈ C ⊂ D(A), (1.1)

where

• j(x) ∈ J(x) and J : X → X∗ is the normalized duality mapping defined
by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = x∗(x) = ‖x‖2, ‖x∗‖ = ‖x‖}. (1.2)

• A : D(A) ⊂ X → X is a η−strongly accretive operator, i.e. it satisfies

〈Ax − Ay, j(x − y)〉 ≥ η‖x − y‖2.
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The solution of (VIP)(1.1) is a singleton; indeed, given x∗ and x̄ two
different solutions, one immediately notes that

〈Ax∗, j(x̄ − x∗)〉 ≥ 0 and 〈Ax̄, j(x∗ − x̄)〉 ≥ 0

hold jointly. Therefore, adding the inequalities

−η‖x̄ − x∗‖2 ≥ −〈Ax̄ − Ax∗, j(x̄ − x∗)〉 ≥ 0,

i.e. x̄ = x∗.
In a Hilbert space H, (VIP)(1.1) is equivalent to a variational inequality

problem on the set of fixed points Fix(W ) of a suitable nonexpansive map-
ping W ; for instance, the metric projection on the subset C. In the setting
of a general Banach space, since there exist closed and convex sets that are
not fixed point sets of a nonexpansive mapping W : X → X (see page 25 in
[6]), this is no longer true.

In this note, we will work on a feasible set C that is the fixed point set
of a multivalued ∗-nonexpansive mapping, i.e. given a strongly accretive op-
erator A : X → X and a multivalued ∗-nonexpansive mapping W with fixed
points, we focus on some approximation algorithms of the unique solution of
the variational inequality

〈Ax∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ). (1.3)

This problem encloses, as a particular case, viscosity problems

〈(I − f)x∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ), (1.4)

when A = I − f and, if A = I − u, the problem

〈x∗ − u, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ), (1.5)

that is equivalent to the minimum problem min
x∈Fix(W )

‖x − u‖2.
These problems are widely studied as for the single-valued as for the

multivalued case; for details one should refer to [5,17,19,25,29].
The novelty of our work can be immediately recognised: the use of ∗-

nonexpansive mapping is no longer developed with respect to multivalued
nonexpansive although they can be of interest in view of Example 1.1 in [9]
and Example 1-2 in [26] respectively.

In our approach, with respect to multivalued nonexpansive case, we do
not use Banach limit.

Remark 1.2. We want to emphasise here that this last approach is not always
fully correct. Indeed, taking into account [31], we note that in many papers,
see for instance [8,11,24,32], Banach limits are used to define a function φ
by

φ(x) := LIMn→+∞‖xn − x‖2, x ∈ X,

where (xn)n∈N is a bounded sequence in X (which is generated by an iterative
method). It is easily verified that φ is continuous, convex and coercive (i.e.
φ(x) → ∞, as ‖x‖ → +∞). Hence, reflexivity of X ensures that φ attains its
minimum on a closed convex set C. Let p ∈ C be a minimiser of φ over C. If C
is a nonexpansive retract of X, this minimum is a global minimum on X. The
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goal is to prove that p is a fixed point of W . Using compactness arguments,
they proved that, given (wn)n∈N ⊂ Wp, there exists a subsequence strongly
convergent to w ∈ Tp (wrongfully indicated by the same sequence (wn)n∈N).
Therefore, using the formula that defines the iteration, they proved that

φ(w) = LIMn→∞‖xn − w‖2 ≤ . . . ≤ LIMn→∞‖xn − p‖2 = φ(p) = min
X

φ

(1.6)

and then drew the conclusion that w = p and thus p ∈ Wp.
Unfortunately, the above argument holds for a subsequence (wnk

)k∈N of
(wn)n∈N only, and so (1.6) holds for a subsequence (xnk

) only; that is, the
correct statement of (1.6) should be

LIMk→∞‖xnk
− w‖2 ≤ . . . ≤ LIMk→∞‖xnk

− p‖2. (1.7)

Consequently, the conclusion w = p cannot be drawn from (1.7). Notice that
Banach limits are sensitive to subsequences, as the following simple example
shows: consider the real sequence an = 1 + (−1)n; then we have

LIMn→∞an = 1, LIMn→∞a2n+1 = 0, LIMn→∞a2n = 2.

Therefore, the claim w = p in the above proof is not convincing.

The paper is organised as follows: in the next section, we introduce some
definitions and tools which are used in our proofs. In Sect. 3, we prove our
results and raise some open problems.

2. Preliminaries

Let (X, ‖ · ‖) be a Banach space. Denote by K(X) the family of compact
subset of X.

In (1.2), we have quickly introduced the normalised duality mapping;
indeed it is the special case of the following.

A function ϕ : R+ → R
+ is said to be a gauge if:

1. ϕ(0) = 0;
2. ϕ is continuous and strictly increasing;
3. ϕ(t) → +∞, as t → +∞.

Associated with a gauge ϕ is the duality map

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ϕ(‖x‖) = ‖x∗‖}.
Choosing ϕ(t) = tp−1, for some p ∈ (1,+∞), the duality map is referred to
as the generalised duality map of order p; for p = 2, we get J(x). It is well
known that the Asplund’s result 1 proved that Jϕ is the sub-differential of
the convex functional Φ(‖ · ‖) defined as

Φ(t) =
∫ t

0

ϕ(s)ds.

Since the relationship

J(x)ϕ(‖x‖) = ‖x‖2Jϕ(x) (2.1)

1(see, for instance, [4,30])
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holds, it is easy to notice that the (VIP)(1.1) is equivalent to

〈Ax∗, jϕ(y − x∗)〉 ≥ 0, ∀y ∈ C.

Following Browder [1], recall that a Banach space X has a weakly sequentially
continuous duality map Jϕ for some gauge ϕ if Jϕxn → Jϕx in the weak∗

topology of X∗ whenever xn → x in the weak topology of X. The following
result is useful in fixed point theory and geometry of Banach spaces [14].

Lemma 2.1. Let X be a Banach space with a weakly sequentially continuous
duality map Jϕ for some gauge ϕ. Assume (xn) is a sequence in X weakly
converging to x∗. Then

lim sup
n→∞

Φ(‖xn − x‖) = lim sup
n→∞

Φ(‖xn − x∗‖) + Φ(‖x − x∗‖) (2.2)

for all x ∈ X. In particular, X satisfies Opial’s condition, i.e.

lim sup
n→∞

‖xn − x∗‖ < lim sup
n→∞

‖xn − x‖, ∀x ∈ X (2.3)

(but not vice versa [7,28]).

Definition 2.2. [3] An operator A : X → X is said to be λ−strict pseudocon-
tractive (λ ∈ (0, 1)) if for every x, y ∈ X there exists j(x−y) ∈ J(x−y) such
that

〈Ax − Ay, j(x − y)〉 ≤ ‖x − y‖2 − λ‖(I − A)x − (I − A)y‖2.
Proposition 2.3. [3] Let X be a smooth Banach space, A : X → X be an
operator.
(i) If A is λ−strict pseudocontractive then A is L−Lipschitzian, where L =

1 + λ−1.
(ii) If A is η−strongly accretive and λ− strict pseudocontractive with η+λ >

1 then (I − τA) is a (1 − τρ)-contraction, for all τ ∈ (0, 1), where

ρ :=

(
1 −

√
1 − η

λ

)
.

Remark 2.4. Each linear operator A defined by Ax = kx, k > 1, is not a
strict pseudocontractive mapping therefore vice versa of statement (i) does
not hold.

In [28] it is proved that if A is a η-strongly monotone and L−Lipschitzian

operator, then (I − τA) is a contraction if τ ≤ 2η

L2
in the setting of a Hilbert

space.
A similar result is proved on q-uniformly smooth Banach spaces (see

[16]).

Next Lemma, proved in [27], will be a useful tool for our proof.

Lemma 2.5. Assume (bn)n∈N is a sequence of nonnegative numbers for which,

bn+1 ≤ (1 − an)bn + δn, n ≥ 0,

where (an)n∈N is a sequence in (0, 1) and (δn)n∈N is a sequence in R such
that,
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1.
∑∞

n=1 an = ∞;
2. lim supn→∞

δn
an

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ bn = 0.

3. Results

Let W : X→K(X) be a ∗-nonexpansive multivalued mapping with nonempty
Fix(W ).

In view of Definition 1.1, for a given x ∈ X and p ∈ Fix(W ), for any
xW ∈ Wx such that ‖x − xW ‖ = d(x,Wx), i.e xW ∈ PW x, there exists pW

such that ‖p − pW ‖ = d(p,Wp) = 0, i.e. p = pW ∈ PW p, and

‖xW − p‖ ≤ ‖x − p‖. (3.1)

Let us start with two easy examples showing that the convergence of a
classical viscosity method ([17,29]) is not guaranteed without any attention
on the choice of xW ∈ Wx.

Counter-Example 3.1. Let W : R → K(R) be defined as Wx = {x, x + 1}.
Note that W is ∗-nonexpansive mapping, Fix(W ) = R and Wx 
= {x}

if x ∈ Fix(W ).
Let f(x) =

x

2
and let us consider the implicit iteration:

xn = τnf(xn) + (1 − τn)xW
n , (3.2)

where xW
n ∈ Wxn.

Since Wx = {x, x + 1}, we choose W (xn) � xW
n = xn + 1 and our

iteration becomes:

xn =
2(1 − τn)

τn
. (3.3)

It is clear that (xn)n∈N does not converge for any null sequence (τn)n∈N (i.e.
τn → 0 as n → +∞).

Lemma 3.2. Let W : X → K(X) and let PW be defined as

PW x := {ux ∈ Wx : ‖x − ux‖ = d(x,Wx)},

i.e. the projection of x on the set Wx. Then the following hold:
(i) If PW is the identity mapping then W is ∗-nonexpansive.
(ii) W is ∗-nonexpansive if and only if PW is nonexpansive.
(iii) If Fix(W ) 
= ∅ then PW |Fix(W ) is single-valued, i.e. PW x = {x} for

each x ∈ Fix(W ) and Fix(W ) = Fix(PW ).

Proof. (i) follows by definitions and (ii) is proved in Theorem 3 in [15].
To prove (iii), if x̃ ∈ PW (x̃) then x̃ ∈ {ux̃ ∈ Wx̃ : ‖x̃−ux̃‖ = d(x̃,W x̃)};

hence, d(x̃,W x̃) = 0. This implies that x̃ ∈ Fix(W ), and

Fix(PW ) ⊂ Fix(W )

is proved. On the other hand, if x ∈ Fix(W ), d(x,Wx) = 0 then PW x =
{ux : ‖ux − x‖ = 0}, i.e. x = ux.
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Therefore, PW (x) = {x}, i.e PW is single-valued on the set of fixed
points of W and x ∈ Fix(PW ) that conclude our proof. �

The next counter-example shows that the convergence of a classical
viscosity method is not certain even under the strong condition that the
metric projection PW is single-valued on Fix(W ).

Counter-Example 3.3. Let W : [0, 1] → K([0, 1]) defined as:

Wx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
x, x +

1
2

]
, 0 ≤ x <

1
2

[
x − 1

2
, x

]
,

1
2

≤ x ≤ 1.

Since PW is the identity mapping, W is ∗-nonexpansive by Lemma 3.2 (i).
Let us consider iteration

xn = τnf(xn−1) + (1 − τn)xW
n ,

where f : [0, 1] → [0, 1] is a contraction such that f(x) < x, x > 0 (so the
unique fixed point is x = 0) and the following choice for xW

n is done:

xW
n =

⎧⎪⎪⎨
⎪⎪⎩

xn +
1
2
, 0 ≤ xn <

1
2

xn − 1
2
,

1
2

≤ xn ≤ 1.

By induction we prove that if x0 ≤ 1
2
then xn ≤ 1

2
for all n ∈ N.

Let us suppose, by contradiction, that xn ≤ 1
2
and xn+1 >

1
2
.

Thus, xW
n+1 = xn+1 − 1

2
and

xn+1 = τn+1f(xn) + (1 − τn+1)xn+1 − (1 − τn+1)
2

⇒ xn+1 = f(xn) − 1
2

(1 − τn+1)
τn+1

≤ f(xn) ≤ xn ≤ 1
2

by inductive hypothesis. This is a contradiction; therefore, x0 ≤ 1
2

im-

plies xn ≤ 1
2

for all n ∈ N. 2

Let x0 ∈
[
0,

1
2

]
; then the entire sequence lies in the same interval. This

is not possible because it can be written as

xn = f(xn−1) +
(1 − τn)

2τn
.

2Note that same result can be obtained for f(x) := u0 ≤ 1

2
.
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Since f is positive xn >
(1 − τn)

2τn
therefore our sequence (xn)n∈N can not be

found in
[
0,

1
2

]
for any null sequence (τn)n∈N. This contradiction shows that

by such a choice of xW
n , the algorithm does not work.

3.1. Iterative Approach

To prove our convergence results, the following demiclosedness type-principle
is necessary; for multivalued nonexpansive mapping demiclosedness principle
is well known by Theorem 3.1- [13]; for multivalued ∗-nonexpansive mapping
demiclosedness principle given in the next Lemma 3.4 seems to be new.

Lemma 3.4. Let X be a reflexive space satisfying Opial condition (2.3).
Let W : X → K(X) be a ∗-nonexpansive multivalued mapping with fixed

points.
Let (yn)n∈N be a bounded sequence such that

d(yn,Wyn) → 0, as n → ∞.

Then the weak cluster points of (yn)n∈N belong to Fix(W ), (i.e. ωw(yn) ⊂
Fix(W )).

Proof. Since X is reflexive, let (ynk
)k∈N ⊂ (yn)n∈N weak convergent to z.

Since Wz is compact, it is closed and there exists (znk
)k∈N ⊂ Wz such

that

‖ynk
− znk

‖ = d(ynk
,Wz).

Still because of the compactness of Wz, there exists a subsequence (znkj
)j ⊂

(znk
)k ⊂ Wz strongly convergent to z̃ ∈ Wz.
By definition of ∗−nonexpansivity, for any j ∈ N and ynkj

there exists
uy(j) ∈ Wynkj

with ‖ynkj
− uy(j)‖ = d(ynkj

,Wynkj
) and uz(j) ∈ Wz with

‖uz(j) − z‖ = d(z,Wz) such that

‖uy(j) − uz(j)‖ ≤ ‖ynkj
− z‖.

We now prove that z = z̃, so will be z ∈ Wz. If not, since d(yn,Wyn) → 0
and using the Opial’s inequality

lim sup
j→∞

‖ynkj
− z̃‖ ≤ lim sup

j→∞
[‖ynkj

− znkj
‖ + ‖znkj

− z̃‖]

= lim sup
j→∞

d(ynkj
, T z) ≤ lim sup

j→∞
‖ynkj

− uz(j)‖

≤ lim sup
j→∞

[‖ynkj
− uy(j)‖ + ‖uy(j) − uz(j)‖]

= lim sup
j→∞

[d(ynkj
, T ynkj

) + ‖uy(j) − uz(j)‖]

≤ lim sup
j→∞

‖ynkj
− z‖

< lim sup
j→∞

‖ynkj
− z̃‖,

and this is absurd. Therefore z ∈ Wz, i.e. z ∈ Fix(W ). �
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Our first result concerns the existence of a unique solution of our (VIP)
on the set of fixed point of a ∗-nonexpansive mapping.

Proposition 3.5. Let X be a reflexive Banach space with duality mapping Jϕ

that is weakly sequentially continuous, for some gauge ϕ.
Let W : X → K(X) a ∗-nonexpansive multivalued mapping such that

Fix(W ) is nonempty.
Let A : X → X an η-strongly accretive and k−strict pseudocontractive

such that η + k > 1.
Then

〈Ax∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ) (3.4)

has a unique solution.

Proof. Uniqueness of the solution is already noted by means of the strong
accretivity of A. Let us prove the existence.

Since W is ∗-nonexpansive, PW is nonexpansive by Lemma 3.2 (ii). Let
(αn)n∈N ⊂ (0, 1) be a sequence such that αn → 0 as n → +∞ and let
μ ∈ (0, 1). For any n ∈ N, consider the multivalued mapping

Γn := αn(I − μA) + (1 − αn)PW .

It is easy to verify that each Γn is a contraction. Indeed, if x, y ∈ X, w =
(I − μnA)x ∈ X, v = (I − μnA)y ∈ X we obtain that

H(Γnx,Γny) ≤ αn‖w − v‖ + (1 − αn)H(PW x, PW y)
≤ αn‖(I−μA)x−(I−μA)y‖+(1−αn)H(PW x, PW y)

(by Proposition 2.3(ii)) ≤ αn(1 − μρ)‖x − y‖ + (1 − αn)‖x − y‖
= (1 − αnμρ)‖x − y‖.

Then by Nadler fixed point principle, Γn has fixed point and

xn = αn(I − μnA)xn + (1 − αn)xP
n

is well defined for an opportune xP
n ∈ PW xn. Let p ∈ Fix(W ); then p =

Fix(PW ) by Lemma 3.2 (iii) and PW p = {p} i.e. PW is single-valued on
Fix(W ). Thus

‖xn − p‖ = ‖αn(I − μA)xn + (1 − αn)xP
n − p‖

≤ αn‖(I − μA)xn − (I − μA)p‖ + αnμ‖Ap‖ + (1 − αn)‖xP
n − p‖

(by (3.1)) ≤ αn(1 − μρ)‖xn − p‖ + αnμ‖Ap‖ + (1 − αn)‖xn − p‖
= (1 − αnμρ)‖xn − p‖ + αnμρ

‖Ap‖
ρ

;

therefore,

‖xn − p‖ ≤ ‖Ap‖
ρ

,

i.e. our sequence is bounded.
Moreover, for each w ∈ Fix(W ),

‖xn − w‖2 = 〈xn − w, j(xn − w)〉
≤ αn〈xn − μAxn − w, j(xn − w)〉 + (1 − αn)‖xn − w‖2
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= ‖xn − w‖2 − αnμ〈Axn, j(xn − w)〉; (3.5)

hence,

〈Axn, j(xn − w)〉 ≤ 0, ∀w ∈ Fix(T ). (3.6)

On the other hand, since A is η-strongly accretive, it follows from (3.6) that

0 ≥ 〈Axn − Aw, J(xn − w)〉 + 〈Aw, J(xn − w)〉
≥ η‖xn − w‖2 + 〈Aw, j(xn − w)〉.

This implies that

‖xn − w‖2 ≤ −1
η
〈Aw, j(xn − w)〉. (3.7)

Since (xn)n∈N is bounded and (αn)n∈N is a null sequence it holds

‖xn − xP
n ‖ = αn‖(I − μA)xn − xP

n ‖ → 0, as n → ∞;

therefore, d(xn, PW xn) → 0 as n → ∞ and, as a rule, d(xn,Wxn) → 0 as
n → ∞ . By Lemma 3.4, the weak limit of (xn)n∈N are fixed points for W .

Recalling (2.1) we can write (3.7) as

ϕ(‖w − xn‖)‖xn − w‖2 ≤ 1
η
‖w − xn‖2〈Aw, jϕ(w − xn)〉) (3.8)

and so

ϕ(‖w − xn‖) ≤ 1
η
〈Aw, jϕ(w − xn)〉).

Let w ∈ ωw(xn); there exists xnk
⇀ w and w ∈ Fix(T ). Since the duality

map Jϕ is weakly sequentially continuous

ϕ(‖xnk
− w‖) ≤ 1

η
〈Aw, jϕ(w − xnk

)〉 → 0,

as k → ∞; hence, xnk
→ w, by properties of ϕ. Rewriting (3.6) with respect

to Jϕ we get

0 ≥ 〈Axnk
, jϕ(xnk

− p)〉 → 〈Aw, jϕ(w − p)〉, ∀p ∈ Fix(T ).

Then w is a solution of (VIP) and, by the uniqueness of the solution, ωw(xn) =
ωs(xn) = {w} and the thesis follows. �

Next we can define our first iteration.
Let A : D(A) ⊂ X → X be a strongly accretive operator and strict

pseudocontractive.
Let W : X → 2X be a multivalued ∗-nonexpansive mapping; let x0 and

xW
0 ∈ Wx0 such that ‖x0 − xW

0 ‖ = d(x0,Wx0), i.e. xW
0 ∈ PW x0. Let

x1 = λ0(x0 − μ0Ax0) + (1 − λ0)xW
0 .

Using definition of ∗−nonexpansivity, there exists xW
1 ∈ Wx1 such that ‖x1−

xW
1 ‖ = d(x1,Wx1), i.e. xW

1 = PW x1 and

‖xW
1 − xW

0 ‖ ≤ ‖x1 − x0‖.

In a same manner, let

x2 = λ1(x1 − μ1Ax1) + (1 − λ0)xW
1 ,
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and choose xW
2 ∈ PW x2 and

‖xW
2 − xW

1 ‖ ≤ ‖x2 − x1‖.

Iterating this process we get a sequence

xn+1 = λn(xn − μnAxn) + (1 − λn)xW
n (3.9)

such that

‖xW
n+1 − xW

n ‖ ≤ ‖xn+1 − xn‖. (3.10)

Theorem 3.6. Let X be a reflexive Banach space with duality mapping Jϕ

that is weakly sequentially continuous .
Let W : X → K(X) a ∗-nonexpansive multivalued mapping such that

Fix(W ) is nonempty.
Let A : X → X an η-strongly accretive and k−strict pseudocontractive

such that η + k > 1.
Let (μn)n∈N ⊂ (0, 1) and (λn)n∈N ⊂ [0, a] ⊂ [0, 1) such that

• λnμn → 0, as n → ∞ and
∑
n∈N

λnμn = ∞.

• lim
n→∞

|λn − λn−1|
λnμn

= 0.

• lim
n→∞

|μn − μn−1|
μn

= 0.

Then, for any choice x0 as a starting point, the explicit process

xn+1 = λn(I − μnA)xn + (1 − λn)xW
n , (3.11)

defined choosing xW
n in such a way that (3.10) is satisfied, strongly converges,

as n → ∞, to the unique solution of (VIP)

〈Ax∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ). (3.12)

Proof. Defining Bn := (I − μnA), our iteration can be described by

xn+1 = λnBnxn + (1 − λn)xW
n .

By hypotheses, every Bn is a contraction using Proposition 2.3 (ii).
Let p ∈ Fix(W ) be a given fixed point of W ; then by (3.1),

‖xn+1 − p‖ ≤ λn‖Bnxn − p‖ + (1 − λn)‖xW
n − p‖

≤ λn‖Bnxn − Bnp‖ + λn‖Bnp − p‖ + (1 − λn)‖xn − p‖
≤ λn(1 − μnρ)‖xn − p‖ + (1 − λn)‖xn − p‖ + λnμn‖Ap‖
= (1 − λnμnρ) ‖xn − p‖ + λnμnρ

‖Ap‖
ρ

≤ max
{

‖xn − p‖,
‖Ap‖

ρ

}
≤ . . . ≤ max

{
‖x1 − p‖,

‖Ap‖
ρ

}
,

and the boundedness of our sequence immediately holds.
Recalling that X is reflexive and since it satisfies Opial condition because

it has a weakly sequentially continuous duality mapping Jϕ (Lemma 2.1), our
next step is: to show that ωw(xn) ⊂ Fix(W ).
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The claim will follow by Lemma 3.4 and by the asymptotic regularity
of (xn)n∈N. Computing:

‖xn+1−xn‖ = ‖λnBnxn + (1 − λn)xW
n − λn−1Bn−1xn−1 − (1 − λn−1)xW

n−1‖
≤ λn‖Bnxn − Bn−1xn−1‖ + |λn − λn−1|‖Bn−1xn−1 − xW

n−1‖
+(1 − λn)‖xW

n − xW
n−1‖

≤ λn‖Bnxn − Bnxn−1‖ + λn‖Bnxn−1 − Bn−1xn−1‖
+|λn − λn−1|‖Bn−1xn−1 − xW

n−1‖
+(1 − λn)‖xn − xn−1‖

≤ λn(1 − μnρ)‖xn − xn−1‖ + λn‖Bnxn−1 − Bn−1xn−1‖
+|λn − λn−1|‖Bn−1xn−1 − xW

n−1‖ + (1 − λn)‖xn − xn−1‖
≤ (1 − λnμnρ)‖xn − xn−1‖ + λn|μn − μn−1|‖Axn−1‖

+|λn − λn−1|‖Bn−1xn−1 − xW
n−1‖.

The boundedness of (xn)n∈N guarantees that there exists a constant M such
that

‖xn+1 − xn‖ ≤ (1 − λnμnρ)‖xn − xn−1‖ + M [λn|μn − μn−1| + |λn − λn−1|]
= (1 − an)‖xn − xn−1‖ + Mδn,

where

an := λnμnρ; δn = [λn|μn − μn−1| + |λn − λn−1|] ;
hence, asymptotic regularity for (xn)n∈N follows by Lemma 2.5. Moreover,

‖xn − xW
n ‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − xW

n ‖
≤ ‖xn − xn+1‖ + λn‖Bnxn − xW

n ‖;

thus,

(1 − λn)‖xn − xW
n ‖ ≤ ‖xn − xn+1‖ + λnμn‖AxW

n ‖.

Since (λnμn)n∈N is a null sequence and by asymptotic regularity, ‖xn −
xW

n ‖ → 0.
Observing that

d(xn,Wxn) ≤ ‖xn − xW
n ‖ → 0,

as n → ∞, by Lemma 3.4, the weak limits of (xn)n∈N are fixed points for W .
To prove the strong convergence, let w ∈ Fix(W ) the unique solution

for (1.1). Such a (unique) solution exists by Proposition 3.5.
Since Jϕ is the sub-differential of Φ, we have

Φ(‖xn+1 − w‖) = Φ(‖λn(Bnxn − w) + (1 − λn)(xW
n − w)‖)

= Φ(‖λn(Bnxn−Bnw)+λn(Bnw−w)+(1−λn)(xW
n −w)‖)

≤ Φ(‖λn(Bnxn − Bnw) + (1 − λn)xW
n − w)‖)

−λnμn〈Aw, jϕ(xn+1 − w)〉
≤ λn(1 − μnρ)Φ(‖xn − w‖) + (1 − λn)Φ(‖xW

n − w‖)
−λnμn〈Aw, jϕ(xn+1 − w)〉



MJOM Approx of Solutions of VIP on Fix-Point Sets of Multival-Maps Page 13 of 19 157

≤ [1 − λnμnρ] Φ(‖xn − w‖) − λnμn〈Aw, jϕ(xn+1 − w)〉.
(3.13)

Then

Φ(‖xn+1 − w‖) ≤ (1 − an) Φ(‖xn − w‖) + an
〈−Aw, jϕ(xn+1 − w)〉

,
ρ,

where an = λnμnρ satisfies Lemma 2.5 (1). To apply Lemma 2.5, note that
there exists a subsequence of (xn)n∈N for which

lim sup
n→∞

〈−Aw, jϕ(xn+1 − w)〉 = lim
k→∞

〈−Aw, jϕ(xnk
− w)〉.

Since (xn)n∈N is bounded and X is reflexive, there exists a subsequence
(xnkj

)j∈N ⊂ (xnk
)k∈N weak convergence to p; moreover, p ∈ Fix(W ). By

the weak sequential continuity of the duality map we, therefore, conclude
that

lim sup
n→∞

〈Aw, jϕ(w − xn+1)〉 = lim
j→∞

〈Aw, jϕ(w − xnkj
)〉 = 〈Aw, jϕ(w − p)〉 ≤ 0

since w is the unique solution of (1.1). Lemma 2.5 gives that ‖xn − w‖ → 0,
as n → ∞, being Φ(‖xn − w‖) → 0, and the thesis follows. �

By means of Theorem 3.6, we obtain viscosity iteration and Halpern
approach to minimisation problem

Corollary 3.7. Let X be a reflexive Banach space with duality mapping that
is weakly sequentially continuous, Jϕ.

Let W : X → K(X) a ∗-nonexpansive multivalued mapping such that
Fix(W ) is nonempty. Let f : X → X a η-contraction.

Let (λn)n∈N ⊂ [0, a] ⊂ [0, 1) such that

lim
n→+∞ λn = 0,

∑
n∈N

λn = ∞ and lim
n→∞

|λn − λn−1|
λn

= 0.

Then, for any choice x0 as a starting point, the explicit process

xn+1 = λnf(xn) + (1 − λn)xW
n

strongly converges, as n → ∞, to the unique solution of (VIP)

〈(I − f)x∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ). (3.14)

Corollary 3.8. Let X be a reflexive Banach space with duality mapping that
is weakly sequentially continuous, Jϕ.

Let W : X → K(X) a ∗-nonexpansive multivalued mapping such that
Fix(W ) is nonempty. Let (λn)n∈N ⊂ [0, a] ⊂ [0, 1) such that

lim
n→+∞ λn = 0,

∑
n∈N

λn = ∞ and lim
n→∞

|λn − λn−1|
λn

= 0.

Then, for any choice x0 as a starting point, the explicit process

xn+1 = λnu + (1 − λn)xW
n
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strongly converges, as n → ∞, to the unique solution of minimisation prob-
lem

min
x∈Fix(W )

‖x − u‖. (3.15)

Example. Let us apply Corollary 3.8 to W defined as in counter-example 3.3.
Let W : [0, 1] → K([0, 1]) defined as

Wx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
x, x +

1
2

]
, 0 ≤ x <

1
2

[
x − 1

2
, x

]
,

1
2

≤ x ≤ 1.

We have already noted that PW = I and Fix(W ) = R. For any (λn)n∈N

satisfying the assumption of Corollary 3.8, following construction (3.11) our
iteration becomes

xn+1 = λnu + (1 − λn)xn.

Then a simple realisation of Lemma 2.5 applied to the unknown sequence
(xn − u) gives the convergence of (xn)n∈N to u that solves the minimization
problem (3.15).

By a suitable modification of the idea that defines (3.11), we can define
another iteration; the proof of the following is based on the idea of Theorem
3.6.

Theorem 3.9. Let X, W and A as in Theorem 3.6. Let (μn)n∈N ⊂ (0, 1) and
(λn)n∈N ⊂ [0, a] ⊂ [0, 1) such that

• μn → 0, as n → ∞ and
∑
n∈N

μn = ∞.

• lim
n→∞

|λn − λn−1|
μn

= 0.

• lim
n→∞

|μn − μn−1|
μn

= 0.

Then choosing xW
n as in the previous theorem, i.e. in such a way that (3.10)

is satisfied, the explicit iteration

xn+1 = λnxn + (1 − λn)xW
n − (1 − λn)μnAxW

n (3.16)

strongly converges, as n → ∞, to the unique solution of (V IP )

〈Ax∗, j(y − x∗)〉 ≥ 0, ∀y ∈ Fix(W ). (3.17)

Proof. Again define Bn := (I − μnA) in such a way that our iteration be-
comes:

xn+1 = λnxn + (1 − λn)BnxW
n .

Let p ∈ Fix(W ) be a given fixed point of W . Then

‖xn+1 − p‖ ≤ λn‖xn − p‖ + (1 − λn)‖BnxW
n − Bnp‖ + (1 − λn)μn‖Ap‖

≤ λn‖xn − p‖ + (1 − λn)(1 − μnρ)‖xW
n − p‖ + (1 − λn)μn‖Ap‖
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by (3.1) ≤ λn‖xn − p‖ + (1 − λn)(1 − μnρ)‖xn − p‖ + (1 − λn)μn‖Ap‖
= (1 − (1 − λn)μnρ) ‖xn − p‖ + (1 − λn)μnρ

‖Ap‖
ρ

≤ max
{

‖xn − p‖,
‖Ap‖

ρ

}
≤ . . . ≤ max

{
‖x1 − p‖,

‖Ap‖
ρ

}
,

and the boundedness of our sequence immediately holds. To show that ωw(xn)
⊂ Fix(W ) asymptotic regularity is needed; therefore, let us compute

‖xn+1 − xn‖ ≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
W
n−1‖ +

(1 − λn)‖BnxW
n − Bn−1x

W
n−1‖

≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
W
n−1‖ +

(1 − λn)‖BnxT
n − BnxW

n−1‖ +

(1 − λn)‖BnxW
n−1 − Bn−1x

W
n−1‖

≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
W
n−1‖ +

(1 − λn)(1 − μnρ)‖xW
n − xW

n−1‖ +

(1 − λn)|μn − μn−1|‖AxW
n−1‖

by (3.10) ≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
W
n−1‖ +

(1 − λn)(1 − μnρ)‖xn − xn−1‖ +

(1 − λn)|μn − μn−1|‖AxW
n−1‖.

The boundedness of (xn)n∈N guarantees that there exists a constant M such
that

‖xn+1 − xn‖ ≤ [λn + (1 − λn)(1 − μnρ)]‖xn − xn−1

+M [|λn − λn−1| + |μn − μn−1|]
= [1 − (1 − λn)μnρ)]‖xn − xn−1‖

+M [|λn − λn−1| + |μn − μn−1|]
= (1 − an)‖xn − xn−1‖ + Mδn,

where an := (1 − λn)μnρ and δn = [|λn − λn−1| + |μn − μn−1|].
Applying Lemma 2.5, we obtain asymptotic regularity for (xn)n∈N. Moreover,

‖xn − xW
n ‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − xW

n ‖
≤ ‖xn − xn+1‖ + ‖λn(xn − xW

n ) + (1 − λn)μnAxW
n ‖

≤ ‖xn − xn+1‖ + λn‖xn − xW
n ‖ + (1 − λn)μn‖AxW

n ‖;

thus,

(1 − λn)‖xn − xW
n ‖ ≤ ‖xn − xn+1‖ + (1 − λn)μn‖AxW

n ‖.

Since (μn)n∈N is a null sequence and by asymptotic regularity, ‖xn−xW
n ‖ → 0.

Observing that

d(xn,Wxn) ≤ ‖xn − xW
n ‖ → 0,

as n → ∞, by Lemma 3.4, the weak limits of (xn)n∈N are fixed points for W .
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To conclude, let w ∈ Fix(W ) the unique solution for (1.1) that there
exists by Proposition 3.5. Thus,

Φ(‖xn+1 − w‖) = Φ(‖λn(xn − w) + (1 − λn)(BnxW
n − w)‖)

= Φ(‖λn(xn − w) + (1 − λn)(BnxW
n − Bnw)

−(1 − λn)μnAw)‖)

≤ Φ(‖λn(xn − w) + (1 − λn)(BnxW
n − Bnw)‖)

−(1 − λn)μn〈Aw, jϕ(xn+1 − w)〉
≤ λnΦ(‖xn − w‖) + (1 − λn)(1 − μnρ)Φ(‖xW

n − w‖)
−(1 − λn)μn〈Aw, jϕ(xn+1 − w)〉

≤ [1 − (1 − λn)μnρ] Φ(‖xn − w‖)
−(1 − λn)μn〈Aw, jϕ(xn+1 − w)〉,

i.e.

Φ(‖xn+1 − w‖) ≤ (1 − an) Φ(‖xn − w‖) + an
〈−Aw, jϕ(xn+1 − w)〉

ρ
,

where an = (1 − λn)μnρ. To apply Lemma 2.5, following proof of Theorem
3.6, we get that

lim sup
n→∞

〈Aw, jϕ(w − xn+1)〉 = lim
j→∞

〈Aw, jϕ(w − xnkj
)〉 = 〈Aw, jϕ(w − p)〉 ≤ 0

since w is the unique solution of (1.1). Lemma 2.5 gives that ‖xn − w‖ → 0,
as n → ∞, being Φ(‖xn − w‖) → 0, and the thesis follows. �

Example. Take X = lp, p > 1, that is reflexive and it has a weakly sequen-
tially continuous duality mapping Jϕ with gauge ϕ(t) = tp−1.

Take Wx := {x, 2x}, that is ∗-nonexpansive by Lemma 3.2(i).
Take A = I − u, u be fixed.
Consider the iterative process (3.16) with λn = 1

2 and μn = 1√
n
. Then

all the hypotheses of Theorem 3.9 are satisfied and the iteration process (3.16)
becomes

xn+1 − u =
(

1 − 1
2
√

n

)
(xn − u).

So Lemma 2.5 still yields that xn → u, solution of the variational inequality
(1.5).

3.2. Open Questions

In what follows, we include some open problems that we think that they may
be of interest:

• Does the conclusion of our Theorems hold under weaker conditions on
underlying Banach spaces?

• Is it possible to replace the strict pseudocontractivity of A with Lips-
chitzianity as in the setting of Hilbert spaces?
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3.3. Conclusions

We studied multivalued ∗-nonexpansive mappings in Banach spaces. The
demiclosedness principle is established in reflexive Banach spaces satisfying
Opial’s condition (Lemma 3.4). Thus, the demiclosedness principle holds also
in reflexive Banach spaces with duality mapping that is weakly sequentially
continuous since these satisfy Opial’s condition.

We proved the existence of a unique solution of our Variational Inequal-
ity Problem (VIP) on the set of fixed point of a ∗-nonexpansive mapping
(Proposition 3.5) when X is a reflexive Banach space with duality mapping
that is weakly sequentially continuous Jϕ for some gauge ϕ. We constructed
two iterative schemes (3.11) and (3.16) that converge to the solution of the
(VIP) in reflexive Banach spaces with duality mapping that is weakly se-
quentially continuous (Theorems 3.6 and Theorem 3.9, respectively).

Some examples and counter-examples are given.
Some open questions whose answer could be interesting are pointed out.
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