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Abstract. In this paper, we study the rate of pointwise approximation
for the neural network operators of the Kantorovich type. This result
is obtained proving a certain asymptotic expansion for the above oper-
ators and then by establishing a Voronovskaja type formula. A central
role in the above resuts is played by the truncated algebraic moments
of the density functions generated by suitable sigmoidal functions. Fur-
thermore, to improve the rate of convergence, we consider finite linear
combinations of the above neural network type operators, and also in the
latter case, we obtain a Voronovskaja type theorem. Finally, concrete
examples of sigmoidal activation functions have been deeply discussed,
together with the case of rectified linear unit (ReLu) activation function,
very used in connection with deep neural networks.
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1. Introduction

The theory of the neural network (NN) operators arise since 1992 with the pi-
oneer work of Cardaliaguet and Euvrard [15], and then in the next years, they
have been largely studied by several authors under different aspects, see, e.g.,
[12,13,32,33]; the main advantage of the above theory lies on its connection
with the artificial neural networks and their applications to Approximation
Theory. For a complete overview concerning applications of neural networks
and learning theory, see, e.g., the very complete monograph of Cucker and
Zhou [29], and also [9,37,42,43,46–49,53,56].

A generalization to the Lp-setting of the above NN operators has been
proved in [21]; here, the authors showed that any multivariate Lp-data can
be approximated in the Lp-norm by means of the NN operators of the
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Kantorovich-type. However, even if their natural settings are the Lp-spaces,
the above operators converge also pointwise and uniformly when continuous
functions are considered.

Such operators are called “of Kantorovich-type”, since their coefficients
are defined by means of suitable averages of the functions f that is approxi-
mated.

Usually, the activation functions of the NN operators are a sigmodal
function ([30]); the reason is that a sigmoidal curve allows to simulate the
two states of the biological neurons, that are, the activated and the non-
activated ones, see, e.g., [9,38,39,44].

Recently, also a new unbounded activation functions has been investi-
gated, that is the so-called ReLu (rectified linear unit) activation function,
defined by the positive part of x, for every x ∈ R. The ReLu activation func-
tion has a linear grow as x goes to +∞ and it revealed to be very suitable in
order to train deep (i.e., the multi-layers) neural networks, see, e.g., [31,51].

Due to its definition, it is easy to show that the ReLu activation function
can be used to express the well-known ramp (or cut) sigmoidal function
(see [36]); furthermore, it is also well known that the ramp function can be
considered as the activation function in the NN operators. Then, the above
relation implies that also the ReLu activation function can be used in NN
operators.

The main purpose of this paper is to study the pointwise rate of ap-
proximation for the NN operators of the Kantorovich type. The above aim is
pursuit by adopting the following strategy: first of all, an asymptotic expan-
sion for the above operators is established, and then, a Voronovskaja type
theorem is proved.

The asymptotic formula allows to expand the above approximation op-
erators, when they are evaluated for a sufficiently smooth functions f , in
terms of derivatives of the approximated function f evaluated at suitable
nodes. A central role in the asymptotic expansion is played by the truncated
algebraic moments of the density functions φσ (x); the density function is
generated by suitable sigmoidal functions and it can be considered as the
kernel of the operators.

The asymptotic formula can be used to prove a Voronovskaja-type the-
orem (see, e.g., [6–8]), from which we establish the rate of pointwise approx-
imation of the operators under investigation.

In general, Voronovskaja formulas are widely studied in Approximation
Theory (see, e.g., [4,10,34,54]), both from the qualitative and quantitative
point of view (see, e.g., [1,50]), also for their relations with the saturation
phenomenon for families of linear operators (see [27,35]).

Furthermore, to improve the above convergence results and to obtain
a family of NN operators with an higher order of approximation, here, we
also considered suitable families of finite linear combination of the above NN
operators of the Kantorovich type. Also for these families of operators, we
derive asymptotic and Voronovskaja type formulas, following the same steps
above described.
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Finally, we discuss in details several examples of sigmoidal functions
for which the above results hold. In particular, we consider the cases of the
logistic and the hyperbolic tangent sigmoidal functions, which are of crucial
importance in the theory of learning artificial neural networks, and the case
of the sigmoidal functions generated by the central B-splines, which are useful
to construct high-order convergence NN operators.

2. Notations and Preliminary Results

In this paper, we denote by C (I) the space of all functions f : I → R which
are continuous on I := [−1, 1] and we denote by Cr (I), r ∈ N

+ the space
of functions of C (I) which have continuous derivative f (s) on I, for every
1 ≤ s ≤ r, s ∈ N

+. The above spaces will be considered endowed by the
usual max-norm ‖·‖∞. Now, denoting by Φ : R → R a given function, we
can recall the following definitions.

Definition 1. Let h ∈ N be fixed. We define the truncated algebraic moment
of Φ order h, by:

mn
h (Φ, u) :=

n−1∑

k=−n

Φ(u − k) (k − u)h
, u ∈ R, (1)

for every n ∈ N
+.

Definition 2. Let h ≥ 0 be fixed. We call discrete absolute moment of Φ of
order h what follows:

Mh (Φ) := sup
u∈R

∑

k∈Z

|Φ(u − k)| |u − k|h .

The discrete absolute moments of a given function are widely used tools
very useful to establish the convergence of families of linear operators, see,
e.g., [6,7,55].

It is well known that, if Φ is bounded on R and has a sufficiently fast
decay to 0 as x → ±∞, then Mh (φ) < +∞, for suitable h, see, e.g., [19].

Now, we recall the definition of sigmoidal function (see, e.g., [26,30]).

Definition 3. Let σ : R → R be a measurable function. We call σ a sigmoidal
function if:

lim
x→−∞ σ (x) = 0, and lim

x→+∞ σ (x) = 1.

In what follows, we consider non-decreasing sigmoidal functions σ which
satisfy the following conditions:

(Σ1) σ (x) − 1/2 is an odd function;
(Σ2) σ ∈ C2 (R) is concave for x ≥ 0;
(Σ3) σ (x) = O

(
|x|−α−1

)
as x → −∞ for some α > 0.
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We now recall the definition of the following density function:

φσ (x) :=
1
2

[σ (x + 1) − σ (x − 1)] , x ∈ R.

The following lemma summarize some useful properties of the function
φσ.

Lemma 4. (i) φσ (x) ≥ 0 for every x ∈ R, with φσ (2) > 0, and moreover,
limx→±∞ φσ (x) = 0;

(ii) φσ (x) is an even function;
(iii) φσ (x) is non-decreasing for x < 0 and non-increasing for x ≥ 0;
(iv) φσ (x) = O

(
|x|−1−α

)
as x → ±∞ where α is the positive constant

of condition (Σ3);
(v) Let x ∈ I and n ∈ N

+. Then:

mn
0 (φσ, nx) =

n−1∑

k=−n

φσ (nx − k) ≥ φσ (2) > 0.

Furthermore, if σ is a sigmoidal function which satisfies (Σ3) for α > r,
for some r ∈ N

+, then:
(vi) Mh (φσ) < +∞, for every 0 ≤ h ≤ r;
(vii) for every fixed γ > 0, it turns out that:

lim
n→+∞

∑

|u−k|>γn

φσ (u − k) |u − k|h = 0,

uniformly with respect to u ∈ R, for every 0 ≤ h ≤ r;
(viii) the sequences (mn

h (φσ, u)n)n∈N+ of the truncated algebraic mo-
ments of order h are equibounded on R, for every h = 0, 1, . . . , r.

Remark 5. Note that, if we remove condition (Σ2) on σ, and we assume
directly that φσ satisfies assertion (iii) of Lemma 4, the theory still holds,
see, e.g., [25]. The consequence of the above observation is that, we can apply
the above theory to C2 as well as to non-smooth sigmoidal functions, such
that the corresponding φσ satisfies (iii) of Lemma 4, and φσ(2) > 0.

For a proof of the properties (i) - (v) see [24]; for the properties (vi) -
(viii), see Lemma 2.6 of [28].

Now, we recall the definition of the NN operators of the Kantorovich
type.

Definition 6. Let f : I → R be a locally integrable function. The Kantorovich-
type NN operators Kn (f, ·), activated by a sigmoidal function σ, and acting
on f , are defined by:

Kn (f, x) :=

n−1∑

k=−n

φσ (nx − k) n

∫ (k+1)/n

k/n

f (u) du

n−1∑

k=−n

φσ (nx − k)

, x ∈ I. (2)
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Clearly, for every n ∈ N
+ and k ∈ Z such that −n ≤ k ≤ n − 1, it turns

out that −1 ≤ k
n < k+1

n ≤ 1; the latter inequality, together with condition (v)
of Lemma 4, implies that the operators are well defined, e.g., in case of locally
integrable and bounded functions on I. Furthermore, it turns out that:

|Kn (f, x)| ≤ ‖f‖∞ ,

for all x ∈ I.

Remark 7. It is well known that (see, e.g., [21]) the family Kn (f, ·) converges
pointwise at each point of continuity of any bounded f . The convergence turns
out to be uniform on I if f is continuous on the whole I.

3. Asymptotic Formulas for the NN Operators of the
Kantorovich Type

The main aim of this section is to study the order of pointwise approximation
for the operators Kn by means of Voronovskaja type theorem.

From now on, when we refer to a sigmoidal function σ, we always con-
sider a sigmoidal function σ satisfying conditions (Σ1), (Σ2), and (Σ3) intro-
duced in Sect. 2.

We begin establishing the following asymptotic expansion for the oper-
ators Kn.

Theorem 8. Let σ be a sigmoidal function witch satisfies assumption (Σ3)
with α > r, for some r ∈ N

+. Moreover, let f ∈ Cr (I) be fixed. Then, the
following asymptotic formula holds:

Kn (f, x) = f (x) +
r∑

ν=1

f (ν) (x)

ν!nν

ν∑

h=0

(
ν

h

)
mn

h (φσ, nx)

(ν − h + 1) mn
0 (φσ, nx)

+ o
(
n−r) ,

n → ∞,

for every x ∈ I, where mn
0 (φσ, nx) > 0, for every x ∈ I, and n ∈ N

+.

Proof. From the local Taylor formula (for details, see, e.g., [8, p. 283]), we
have:

f (u) =
r∑

ν=0

f (ν) (x)
ν!

(u − x)ν + h (u − x) (u − x)r

for every x, u ∈ I, where h (y) is a suitable bounded1 function, such that
h (y) → 0 as y → 0. Then, for every fixed x ∈ I, we can write what follows:

Kn (f, x) =

n−1∑

k=−n

φσ (nx − k) n

∫ (k+1)/n

k/n

f (u) du

n−1∑

k=−n

φσ (nx − k)

1Note that the boundedness of h derives from the boundedness of f and its derivatives.
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=

n−1∑

k=−n

φσ (nx − k) n

∫ (k+1)/n

k/n

[
r∑

ν=0

f (ν) (x)
ν!

(u − x)ν

]
du

n−1∑

k=−n

φσ (nx − k)

+

n−1∑

k=−n

φσ (nx − k) n

∫ (k+1)/n

k/n

[h (u − x) (u − x)r] du

n−1∑

k=−n

φσ (nx − k)

=:I1 + I2.

Let us analyze the term I1. Using the binomial theorem and recalling that
n−1∑

k=−n

φσ (nx − k) = mn
0 (φσ, nx), we have that:

I1 =

[
n−1∑

k=−n

φσ (nx − k) n

r∑

ν=0

f (ν) (x)
ν!

∫ (k+1)/n

k/n

(u − x)ν
du

]
1

mn
0 (φσ, nx)

=

[
n−1∑

k=−n

φσ (nx − k) n

r∑

ν=0

f (ν) (x)
ν!

∫ (k+1)/n

k/n

(u − k/n + k/n − x)ν
du

]
1

mn
0 (φσ, nx)

=

[
n−1∑

k=−n

φσ (nx − k) n
r∑

ν=0

f (ν) (x)
ν!

ν∑

h=0

(
ν

h

)
(k/n − x)h

∫ (k+1)/n

k/n

(u − k/n)ν−h
du

]
1

mn
0 (φσ, nx)

,

so

I1 =
1

mn
0 (φσ, nx)

n−1∑

k=−n

φσ (nx − k)
r∑

ν=0

f (ν) (x)
ν!

ν∑

h=0

(
ν

h

)
(k/n − x)h

(ν − h + 1) nν−h

=
1

mn
0 (φσ, nx)

r∑

ν=0

f (ν) (x)
ν!nν

ν∑

h=0

(
ν

h

)
1

ν − h + 1

n−1∑

k=−n

(k − nx)h
φσ (nx − k)

=
r∑

ν=0

f (ν) (x)
ν!nν

ν∑

h=0

(
ν

h

)
mn

h (φσ, nx)
(ν − h + 1) mn

0 (φσ, nx)
.

Now, let us analyze the term I2. Let ε > 0 be fixed. Since h (y) → 0 as y → 0,
then there exists a γ > 0, such that |h (y)| < ε if |y| ≤ γ. Hence, we can write:

I2 =
1

mn
0 (φσ, nx)

n−1∑

k=−n
|nx−k|<γn/2

φσ (nx − k) n

∫ (k+1)/n

k/n

h (u − x) (u − x)r
du
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+
1

mn
0 (φσ, nx)

n−1∑

k=−n
|nx−k|≥γn/2

φσ (nx − k) n

∫ (k+1)/n

k/n

h (u − x) (u − x)r
du

=I2,1 + I2,2.

As concerns I2,1, we observe that, if u ∈ [k/n, (k + 1) /n], we have:

|u − x| ≤ |u − k/n| + |x − k/n| ≤ 1/n + γ/2 < γ

for every sufficiently large n, and hence:

|I2,1| ≤ ε

mn
0 (φσ, nx)

n−1∑

k=−n
|nx−k|<γn/2

φσ (nx − k) n

∫ (k+1)/n

k/n

|u − x|r du

≤ ε

mn
0 (φσ, nx)

n−1∑

k=−n
|nx−k|<γn/2

φσ (nx − k) n

∫ (k+1)/n

k/n

r∑

m=0

(
r

m

)
(u − k/n)r−m |k/n − x|m du

≤ ε

mn
0 (φσ, nx) nr

n−1∑

k=−n

r∑

m=0

(
r

m

) |k − nx|m
r − m + 1

φσ (nx − k)

≤ ε

mn
0 (φσ, nx) nr

r∑

m=0

(
r

m

)
Mm (φσ)
r − m + 1

.

We now consider I2,2. By the boundedness of h (y) and arguing as in I2,1, we
get:

|I2,2| ≤ ‖h‖∞
mn

0 (φσ, nx)

n−1∑

k=−n
|nx−k|≥γn/2

φσ (nx − k) n

∫ (k+1)/n

k/n

|u − x|r du

≤ ‖h‖∞
mn

0 (φσ, nx) nr

r∑

m=0

(
r

m

)
1

r − m + 1

n−1∑

k=−n
|nx−k|≥γn/2

φσ (nx − k) |k − nx|m

≤ ‖h‖∞
mn

0 (φσ, nx) nr

2r+1 − 1
r + 1

max
m=0,...,r

∑

|nx−k|≥γn/2

φσ (nx − k) |k − nx|m

≤ ‖h‖∞
mn

0 (φσ, nx) nr

2r+1 − 1
r + 1

ε

for n sufficiently large, by the property (vii) of Lemma 4, and the trivial
identity:

r∑

m=0

(
r

m

)
xr−m+1

r − m + 1
=

(1 + x)r+1 − 1
r + 1

.

This concludes the proof. �
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As a consequence of the previous result, we can prove the following
Voronovskaja type theorem.

Theorem 9. Let σ be a sigmoidal function which satisfies assumption (Σ3)
with α > 1. Suppose that, for every x ∈ R:

mn
h (φσ, x) = mh + o

(
n−θh

)
, n → +∞, h = 0, 1, (3)

where mh ∈ R, θh > 0, h = 0, 1, and the “o-term” tends to zero uniformly
with respect to x ∈ R. Then, for any f ∈ C1 (I), we have:

lim
n→+∞ n [Kn (f, x) − f (x)] = f ′ (x)

(
1
2

+
m1

m0

)
,

where m0 > 0 in view of Lemma 4 (v).

Proof. From the asymptotic formula of Theorem 8, we have:

n [Kn (f, x) − f (x)] =n

[
f ′ (x)

n

(
1
2

+
m1 + o

(
n−θ1

)

m0 + o (n−θ0)

)
+ o

(
n−1

)
]

,

and the result follows taking the limit as n → +∞. �
Remark 10. The previous theorem shows that the order of pointwise approxi-
mation by means of the Kantorovich NN operators is at least of order O

(
n−1

)

when n → +∞ and f ∈ C1 (I).

Moreover, we can observe that, under the assumption of Theorem 9, it
is not hard to show that, if f ∈ C1 (I), we have:

‖Kn (f, ·) − f (·)‖∞ = O
(
n−1

)

as n → +∞.
Thus, it seems clear that the best possible order of uniform approxima-

tion that can be achieved by the operators Kn is O(1/n), as n → +∞. This
shows that, in general, a better order of approximation cannot be obtained;
indeed, in the main examples of sigmoidal functions (see Section 5 below)
m1 = 0, then the limit of Theorem 9 gives the exact order of approximation.
The order is also less rapid than that achieved in case of the classical NN
operators, (see [28]), that is O(1/n2), as n → +∞.

4. High-Order Convergence of NN Operators of the
Kantorovich Type

To construct NN operators of the Kantorovich type with higher order of
approximation than Kn, we adopt the following strategy.

Let r ∈ N
+, r > 1 and αj ∈ R \ {0} , j = 1, . . . , r fixed, such that:

r∑

j=1

αj = 1. (4)

Let us define:

Kr
n (f, x) :=

r∑

j=1

αjKnj (f, x) , x ∈ I,
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where f is any bounded locally integrable function. It is clear that condition
(4) is such that Kr

n preserves the approximation properties of Kn.
Obviously, also in this section, when we refer to σ, we always consider

sigmoidal functions satisfying (σi), i = 1, 2, 3.
Now, we can prove the following asymptotic and Voronovskaja type

formula for Kr
n.

Theorem 11. Let σ be a sigmoidal function which satisfies assumption (Σ3)
with α > r > 1, for some r ∈ N

+. Moreover, let f ∈ Cr (I) be fixed. Then:

Kr
n (f, x) = f (x) +

r∑

ν=1

f (ν) (x)
ν!nν

ν∑

h=0

(
ν

h

)
1

ν − h + 1

r∑

j=1

αj

jν

mnj
h (φσ, njx)

mnj
0 (φσ, njx)

+o
(
n−r

)
, (5)

as n → +∞ and for every x ∈ I. Furthermore, if we suppose that:

mn
h (φσ, x) = mh, h = 0, . . . , r (6)

for n ∈ N
+ sufficiently large, where mh ∈ R, such that αj , j = 1, . . . , r

satisfies the following linear algebraic system:
r∑

j=1

αj = 1,
r∑

j=1

αj

jν
= 0, ν = 1, . . . , r − 1 (7)

then

lim
n→+∞ nr [Kr

n (f, x) − f (x)] =
f (r) (x)

r!

r∑

h=0

(
r

h

)
1

r − h + 1
mh

m0

r∑

j=1

αj

jr
. (8)

Proof. We simply observe that, proceeding as in Theorem 8, we can write:

Kr
n (f, x) =

r∑

j=1

αjKnj (f, x)

=
r∑

j=1

αj

⎛

⎜⎜⎜⎜⎜⎝

nj−1∑

k=−nj

φσ (njx − k) nj

∫ (k+1)/(nj)

k/(nj)

f (u) du

nj−1∑

k=−nj

φσ (njx − k)

⎞

⎟⎟⎟⎟⎟⎠

=

r∑

j=1

αj

(
f (x) +

r∑

ν=1

f (ν) (x)

ν!nνjν

ν∑

h=0

(
ν

h

)
1

ν − h + 1

mnj
h (φσ, njx)

mnj
0 (φσ, njx)

)

+
r∑

j=1

αj

⎛

⎜⎜⎜⎜⎜⎝

nj−1∑

k=−nj

φσ (njx − k) nj

∫ (k+1)/(nj)

k/(nj)

[h (u − x) (u − x)r] du

mnj
0 (φσ, njx)

⎞

⎟⎟⎟⎟⎟⎠
;

hence, the asymptotic formula (5) follows arguing as for I2,1 and I2,2, in the
proof of Theorem 8. Now, to prove the second part of the theorem, it is
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sufficient to observe that, under the additional assumptions on the truncated
algebraic moments, we have:

Kr
n (f, x) − f (x) =

r∑

ν=1

f (ν) (x)
ν!nν

ν∑

h=0

(
ν

h

)
1

ν − h + 1
mh

m0

r∑

j=1

αj

jν
+ o

(
n−r

)

=
f (r) (x)

r!nr

r∑

h=0

(
r

h

)
1

r − h + 1
mh

m0

r∑

j=1

αj

jr
+ o

(
n−r

)

for n ∈ N
+ sufficiently large, x ∈ I. Then:

nr [Kr
n (f, x) − f (x)] =

f (r) (x)
r!

r∑

h=0

(
r

h

)
1

r − h + 1
mh

m0

r∑

j=1

αj

jr
+ nro

(
n−r

)

(9)

and passing to the limit as n → +∞, the proof of the Voronovskaja formula
(8) follows. �

The previous theorem shows that the order of pointwise approximation
by the NN operators Kr

n (f, x) is at least O (n−r) as n → +∞ when functions
that belong to Cr (I) , r ∈ N are approximated. Again, it is quite simple to
observe that, under the assumption of Theorem 11 and for f ∈ Cr (I), we
have:

‖Kr
n (f, ·) − f (·)‖∞ = O

(
n−r

)

as n → +∞.

5. Applications to Special Cases

In this section, we discuss the results proved above for some concrete cases
of sigmoidal functions.

5.1. Applications with the Logistic Function

First of all, we consider the case of the Kantorovich NN type operators acti-
vated by the well-known logistic function (see, e.g., [20,40,41] and Fig. 1):

σ� (x) :=
(
1 + e−x

)−1
, x ∈ R.

NN operators activated by logistic functions have been widely studied, e.g.,
in [12,32].

Obviously, σ� is a smooth function and it satisfies all the assumptions
(Σi) , i = 1, 2, 3. Furthermore, by its exponential decay to zero as x → −∞,
condition (Σ3) is satisfied for every α > 0. Hence, it turns out that Mh (φσ�

) <
+∞ for every h ≥ 0 in view of Lemma 4, (vi). The above function is very
useful in the theory of artificial neural network, since it is used as activation
function in neuronal models when training algorithms would applied, see,
e.g., [14,16,45,48,52].

Now, to apply the results proved in the previous sections, the truncated
algebraic moments of the function φσ�

(x) must be computed. In general, it
is possible to compute the truncated algebraic moments of a given function
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Figure 1. The logistic function σ� (x) (left) and the corre-
sponding density function φσ�

(x) (right)

exploiting a well-known result of Fourier analysis, i.e., the so-called Poisson
summation formula (see, e.g., [11]). In particular, since (Σ3) holds for every
α > 0, by Lemma 4 (iv), we have that φσ�

∈ L1 (R), and then, the usual
L1-Fourier transform can be used to apply the above mentioned Poisson
summation formula. In particular, following the procedure given in [28], it
turns out that φσ�

satisfies assumption (3) with m0 = 1, m1 = 0 and θ0, θ1 >
1. Then, from Theorem 9, we can obtain what follows.

Corollary 12. Let σ� (x) be the logistic function, and f ∈ C1 (I) be fixed.
Then, for every x ∈ I, we have:

lim
n→+∞ n [Kσ�

n (f, x) − f (x)] =
f ′ (x)

2
.

Moreover, φσ�
(x) does not satisfy assumption (6) of Theorem 11, which,

hence, cannot be used to construct the operators Kr
n.

5.2. Applications with Hyperbolic Tangent Sigmoidal Function

In this section, we study the case of the Kantorovich NN type operators
activated by the well-known hyperbolic tangent sigmoidal function (see, e.g.,
[25]):

σh (x) :=
tanh (x) + 1

2
, x ∈ R.

The graph of σh (x) together with its density function φh (x) is plotted
in Fig. 2.

The NN operators activated by the hyperbolic tangent sigmoidal func-
tions have been widely studied, see, e.g., [22,23,33]. Again, we can observe
that σh is a smooth function that satisfies (Σi) , i = 1, 2, 3, it tends to zero
exponentially as x → −∞, and so (Σ3) holds for all α > 0. Now, computing
again the truncated algebraic moments of φσh

using the Poisson summation
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Figure 2. The hyperbolic tangent sigmoidal functionσh (x)
(left) and the corresponding density function φσh

(x) (right)

formula (as in the case of logistic function), it turns out that m0 = 1, m1 = 0,
and θ0, θ1 > 1 (see [28] again). Hence, we can obtain the following corollary.

Corollary 13. Let σh (x) be the hyperbolic tangent sigmoidal function, and
f ∈ C1 (I) be fixed. Then, for every x ∈ I, we have:

lim
n→+∞ n [Kσh

n (f, x) − f (x)] =
f ′ (x)

2
.

Also in this case, assumption (6) of Theorem 11 is not satisfied.
To provide examples of sigmoidal functions useful to construct high-

order NN type operators, we can consider what follows.

5.3. Applications with Sigmoidal Functions Generated by B-splines

In [22], the well-known central B-splines of order d ≥ 1, defined by (see, e.g.,
[5,17,19,27,31]):

Md (x) :=
1

(d − 1)!

d∑

i=0

(−1)i

(
d

i

)(
d

2
+ x − i

)d−1

+

, x ∈ R,

have been used to introduce a class of sigmoidal functions. Here, (x)+ :=
max {x, 0} denotes the “positive part” of x ∈ R. The sigmoidal function
σMd

(x) associated with the central B-spline Md, is defined by the following
formula:

σMd
(x) :=

∫ x

−∞
Md (t) dt, x ∈ R.

Consequently, the corresponding density function has the following expres-
sion:

φσMd
(x) :=

1
2

∫ x+1

x−1

Md (t) dt, x ∈ R. (10)
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By simple computations it is easy to prove that, also for σMd
, assump-

tions (Σi) , i = 1, 2, 3 are satisfied. In particular, since the central B-splines
have compact support, then (Σ3) is satisfied by σMd

(x) for every α > 0.
Exploiting the relation (10), it is easy to obtain that:

mn
h

(
φσMd

, x
)

=
1
2

h∑

j=0

(
h

j

)
γd

j

h − j + 1

[
1 − (−1)h−j+1

]
,

where

γd
j := mn

j (Md, x) = i−j dj

dxj

(
sin

(
x
2

)d

(
x
2

)d

)
(0), j ∈ N

with i the imaginary unit, then, for n sufficiently large, we obtain that
mn

0

(
φσMd

, x
)

= 1 and mn
1

(
φσMd

, x
)

= 0. Hence:

Corollary 14. Let σMd
(x) , d ∈ N

+, be the sigmoidal function generated by
the central B-spline Md (x), and f ∈ C1 (I) be fixed. Then, for every x ∈ I,
we have:

lim
n→+∞ n

[
K

σMd
n (f, x) − f (x)

]
=

f ′ (x)
2

.

Remark 15. As showed in Remark 5, the previous results still hold also in
case of the well-known (not differentiable) ramp function:

σR(x) :=

⎧
⎨

⎩

0, x < −3/2
x/3 + 1/2, −3/2 ≤ x ≤ 3/2,
1, x > 3/2,

since the corresponding density function satisfies the condition (iii) of
Lemma 4.

Note that (see [18,26]) the sigmoidal function σM1(3 ·) coincides with
the ramp function σR. Then, if we recall the definition of the well-known
ReLu activation function (see, e.g., [36]):

ψReLu(x) := (x)+, x ∈ R,

it turns out that:

σM1(3x) := ψReLu(3x + 1/2) − ψReLu(3x − 1/2),

then the corresponding density function can be expressed in term of ReLu
activation function:

φσR
(x) = φσM1 (3 ·)(x) = ψReLu(3x + 1) − 2ψReLu(3x) + ψReLu(3x − 1).

As a consequence of the above relation, the NN operators K
σM1 (3 ·)
n can be

considered as an NN activated by the above linear combination of ReLu
activation function. For more details concerning the usefulness of ψReLu, see,
e.g., [2,3].
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As showed above, the truncated algebraic moments of φσMd
are exactly

equal to suitable constants. Then, the sigmoidal functions σMd
can be used

to generate the high-order convergence operators Kr
n. Here, we consider the

linear combination of α
(1)
j , j = 1, 2, and of α

(2)
j , j = 1, 2, 3, which satisfy

respectively:
2∑

j=1

α
(1)
j = 1,

2∑

j=1

α
(1)
j

j
= 0

and
3∑

j=1

α
(2)
j = 1,

3∑

j=1

α
(2)
j

j
= 0,

3∑

j=1

α
(2)
j

j2
= 0.

In this way, we obtain the following operators:

K2,d
n (f, x) := −K

σMd
n (f, x) + 2K

σMd
2n (f, x)

K3,d
n (f, x) :=

1
2
K

σMd
n (f, x) − 4K

σMd
2n (f, x) +

9
2
K

σMd
3n (f, x) .

Thus, we obtain:

Corollary 16. Let σMd
(x) , d ∈ N

+, be the sigmoidal function generated by
the central B-spline Md (x), and let x ∈ I be fixed.

For any f ∈ C2 (I), there holds:

lim
n→+∞ n2

[K2,d
n (f, x) − f (x)

]
= −f (2) (x)

4

(
2
3

+ γd
2

)
,

while for any f ∈ C3 (I), we have:

lim
n→+∞ n3

[K3,d
n (f, x) − f (x)

]
=

3f (3) (x)
72

(
1
2

+ γd
2

)
.

Clearly, an analogous of Corollary 16 can be reformulated also for a
finite linear combination of Kantorovich NN type operators Kn with r > 3
to achieve a faster convergence.
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