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Lower Semi-frames, Frames, and Metric
Operators

J.-P. Antoine, R. Corso and C. Trapani

Abstract. This paper deals with the possibility of transforming a weakly
measurable function in a Hilbert space into a continuous frame by a
metric operator, i.e., a strictly positive self-adjoint operator. A necessary
condition is that the domain of the analysis operator associated with the
function be dense. The study is done also with the help of the generalized
frame operator associated with a weakly measurable function, which has
better properties than the usual frame operator. A special attention is
given to lower semi-frames: indeed, if the domain of the analysis operator
is dense, then a lower semi-frame can be transformed into a Parseval
frame with a (special) metric operator.
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1. Introduction

In recent papers, one of us (RC) [21,22] has analyzed sesquilinear forms
defined by sequences in Hilbert spaces and operators associated with them
by means of representation theorems. In particular, he derived results about
lower semi-frames and duality.

It turns out that most results from [21,22] can be extended to the con-
tinuous case and that is one of the aims of this present paper. The results are
reported in Sect. 3, but we give here a brief summary. The continuous case
involves a locally compact space (X,μ) with a Radon measure μ. A function
φ : X → H, x �→ φx is said to be weakly measurable if for every f ∈ H the
function x �→ 〈f |φx〉 is measurable. A weakly measurable function φ is said
to be μ-total if 〈f |φx〉 = 0 for a.e. x ∈ X implies that f = 0. A weakly
measurable function φ is a continuous frame of H if there exist constants
0 < m ≤ M < ∞ (the frame bounds), such that:

m ‖f‖2 ≤
∫

X

|〈f |φx〉|2 dμ(x) ≤ M ‖f‖2 , ∀ f ∈ H. (1.1)
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If a weakly measurable function φ satisfies:∫
X

|〈f |φx〉|2 dμ(x) ≤ M ‖f‖2 , ∀ f ∈ H,

then we say that φ is a Bessel mapping of H. On the other hand, φ is a lower
semi-frame of H if there exists a constant m > 0, such that:

m ‖f‖2 ≤
∫

X

|〈f |φx〉|2 dμ(x), ∀ f ∈ H. (1.2)

Given a weakly measurable function φ, the operator Cφ : D(Cφ) ⊆ H →
L2(X, dμ) with domain

D(Cφ) :=
{

f ∈ H :
∫

X

|〈f |φx〉|2 dμ(x) < ∞
}

and (Cφf)(x) = 〈f |φx〉, f ∈ D(Cφ), is called the analysis operator of φ. We
can define the sesquilinear form:

Ωφ(f, g) =
∫

X

〈f |φx〉〈φx|g〉dμ(x), f, g ∈ D(Cφ)

and associate a positive self-adjoint operator Tφ in the space Hφ, the closure
of D(Cφ) in H, by Kato’s representation theorem [26], which we call gener-
alized frame operator. When φ is a lower semi-frame of H, then the range of
Tφ is Hφ and the function ψ : X → H, defined by ψx = T−1

φ Pφφx, x ∈ X,
where Pφ is the orthogonal projection onto Hφ, is a Bessel mapping and the
reconstruction formula:

f =
∫

X

〈f |φx〉ψx dμ(x),

holds for every f ∈ D(Cφ) in a weak sense.
In this paper, we do not confine ourselves to extend results of [21,22],

but actually we set two more goals. From one hand, given a lower semi-frame
φ : X → H with D(Cφ) dense in H, we consider general powers T−k

φ φ with
k ≥ 0. These functions are Bessel mappings, frames or lower semi-frames
in the space H(Tm

φ ) (given by the domain of Tm
φ and the inner product

〈Tm
φ ·|Tm

φ ·〉) with m ≥ 0 according to a simple relation between k and m (see
Theorem 4.1).

When φ : X → H is a μ-total weakly measurable function with D(Cφ)
dense, then Tφ is in particular a metric operator, i.e., a strictly positive self-
adjoint operator. Metric operators are a topic familiar in the theory of the
so-called PT -symmetric quantum mechanics [19,27]. In our previous works
[10,11,14], we have analyzed thoroughly the structure generated by such a
metric operator, bounded or unbounded, namely a lattice of Hilbert spaces.

As particular case of Theorem 4.1, if φ : X → H is a lower semi-frame
with D(Cφ) dense, then T

−1/2
φ φ is a Parseval frame of H. This inspired us to

consider the following more general problem.
Question for which weakly measurable functions φ : X → H, there

exists a metric operator G on H, such that φx ∈ D(G) for all x ∈ X and Gφ
is a frame?
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Partial answers to this problem are given in Theorem 6.1. In particular,
necessary conditions are that D(Cφ) is dense, and that φ is μ-total if φ is in
addition a Bessel mapping. In the discrete case, if φ : N → H is a Schauder
basis, then the problem has a positive solution (more precisely, one can again
take G = T

−1/2
φ and T

−1/2
φ φ is actually an orthonormal basis). A particular

case of this question has been treated, in the discrete case and with a different
approach, in [25].

The paper is organized as follows. After reviewing the conventional def-
initions about frames and semi-frames in Sect. 2, we introduce in Sect. 3 the
generalized frame operator Tφ, whose properties are more convenient that
those of the standard frame operator Sφ. In Sect. 4, we investigate the vari-
ous (semi)-frames generated by a lower semi-frame. In Sect. 5, we review the
lattice of Hilbert spaces generated by a metric operator. In Sect. 6, we face
the question of transforming functions in frames. We conclude in Sect. 7 by
several examples.

2. Preliminaries

Before proceeding, we list further definitions and conventions. The framework
is a (separable) Hilbert space H, with the inner product 〈·|·〉 linear in the first
factor. GL(H) denotes the set of all invertible bounded operators on H with
bounded inverse. Throughout the paper, we will consider weakly measurable
functions φ : X → H, where (X,μ) is a locally compact space with a Radon
measure μ.

Given a continuous frame φ, the analysis operator is defined and bound-
ed on H, i.e., Cφ : H → L2(X, dμ)1 and the corresponding synthesis operator
C∗

φ : L2(X, dμ) → H is defined as (the integral being understood in the weak
sense, as usual):

C∗
φξ =

∫
X

ξ(x)φx dμ(x), for ξ ∈ L2(X, dμ). (2.1)

Moreover, we set Sφ := C∗
φCφ, which is self-adjoint. Then, it follows that:

〈Sφf |g〉=〈C∗
φCφf |g〉=〈Cφf |Cφg〉=

∫
X

〈f |φx〉〈φx|g〉 dμ(x).

Thus, for continuous frames, Sφ and S−1
φ are both bounded, that is, Sφ ∈

GL(H).
Following [6,7], we will say that a function φ is a semi-frame if it satisfies

only one of the frame inequalities in (1.1). We already introduced the lower
semi-frames (if φ satisfies (1.2), then it could still be a frame, and hence, we
say that the lower semi-frame φ is proper if it is not a frame). Note that the
lower frame inequality automatically implies that φ is μ-total. On the other
hand, a weakly measurable function φ is an upper semi-frame if is μ-total,
that is, N(Cφ) = {0}, and there exists M < ∞, such that:

1As usual, we identify a function ξ with its residue class in L2(X, dμ).
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0 <

∫
X

|〈f |φx〉|2 dμ(x) ≤ M ‖f‖2 , ∀ f ∈ H, f 
= 0. (2.2)

Thus, an upper semi-frame is a total Bessel mapping [24]. Notice that this
definition does not forbid φ to be a frame. Thus, we say that φ is a proper
upper semi-frame if it is not a frame.

If φ is a proper upper semi-frame, Sφ is bounded and S−1
φ is unbounded,

as follows immediately from (2.2). In the lower case, however, the definition
of Sφ must be changed, since the domain D(Cφ) need not be dense, so that
C∗

φ may not exist. Instead, following [6, Sec. 2], one defines the synthesis
operator as:

DφF =
∫

X

F (x)φx dμ(x), F ∈ L2(X, dμ), (2.3)

on the domain of all elements F for which the integral in (2.3) converges
weakly in H, and then, Sφ := DφCφ. With this definition, it is shown in [6,
Sec. 2] that if φ is a proper lower semi-frame, then Sφ is unbounded and
S−1

φ is bounded. All these objects are studied in detail in our previous papers
[6,7]. In particular, it is shown there that a natural notion of duality exists,
namely, two measurable functions φ, ψ are dual to each other (the relation is
symmetric) if one has:

〈f |g〉 =
∫

X

〈f |φx〉〈ψx|g〉 dμ(x), ∀ f, g ∈ H. (2.4)

This duality property extends to lower semi-frames and Bessel mappings, as
shown in Proposition 3.2 below.

Consider the following sesquilinear form on the domain D1 × D2 :

Ωψ,φ(f, g) =
∫

X

〈f |ψx〉〈φx|g〉dμ(x), f ∈ D1, g ∈ D2. (2.5)

If D1 = D2 = H and the form Ωψ,φ is bounded on H×H, that is, |Ωψ,φ(f, g)| ≤
c ‖f‖ ‖g‖, for some c > 0, then the couple of weakly measurable functions
(ψ, φ) is called a reproducing pair if the corresponding bounded operator Sψ,φ

given weakly by:

〈Sψ,φf |g〉 =
∫

X

〈f |ψx〉〈φx|g〉dμ(x), ∀ f, g ∈ H,

belongs to GL(H). If ψ = φ, we recover the notion of continuous frame.
Under certain conditions, boundedness of Ωψ,φ is automatic, as shown

in [21, Prop. 7].

Proposition 2.1. If D1 = D2 = H, X is locally compact and σ-compact, that
is, X =

⋃
n Kn,Kn ⊂ Kn+1, with Kj compact for every j, and supx∈X(‖φx‖H

‖ψx‖H) < ∞, then the form Ωψ,φ is bounded on H × H.

Proof. Define:

Ωn
ψ,φ(f, g) :=

∫
Kn

〈f |ψx〉〈φx|g〉dμ(x), f, g ∈ H.
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By assumption, there exists c > 0, such that:

|Ωn
ψ,φ(f, g)| ≤ c ‖f‖ ‖g‖

∣∣∣∣
∫

Kn

dμ(x)
∣∣∣∣ < ∞.

Hence, there exists a bounded operator Tn, such that Ωn
ψ,φ(f, g) = 〈Tnf |g〉.

Applying the Banach–Steinhaus theorem to the functional g �→ Ωψ,φ(f, g),
one gets that the operator Tψ,φ associated with Ωψ,φ is defined on the whole
of H. Doing the same with T ∗

n , as in [21, Prop. 7], we conclude that the form
Ωψ,φ is bounded on H × H. �

The converse of Proposition 2.1 does not hold, as shown in the following
example (which is based on [17, Example 2.5]), in the sense that boundedness
of the form Ω does not imply the supremum condition.

Example 2.2. Let h ∈ H\{0} and let a : R → C be such that a ∈ L2(R)\L∞

(R). Define φx = a(x)h for all x ∈ R. Then, φ : R → H is a weakly measurable
function and a Bessel mapping, because:∫

R

|〈f |φx〉|2dx ≤ ‖a‖2L2(R) ‖h‖2‖f‖2, f ∈ H.

In conclusion, the sesquilinear form Ωψ,φ, where ψ = φ, is defined and
bounded on H × H, but supx∈X(‖φx‖H ‖ψx‖H) = ∞.

3. The Generalized Frame Operator Tφ

In the previous section, we defined the frame operator Sφ for a lower semi-
frame. However, this operator lacks good properties, in general (for instance
Sφ need not be self-adjoint like in the case of an upper semi-frame, even if
Sφ is non-negative). In this section, we are going to construct a new operator
associated with φ which plays the rôle of Sφ for lower semi-frames. We show
its main properties, in particular, concerning the definition of a Bessel dual
mapping in a natural way.

We note that if φ is a proper lower semi-frame, the r.h.s. of (1.2) actually
diverges for some f . As already said, the domain D(Cφ) need not be dense
in H. It is useful to work with the Hilbert space Hφ made of the closure of
D(Cφ) endowed with the topology of H.

The analysis operator Cφ is closed [6, Lemma 2.1]. Therefore, the sesquil-
inear form:

Ωφ(f, g) = 〈Cφf |Cφg〉 =
∫

X

〈f |φx〉〈φx|g〉dμ(x), f, g ∈ D(Cφ)

is non-negative and closed. By Kato’s second representation theorem [26,
Theorem 2.23], there exists an operator Tφ : D(Tφ) ⊂ Hφ → Hφ, with
D(Tφ) ⊂ D(Cφ), such that2

• Ωφ(f, g) = 〈Tφf |g〉 for all f ∈ D(Tφ) and g ∈ D(Cφ);

2We use this sans serif font to avoid confusion with the generalized synthesis operator Tφ

introduced in our papers about reproducing pairs [12,13,15].
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• if T : D(T ) ⊂ Hφ → Hφ is such that Ωφ(f, g) = 〈Tf |g〉 for all f ∈ D(T )
and g ∈ D(Cφ), then T ⊂ Tφ;

• Tφ is non-negative and self-adjoint in Hφ;
• Ωφ(f, g) = 〈T1/2

φ f |T1/2
φ g〉, for all f, g ∈ D(Cφ).

We call Tφ the generalized frame operator of φ. The motivation behind
this name is that when φ is a continuous frame, then Tφ = Sφ. The gener-
alized frame operator has been studied in [21,22] in the discrete case and a
preliminary extension to the continuous setting has been given in [18].

If D(Cφ) is dense, then, of course, Hφ = H (i.e., Tφ is a non-negative
self-adjoint operator on H) and Sφ ⊂ Tφ. In [22], it was proved that in the
discrete setting (X = N) we may have a strict inclusion Sφ � Tφ (recall
that in our paper Sφ is weakly defined; therefore, in the discrete setting, it
corresponds to the operator Wφ in [22]).

Since Ωφ(f, g) = 〈Cφf |Cφg〉, we have Tφ := |Cφ|2 = C×
φ Cφ, where C×

φ

and |Cφ| are the adjoint and the modulus of Cφ when we think of it as an
operator Cφ : Hφ → L2(X,μ).

The following characterization can be proved as in [21].

Proposition 3.1. Let φ be a weakly measurable function and m > 0. The
following statements are equivalent.

(i) φ is a lower semi-frame of H with lower bound m;
(ii) Ωφ is bounded from below by m, that is:

Ωφ(f, f) ≥ m‖f‖2, ∀f ∈ D(Cφ);

(iii) Cφ is bounded from below by
√
m, that is:

‖Cφf‖ ≥
√
m‖f‖, ∀f ∈ D(Cφ);

(iv) Tφ is bounded from below by m, that is:

‖Tφf‖ ≥ m‖f‖, ∀f ∈ D(Tφ);

(v) Tφ is invertible and T−1
φ ∈ B(Hφ) with ‖T−1

φ ‖ ≤ m.

Proof. (i) ⇐⇒ (ii) and (i) ⇐⇒ (iii) By definition:
(ii) =⇒ (iv) Let f ∈ D(Tφ). Then, ‖Tφf‖‖f‖ ≥ 〈Tφf |f〉 ≥ m‖f‖2.

Thus ‖Tφf‖ ≥ m‖f‖.
(iv) =⇒ (ii) For f ∈ D(Tφ), we have Ωφ(f, f) = 〈T1/2

φ f |T1/2
φ f〉 ≥

m‖f‖2 by hypothesis. The inequality now extends to every f ∈ D(Cφ) noting
that D(Tφ) is a core of Ωφ (see [26, Theorem 2.1]).

(iv) ⇐⇒ (v) This is clear, since Tφ is self-adjoint. �

Now, assume that φ is a lower semi-frame of H. By [6, Proposition 2.6],
there exists a Bessel mapping ψ : X → H dual to φ, i.e., for some M > 0:∫

X

|〈f |ψx〉|2 dμ(x) ≤ M ‖f‖2 , ∀ f ∈ H,

and

f =
∫

X

〈f |φx〉ψx dμ(x), for all f ∈ D(Cφ) in weak sense. (3.1)
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A proof may be found in [6, Lemma 2.5 and Proposition 2.6]. Note that the
proof given there is incomplete, in the sense, there is no guarantee that ψ is
total, see Item (4) in Proposition 3.2 below. Here, we give a different proof
involving the operator Tφ using the same argument as in [22, Theorem 4.1].

Proposition 3.2. Let φ be a lower semi-frame of H. Let ψ be the function
defined by ψ = T−1

φ Pφφ, i.e., ψx = T−1
φ Pφφx for x ∈ X, where Pφ : H → Hφ

is the orthogonal projection of H onto Hφ. The following statements hold.
(1) ψ is a weakly measurable function;
(2) ψ a Bessel mapping of H;
(3) ψ is dual to φ, i.e., satisfies (3.1).
(4) If D(Cφ) is dense, then ψ is an upper semi-frame of H.

Proof. We recall that Tφ is invertible with T−1
φ ∈ B(Hφ).

(1) This is immediate.
(2) Let f ∈ H. Then:∫

X

|〈f |T−1
φ Pφφx〉|2 dμ(x) =

∫
X

|〈Pφf |T−1
φ Pφφx〉|2 dμ(x)

=
∫

X

|〈T−1
φ Pφf |φx〉|2 dμ(x)

= ‖T1/2
φ T−1

φ Pφf‖2

= ‖T−1/2
φ Pφf‖2≤‖T−1/2

φ ‖2‖f‖2. (3.2)

(3) Let f ∈ D(Cφ) and h ∈ H. Then:

〈f |h〉 = 〈f |Pφh〉 = 〈f |TφT
−1
φ Pφh〉 =

∫
X

〈f |φx〉〈φx|T−1
φ Pφh〉dμ(x)

=
∫

X

〈f |φx〉〈Pφφx|T−1
φ Pφh〉dμ(x) =

∫
X

〈f |φx〉〈T−1
φ Pφφx|h〉dμ(x).

(4) This is immediate from (3.1). �

Remark 3.3. Part (3) of the above proposition comes from general properties
of semi-bounded operators. If H,K are Hilbert spaces, and C : D(C) ⊂ H →
K is a closed operator, such that D(C) is dense and ‖Cf‖ ≥ γ‖f‖, for every
f ∈ D(C), then by Kato’s theorem, there exists T ≥ 0, with the properties
described at the beginning of Sect. 3, such that 〈Cf |Cg〉 = 〈T 1/2f |T 1/2g〉
for every f, g ∈ D(C); as before T is invertible with bounded inverse. On the
other hand:

|〈f |g〉| ≤ 1
γ2

‖f‖C‖g‖C , ∀f, g ∈ D(C), where ‖f‖C := ‖Cf‖ .

Hence, there exists an operator X, bounded in H(C) := D(C)[‖ · ‖C ], such
that:

〈f |g〉 = 〈Cf |CXg〉, ∀f, g ∈ D(C).

Then:

〈Cf |CXg〉 = 〈T 1/2f |T 1/2Xg〉 = 〈f |g〉, ∀f, g ∈ D(C).
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This implies that T 1/2Xg ∈ D(T 1/2) = D(C), for every g ∈ D(C) and
TXg = g, ∀g ∈ D(C). Thus, X ⊂ T−1. In conclusion, 〈f |g〉 = 〈Cf |CT−1g〉,
for all f, g ∈ D(C). Therefore, if C = Cφ is densely defined, the dual is found.
If D(Cφ) is not dense, we can proceed with the projection Pφ as before.

Finally, as mentioned in [22] for the discrete case, calculations similar
to (3.2) show the next result.

Proposition 3.4. Let φ be a lower semi-frame of H. Then, the function ψ =
T

−1/2
φ Pφφ is a Parseval frame for Hφ.

Thus, following the standard terminology in frame theory, we can call
T−1

φ Pφφ and T
−1/2
φ Pφφ the canonical dual Bessel mapping and the canonical

tight frame of φ.
Now, we exploit Proposition 5 of [21] and the discussion after it.

Proposition 3.5. Let φ be a weakly measurable function of H. Then, φ is a
lower semi-frame of H if and only if there exists an inner product 〈·|·〉+ induc-
ing a norm ‖·‖+ on D(Cφ) for which D(Cφ)[‖·‖+] is complete, continuously
embedded into H, and for some α,m,M > 0, one has:

α ‖f‖ ≤ ‖f‖+ and

m ‖f‖2+ ≤
∫

X

|〈f |φx〉|2 dμ(x) ≤ M ‖f‖2+ , ∀ ∈ D(Cφ).

Proof. It is sufficient to take ‖f‖2+ = ‖f‖2Cφ
=

∫
X

|〈f |φx〉|2 dμ(x), for f ∈
D(Cφ). �

Let φ be a lower semi-frame in the Hilbert space H, with domain D(Cφ),
assumed to be dense. For every x ∈ X, the map f �→ 〈f |φx〉 is a bounded
linear functional on the Hilbert space H(Cφ) := D(Cφ)[‖·‖+]. By the Riesz
Lemma, there exists an element χφ

x ∈ D(Cφ), such that:

〈f |φx〉 = 〈f |χφ
x〉+ ∀ f ∈ D(Cφ). (3.3)

By Proposition 3.5, χφ is a frame.
We can explicitly determine the element χφ when ‖·‖+ is the norm

‖f‖21/2 = ‖T1/2
φ f

2
‖. Notice that, by Proposition 3.1(iv), this norm is equiv-

alent to the graph norm of T1/2
φ .

Then, we have 〈f |φx〉 = 〈f |χφ
x〉1/2 = 〈f |Tφχφ

x〉 for all f ∈ D(Cφ). Thus
χφ

x = T−1
φ φx for all x ∈ X, i.e., χφ is the canonical dual Bessel mapping of φ.

Following the notation of [8], denote by H(T1/2
φ ) the Hilbert space

D(T1/2
φ ) with the norm ‖·‖1/2. In the same way, denote by H(Cφ) the Hilbert

space D(Cφ) with inner product 〈Cφ·|Cφ·〉. Hence, we have proved the fol-
lowing result.

Proposition 3.6. Let φ be a lower semi-frame of H with D(Cφ) dense. Then,
the canonical dual Bessel mapping of φ is a tight frame for the Hilbert space
H(Cφ) = H(T1/2

φ ).
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We can proceed in the converse direction, i.e., starting with a frame
χ ∈ D(Cφ), does there exist a lower semi-frame η of H, such that χ is the
frame χη constructed from η in the way described above? The answer is
formulated in the following.

Proposition 3.7. [21, Prop. 6] Let χ be a frame of H(Cφ) = H(T1/2
φ ). Then:

(i) There exists a lower semi-frame η of H, such that χ = χη if, and only
if, χ ∈ D(Tφ).

(ii) If χ = χη for some lower semi-frame η of H, then η = Tφχ.

4. The Functions Generated by a Lower Semi-frame

Throughout this section, we continue to consider a lower semi-frame φ in H,
with D(Cφ) dense.

Since T−1
φ is defined on H, we can actually apply different powers of

T−1
φ on φ and get the functions T−k

φ φ, k ∈ [0,∞). Hence, we can ask for the
properties of T−k

φ φ. Of course, the answer depends on the Hilbert space where
T−k

φ φ is considered. For instance, for k = 0, we have a lower semi-frame of H
and, as seen in the previous section, for k = 1

2 , we have a frame for H, while for
k = 1, we have a frame for H(T1/2

φ ). When we have powers of an unbounded,
closed, densely defined operator, then we can consider scales and lattices of
Hilbert spaces, which we will consider in more detail in Sect. 5. For a while,
let us simply denote by H(Tm

φ ), m ≥ 0, the domain of Tm
φ considered as a

Hilbert space with norm ‖f‖m = ‖Tm
φ f‖, f ∈ D(Tm

φ ). Then, if m > n ≥ 0, we
have H(Tm

φ ) ⊂ H(Tn
φ) ⊂ H. The function T−k

φ φ is not always a well-defined
function of H(Tm

φ ); a sufficient condition for T−k
φ φ ∈ H(Tm

φ ) is that k ≥ m.
Having at our disposal the notion of scale of Hilbert spaces, we now come

back to a lower semi-frame φ with D(Cφ) dense and to the functions T−k
φ φ

with k ≥ 0. For simplicity of notation, we write in a compact way the inner
product of H(Tm

φ ) in the following way 〈f |g〉m := 〈f |g〉Tm
φ

= 〈Tm
φ f |Tm

φ g〉.

Theorem 4.1. Let φ be a lower semi-frame of H with D(Cφ) dense and m, k ∈
[0,∞), k ≥ m. Then, the following statements hold.

(i) T−k
φ φ is a Bessel mapping of H(Tm

φ ) if and only if k ≥ m + 1
2 ;

(ii) T−k
φ φ is a lower semi-frame of H(Tm

φ ) if and only if m ≤ k ≤ m + 1
2 ;

(iii) T−k
φ φ is a frame of H(Tm

φ ) if and only if T−k
φ φ is a Parseval frame of

H(Tm
φ ), if and only if k = m + 1

2 .

Proof. We have for f ∈ H(Tm
φ ):∫

X

|〈f |T−k
φ φx〉|2m dμ(x) =

∫
X

|〈Tm
φ f |Tm

φ T−k
φ φx〉|2 dμ(x)

=
∫

X

|〈T2m−k
φ f |φx〉|2 dμ(x)

= ‖T1/2
φ T2m−k

φ f‖2 = ‖T2m−k+1/2
φ f‖2. (4.1)
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Hence, taking into account that 0 ∈ ρ(Tφ) and that ‖f‖2Tm
φ

= ‖Tm
φ f‖2, (i)

and (ii) follow by comparing 2m − k + 1
2 and m. We give the details for (i)

as example.
Assume that T−k

φ φ is a Bessel mapping of H(Tm
φ ), then there exists B >

0, such that for all f ∈ D(Tm
φ ), we have ‖T2m−k+1/2

φ f‖2 ≤ B‖Tm
φ f‖2. Rewrit-

ing the inequality as ‖Tm−k+ 1
2

φ Tm
φ f‖2 ≤ B‖Tm

φ f‖2, we find that T
m−k+ 1

2
φ is

bounded, i.e., m − k + 1
2 ≤ 0. The other implication trivially holds by the

same estimate.
Finally, combining the two cases above, we obtain that T−k

φ φ is a frame
of H(Tm

φ ) if and only if k = m + 1
2 . Moreover, in this case, T−k

φ φ is actually
a Parseval frame, as one can see in (4.1). �

In particular, we recover some cases we discussed in the previous section,
namely (k,m) = (1, 1

2 ) and (k,m) = (1, 0) (corresponding to the canonical
Bessel mapping of φ) and (k,m) = (12 , 0) (corresponding to the canonical
tight frame of φ).

It is possible to generalize Theorem 4.1 by considering more general
functions than powers of Tφ. For instance we could take the set Σ of real
valued functions g defined on the spectrum σ(Tφ), which are measurable
with respect to the spectral measure of Tφ and such that g and g̃ := 1/g are
bounded on compact subsets of σ(Tφ). For every g ∈ Σ, we denote by Hg

the Hilbert space completion of D(g(Tφ)) with respect to the norm ‖f‖g =
‖g(Tφ)f‖, f ∈ D(g(Tφ)). As shown in [2, Sec. 10.4], we get an LHS if the
order is defined by h � g ⇐⇒ ∃ γ > 0, such that h ≤ γg. We put
i(t) := t, t ∈ σ(Tφ). Then, we get the following:

Theorem 4.2. Let φ be a lower semi-frame of H with D(Cφ) dense and g, h
non-negative functions from Σ, with g � h. Suppose that g̃ and h g̃ are
bounded functions. Then, the following statements hold.

(i) g̃(Tφ)φ is a Bessel mapping of Hh if and only if i1/2h � g;
(ii) g̃(Tφ)φ is a lower semi-frame of Hh if and only if h � g � i1/2h;
(iii) g̃(Tφ)φ is a frame of Hh if and only if g̃(Tφ)φ is a Parseval frame of

Hh, if and only if i1/2h � g.

Proof. The proof is similar to that of Theorem 4.1. In fact, for f ∈ Hh, using
the functional calculus for Tφ, we have:

∫
X

|〈f |g̃(Tφ)φx〉|2h dμ(x) =
∫

X

|〈h(Tφ)f |(hg̃)(Tφ)φx〉|2 dμ(x)

=
∫

X

|〈(h2g̃)(Tφ)f |φx〉|2 dμ(x)

= ‖T1/2
φ (h2g̃)(Tφ)f‖2 = ‖(h2g̃i1/2)(Tφ)f‖2.(4.2)

Thus, for instance, if i1/2h � g, then i1/2h2g̃ � h; hence, g̃(Tφ)φ is a Bessel
mapping of Hh. The rest of the proof is analogous. �
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5. Metric Operators

The generalized frame operator of a total weakly measurable function φ with
D(Cφ) dense is an example of metric operator in the sense of the following
definition [10].

Definition 5.1. By a metric operator in a Hilbert space H, we mean a strictly
positive self-adjoint operator G, that is, G > 0 or 〈Gf |f〉 ≥ 0 for every
f ∈ D(G) and 〈Gf |f〉 = 0 if and only if f = 0.

Let S be an unbounded closed operator with dense domain D(S). As
usual, define the graph norm of S:

〈f |g〉gr := 〈f |g〉 + 〈Sf |Sg〉, f, g ∈ D(S),

‖f‖2gr = ‖f‖2 + ‖Sf‖2 .

Then, the norm ‖·‖gr makes D(S) into a Hilbert space continuously embedded
into H. For f ∈ D(S∗S), we may write ‖f‖2gr = 〈f |(I + S∗S)f〉. Note that the
operator S∗S = |S|2 is self-adjoint and non-negative: |S|2 ≥ 0. In addition,
D(|S|) = D(S) and N(S∗S) = N(S) [28, Theor. 5.39 and 5.40].

Given S as above, the operator RS := I + S∗S is self-adjoint, with
domain D(S∗S), and RS ≥ 1. Hence, RS is an unbounded metric operator,
with bounded inverse R−1

S = (I + S∗S)−1. In our previous works [10,11,14],
we have analyzed the lattice of Hilbert spaces generated by such a metric
operator. In the sequel, we summarize this discussion, keeping the same no-
tations.

In the general case where both the metric operator G and its inverse
G−1 are unbounded, the lattice is given in Fig. 1. Given the metric operator
G, equip the domain D(G1/2) with the following norm:

‖f‖2RG
=

∥∥∥(I + G)1/2f
∥∥∥2

, f ∈ D(G1/2). (5.1)

Since this norm is equivalent to the graph norm of G1/2, this makes D(G1/2)
into a Hilbert space, denoted H(RG), dense in H. Next, we equip H(RG) with
the norm ‖f‖2G :=

∥∥G1/2f
∥∥2

and denote by H(G) the completion of H(RG)
in that norm and corresponding inner product 〈·|·〉G := 〈G1/2·|G1/2·〉. Hence,
we have H(RG) = H∩H(G), with the so-called projective norm [5, Sec. I.2.1],
which here is simply the graph norm of G1/2.

Next, we proceed in the same way with the inverse operator G−1, and
we obtain another Hilbert space, H(G−1). Then, we consider the lattice gen-
erated by H(G) and H(G−1) with the operations:

H1 ∧ H2 := H1 ∩ H2 , (5.2)
H1 ∨ H2 := H1 + H2 , (5.3)

as shown in Fig. 1. Here, every embedding, denoted by an arrow, is continuous
and has dense range. Taking conjugate duals, it is easy to see that one has:

H(RG)× = H(R−1
G ) = H + H(G−1), (5.4)

H(RG−1)× = H(R−1
G−1) = H + H(G). (5.5)
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Figure 1. The lattice of Hilbert spaces generated by a metric operator

In these relations, the r.h.s. is meant to carry the inductive norm (and topol-
ogy) [5, Sec. I.2.1], so that both sides are in fact unitary equivalent, hence
identified.

At this stage, we return to the construction in terms of the closed un-
bounded operator S. We have to envisage two cases.

(i) An Unbounded Metric Operator

We take as metric operator G1 = I + S∗S, which is unbounded, with G1 > 1
and bounded inverse. Then, the norm ‖·‖G1

is equivalent to the norm ‖·‖RG1

on D(G1/2
1 ) = D(S), so that H(G1) = H(RG1) as vector spaces and thus also

H(G−1
1 ) = H(R−1

G1
). On the other hand, G−1

1 is bounded. Hence, we get the
triplet:

H(G1) ⊂ H ⊂ H(G−1
1 ) = H(G1)×. (5.6)

Next, following Example 3 of [21], if we take an ONB {en} of D(G1/2
1 ) =

D(S), contained in D(S∗S) = H(G1), then {Gen} = {(1 = I + S∗S)en} is a
lower semi-frame of H.

Actually, the triplet (5.6) is the central part of the discrete scale of
Hilbert spaces VG built on the powers of G

1/2
1 . This means that VG1 :=

{Hn, n ∈ Z}, where Hn = D(Gn/2
1 ), n ∈ N, with a norm equivalent to the

graph norm, and H−n = H×
n :

· · · ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ · · · (5.7)

Thus, H1 = H(G1
1/2) = D(S), H2 = H(G1) = D(S∗S), and H−1 =

H(G1
−1). Then, G

1/2
1 is a unitary operator from H1 onto H and, more gen-

erally, from Hn onto Hn−1. In the same way, G1 is a unitary operator from
Hn onto Hn−2 and G−1

1 is a unitary operator from Hn onto Hn+2.
Moreover, one may add the end spaces of the scale, namely:

H∞(G1) :=
⋂
n∈Z

Hn, H−∞(G1) :=
⋃
n∈Z

Hn. (5.8)

In this way, we get a genuine Rigged Hilbert Space:

H∞(G1) ⊂ H ⊂ H−∞(G1). (5.9)

In fact, one can go one more step. Namely, following [5, Sec. 5.1.2], we
can use quadratic interpolation theory [20] and build a continuous scale of
Hilbert spaces Hα, 0 ≤ α ≤ 1, between H1 and H, where Hα = D(Gα/2

1 ),
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with the graph norm ‖ξ‖2α = ‖ξ‖2 + ‖G
α/2
1 ξ‖2 or, equivalently, the norm∥∥(I + G1)α/2ξ

∥∥2
. Indeed every Gα

1 , α ≥ 0, is an unbounded metric operator.
Next, we define H−α = H×

α and iterate the construction to the full
continuous scale VG̃1

:= {Hα, α ∈ R}. Then, of course, one can replace Z by
R in the definition (5.8) of the end spaces of the scale.

In the general case, RG1 = I + G1 > 1 is also an unbounded metric
operator. Thus, we have:

H(RG1) ⊂ H ⊂ H(R−1
G1

) = H(RG1)
×, (5.10)

and we get another Hilbert–Gel’fand triplet. Then, one can repeat the con-
struction and obtain the Hilbert scale built on the powers of R

1/2
G1

, as well as
other lower semi-frames of H.

Now, if S is injective, i.e., N(S) = {0}, then |S|2 > 0 is also an un-
bounded metric operator. Since |S| > 0, RS = I + |S|2 > 1 and it is another
unbounded metric operator, with bounded inverse R−1

S . In both cases, one
may build the corresponding Hilbert scale corresponding to the powers of S

or R
1/2
S .
At this stage, we have recovered the formalism based on metric oper-

ators that we have developed for the theory of quasi-Hermitian operators,
in particular non-self-adjoint Hamiltonians, as encountered in the so-called
PT -symmetric quantum mechanics. We refer to [10,11,14] for a complete
treatment. However, the case of an unbounded metric operator does not lead
to many results, unless one considers a quasi-Hermitian operator [9, Def.3.1].

(ii) A Bounded Metric Operator

We take as metric operator G2 = (I + S∗S)−1, which is bounded, with
unbounded inverse.

Since G2 is bounded, things simplify, because now D(G2) = H. Similarly,
one gets H(RG−1

2
) = H(G−1

2 ) and H(R−1

G−1
2

) = H(G2). Therefore, we are left
with the triplet

H(G−1
2 ) ⊂ H ⊂ H(G2). (5.11)

Then, G
1/2
2 is a unitary operator from H(G2) onto H and from H onto

H(G−1
2 ), whereas G

−1/2
2 is a unitary operator H(G−1

2 ) onto H and from
H onto H(G2).

(iii) A Bounded Metric Operator with Bounded Inverse

There is a third case, which is almost trivial. If the operator S is bounded,
G1 = I + S∗S and G2 = (I + S∗S)−1 are both bounded metric operators,
with bounded inverse. Then, all nine Hilbert spaces in the lattice of Fig. 1
coincide as vector spaces, with equivalent, but different, norms.

The advantage of this situation is that it leads to strong results on
the similarity of two operators. As mentioned in [8, Sec. 3], up to unitary
equivalence, one may always consider that the intertwining operator defining
the similarity is in fact a metric operator. Let us briefly recall these notions.

Let H,K be Hilbert spaces, and D(A) and D(B) be dense subspaces of
H and K, respectively, A : D(A) → H, B : D(B) → K two linear operators.
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A (metric) bounded operator T : H → K is called a intertwining operator for
A and B if:

(i) T : D(A) → D(B);
(ii) BTξ = TAξ, ∀ ξ ∈ D(A).

We say that A and B are similar, and write A ∼ B, if there exists an
intertwining operator T for A and B with bounded inverse T−1 : K → H,
intertwining for B and A.

A parallel definition (quasi-similarity) may be given in case the inverse
T−1 of the intertwining operator T is not bounded.

From the relation A ∼ B, there follow many interesting results about
the respective spectra of A and B, as described in detail in [8].

6. Transforming Functions into Frames by Metric Operators

This section concerns the second main aim of our paper. By Proposition 3.4
and Theorem 4.1, we get the following result: if φ is a lower semi-frame of
H and D(Cφ) is dense, then T

−1/2
φ : H → H and ψ = T

−1/2
φ φ is a Parseval

frame for Hφ = H. As we already remarked, T
−1/2
φ : H → H is a metric

operator. We now want to relax the condition for φ of being a lower semi-
frame. Thus, we ask the following question: for which weakly measurable
functions φ : X → H does there exist a metric operator G on H, such that
Gφ is a frame?3

The motivation of this question is that, in general, one tries to pass from
a less regular situation to a more regular, possibly in a smaller space.

In the next result, we find some necessary or sufficient conditions for an
answer to our question. As we are going to see, the recourse of the generalized
frame operator is again useful.

Theorem 6.1. Let φ : X → H be a weakly measurable function with general-
ized frame operator Tφ. The following statements hold.

(i) If φ is not total, then there does not exist a metric operator G on H,
such that Gφ is a frame and G−1 is bounded.

(ii) If φ is a Bessel mapping and not total, then there does not exist a metric
operator G on H, such that Gφ is a frame.

(iii) If D(Cφ) is not dense, then there does not exist a metric operator G on
H, such that Gφ is a frame.

(iv) If D(Cφ) is dense and φ is a lower semi-frame, then there exists a metric
operator G on H, such that Gφ is a Parseval frame. In particular, a
possible choice is G = T

−1/2
φ .

(v) If φ is total, D(Cφ) is dense and φx ∈ R(Tφ) for all x ∈ X, then there
exists a metric operator G on H, such that Gφ is a Parseval frame. In
particular, a possible choice is G = T

−1/2
φ .

3Here, and in the rest of paper, writing Gφ means implicitly that φx ∈ D(G) for all x ∈ X.
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Proof. (i) Suppose that there exists a metric operator G on H, such that
Gφ is a frame and G−1 is bounded. By hypothesis, there exists f ∈
H, f 
= 0, such that 〈φx|f〉 = 0 for a.e. x ∈ X. Since G is self-adjoint
and G−1 is bounded, then G−1 is defined on H. Hence 〈Gφx|G−1f〉 =
〈φx|GG−1f〉 = 0 for a.e. x ∈ X, which implies that G−1f = 0, i.e., the
contradiction f = 0.

(ii) Suppose that there exists a metric operator G, such that Gφ is a frame,
and let m be a lower bound of Gφ. Then, for all f ∈ D(G):

m‖f‖2 ≤
∫

X

|〈f |Gφx〉|2dμ(x) =
∫

X

|〈Gf |φx〉|2dμ(x) ≤ M‖Gf‖2, (6.1)

where M is an upper bound of φ. Thus, (6.1) implies that G−1 is
bounded. By the previous point, we get then a contradiction.

(iii) Suppose that there exists a metric operator G on H, such that Gφ is a
frame. Then,

∫
X

|〈f |Gφx〉|2dμ(x) < ∞ for all f ∈ H. In particular, for
f ∈ D(G), we have:∫

X

|〈Gf |φx〉|2dμ(x) < ∞,

so R(G) ⊆ D(Cφ). This means that N(G) ⊇ D(Cφ)⊥ 
= {0} which
contradicts the property that G is a metric operator.

(iv) This follows by Proposition 3.4.
(v) The statement can be proved with a similar argument to that of Propo-

sition 3.4 (Proposition 3.2), and thus, we give only a sketch of the proof.
First of all, we note that Tφ has domain dense in H, D(Tφ) ⊆ D(T1/2

φ )
and also that Tφ is injective (φ is total). Let f ∈ D(Tφ), and then:∫

X

|〈f |T−1/2
φ φx〉|2 dμ(x) = ‖T1/2

φ T
−1/2
φ f‖2 = ‖f‖2.

Now, a standard argument of density concludes that ψ is a Parseval
frame of H. �

Example 6.2. Let {en}n∈N be an orthonormal basis, φ = {e1 + en}n≥2 and
ψ = {en}n≥2. Both φ and ψ cannot be transformed into frames of H by a
metric operator. Indeed, D(Cφ) = {e1}⊥ and ψ is a Bessel sequence but not
total.

We will consider more examples (concerning, in particular, lower semi-
frames) in the next section. As an immediate consequence of Theorem 6.1,
we get the following result (compare with [25, Corollary II.1]). We recall that
two sequences {φn}n∈N, {ψn}n∈N are said bi-orthogonal if 〈ψn|φm〉 = δn,m,
the Kronecker symbol.

Corollary 6.3. Let φ := {φn}n∈N, ψ := {ψn}n∈N be bi-orthogonal and total se-
quences of H. Then, D(Cφ) is dense. Moreover, if Tφ is the generalized frame
operator of φ, then φn ∈ R(Tφ) ⊂ R(T1/2

φ ) for all n ∈ N and {T−1/2
φ φn}n∈N

is an orthonormal basis of H.
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Proof. Then, D(Cφ) is dense, because it contains the total sequence ψ, and
moreover, ψn ∈ D(Tφ) and Tφψn = φn for all n ∈ N (which also gives φn ∈
R(Tφ) ⊂ R(T1/2

φ )). Now, by Theorem 6.1(iv), {T−1/2
φ φn}n∈N is a Parseval

frame of H, but since 〈T−1/2
φ φn|T−1/2

φ φm〉 = 〈ψn|φm〉 = δn,m, we conclude

that {T−1/2
φ φn}n∈N is in particular an orthonormal basis of H. �

The problem about transforming functions in frames is still open. How-
ever, in the light of Theorem 6.1, one may formulate a new version of the
problem: given a weakly measurable function φ : X → H, is it true that there
exists a metric operator G on H, such that Gφ is a frame if and only if φ is
total and D(Cφ) is dense?

7. Examples

In this final section, we exhibit several examples of lower semi-frames, mostly
taken from our previous works.

(1) Sequences of Exponential Functions

Let H = L2(0, 1) and g ∈ L2(0, 1). A weighted exponential sequence of g is
E(g, b) := {gn}n∈Z = {g(x)e2πinbx}n∈Z with b > 0. In [22, Remark 6.6], it was
proved that if 0 < b ≤ 1, then E(g, b) is a lower semi-frame if and only if g is
bounded away from zero, i.e., |g(x)| ≥ A for some A > 0 and a.e. x ∈ (0, 1).
Moreover, by [22, Corollary 6.5], the analysis operator of E(g, b) is densely
defined and the generalized frame operator Tg of E(g, b) is the multiplication
operator by 1

b |g|2, that is:

D(Tg)={f ∈ L2(0, 1) : f |g|2∈L2(0, 1)} and Tgf =
1
b
|g|2f, ∀f ∈D(Tg).

Thus, for k ≥ 0 and n ∈ Z, (T−k
g gn)(x) = g(x)/|g(x)|−2ke2πinbx, i.e., T−k

g E(g,

b) = E(g/|g|−2k, b). It is not difficult to check that the conclusions of Theorem
4.1 hold.

(2) A Reproducing Kernel Hilbert space

Following [13], we consider a reproducing kernel Hilbert space of (nice) func-
tions on a measure space (X,μ), with kernel function kx, x ∈ X; that is,
f(x) = 〈f |kx〉K , ∀f ∈ HK . Choose the weight function m(x) > 1 and de-
fine the Hilbert scale Hk, k ∈ Z, determined by the multiplication operator
Af(x) = m(x)f(x), ∀x ∈ X. Thus, we have, for n ≥ 1 (n = −n) :

H2n ⊂ Hn ⊂ HK ⊂ Hn ⊂ H2n. (7.1)

Then, define the measurable functions φx = kxmn(x), ψx = kxm−n(x), so
that Cψ : HK → Hn, Cφ : HK → Hn continuously, and they are dual of
each other. One has indeed 〈φx|g〉K = g(x) mn(x) ∈ Hn and 〈ψx|g〉K =
g(x)m−n(x) ∈ Hn, which implies duality. Thus, (ψ, φ) is a reproducing pair
with Sψ,φ = I, where ψ is an upper semi-frame and φ a lower semi-frame.
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Now, we concentrate on the lower semi-frame φ. First, we have D(Cφ) =
Hn, which is dense, so that Hφ = H. Let us compute the sesquilinear form:

Ωφ(f, g) = 〈Cφf |Cφg〉K =
∫

X

f(x)m(x)n g(x)m(x)n dμ(x), f, g ∈ D(Cφ)

= 〈T1/2
φ f |T1/2

φ g〉K .

Therefore, we have (T1/2
φ f)(x) = f(x)m(x)n, and therefore, (Tφf)(x) =

f(x)m(x)2n. Hence, D(Tφ) = H2n ⊂ D(Cφ) = Hn and D(T1/2
φ ) = Hn, see

(7.1) above.
Next, T−1/2

φ is the operator of multiplication by m−n, and indeed, it is

bounded in H. Finally, since φ is a lower semi-frame, χ := T
−1/2
φ φ is a frame

in H, by Proposition 3.2.

(3) Wavelets on the Sphere

The continuous wavelet transform on the 2-sphere S
2 has been analyzed in

[4]. For an axisymmetric (zonal) mother wavelet φ ∈ H = L2(S2, dμ), define
the family of spherical wavelets:

φ�,a := R�Daφ, where (�, a) ∈ X := SO(3) × R
+.

Here, Da denotes the stereographic dilation operator and Rρ the unitary
rotation on S

2.
Given the wavelet φ, it is known that the operator Sφ is diagonal in

Fourier space (harmonic analysis on the 2-sphere reduces to expansions in
spherical harmonics Y m

l , l ∈ N0,m = −l, . . . , l), and thus, it is given by a
Fourier multiplier Ŝφf(l, n) = sφ(l)f̂(l, n) with the symbol sφ given by:

sφ(l) :=
8π2

2l + 1

∑
|m|≤l

∫ ∞

0

∣∣D̂aφ(l,m)
∣∣2 da

a3
, l ∈ N0,

where D̂aφ(l,m) := 〈Y m
l |Daφ〉 is the Fourier coefficient of Daφ.

If one has d ≤ sφ(l) ≤ c, for every l ∈ N, then the wavelet φ is admissible
and a frame in L2(S2, dμ). However, it has been shown in [29] that the
reconstruction formula converges under the weaker condition d ≤ sφ(l) < ∞
for all l ∈ N0. In that case, φ is not admissible and is a lower semi-frame,
with Sφ unbounded and densely defined. The domain of Sφ is the following:

D(Sφ) = {f ∈ L2(S2, dμ) : |f̂(l, n)|

≤ 1
sφ(l)

|ĥ(l, n)|, for some h ∈ L2(S2, dμ)}.

This domain contains, in particular, the set of band-limited functions, i.e.,
functions f , such that f̂(l, n) = 0, ∀ l ≥ N1, for some N1 < ∞, which is
dense in L2. Since Sφ = DφCφ, it follows that D(Sφ) ⊂ D(Cφ), and hence,
D(Cφ) is dense as well and Hφ = H.

We proceed as in Case (2) and consider the sesquilinear form:

Ωφ(f, g) = 〈Cφf |Cφg〉 = 〈T1/2
φ f |T1/2

φ g〉, f, g ∈ D(Cφ).
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Since D(Cφ) is dense, we get Tφ := |Cφ|2 = C∗
φCφ, T1/2

φ = |Cφ| and D(Tφ) ⊂
D(T1/2

φ ) = D(Cφ).

Finally, since φ is a lower semi-frame, χ := T
−1/2
φ φ is a frame in H, by

Proposition 3.2, as before.
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