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Regularity of Extremal Solutions to
Nonlinear Elliptic Equations with
Quadratic Convection and General
Reaction
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Abstract. We consider the nonlinear elliptic equation with quadratic
convection −Δu + g(u)|∇u|2 = λf(u) in a smooth bounded domain
Ω ⊂ R

N (N ≥ 3) with zero Dirichlet boundary condition. Here, λ is a
positive parameter, f : [0, ∞) : (0∞) is a strictly increasing function of
class C1, and g is a continuous positive decreasing function in (0, ∞)
and integrable in a neighborhood of zero. Under natural hypotheses on
the nonlinearities f and g, we provide some new regularity results for
the extremal solution u∗. A feature of this paper is that our main con-
tributions require neither the convexity (even at infinity) of the function

h(t) = f(t)e− ∫ t
0 g(s)ds, nor that the functions gh/h′ or h′′h/h′2 admit a

limit at infinity.
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1. Introduction and Main Result

This article is devoted to the regularity properties of extremal solutions of
the nonlinear Dirichlet elliptic equation with quadratic convection:

⎧
⎨

⎩

−Δu + g(u)|∇u|2 = λf(u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(1)

where Ω ⊂ R
N (N ≥ 3) is a smooth bounded domain, λ is a positive real

parameter, and f is a C1 strictly increasing function in [0,∞), f(0) > 0, and
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g is a positive function, continuous either in (0,∞) or in [0,∞), decreasing
and integrable in a neighborhood of zero.

The typical examples for the nonlinearity f with the above properties
are (1+u)p with p > 1 and the exponential eu. We can also include functions
with linear growth at infinity, see Mironescu and Rădulescu [33,34]. Also for
positive decreasing function g in (1), one can take g(s) = s−γ with γ ∈ (0, 1)
as an example.

A positive function u ∈ W 1,2
0 (Ω) is a weak solution of (1) if both

g(u)|∇u|2 and f(u) belong to L1(Ω) and for all φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω):

∫

Ω

∇u · ∇φdx +
∫

Ω

g(u)|∇u|2φdx =
∫

Ω

λf(u)φdx.

A solution u of problem (1) is said to be stable if
(
f ′(u)−g(u)f(u)

) ∈ L1
loc(Ω)

and for every φ ∈ W 1,2
0 (Ω):

∫

Ω

|∇φ|2dx ≥ λ

∫

Ω

(f ′(u) − g(u)f(u)) φ2dx. (2)

This condition was introduced by Arcoya [8]. Moreover, a solution u of (1) is
said to be regular if u ∈ L∞(Ω), and minimal if u ≤ v a.e in Ω for any other
solution v, see Molino [35].

Quasilinear problems having lower order terms with quadratic growth
with respect to the gradient play a crucial role in the study of nonlinear
differential equations as they arise naturally in calculus of variations, sto-
chastic control [11,31] and motivated by wide applications such as thermal
self-ignition in combustion theory and temperature distribution in an object
heated by uniform electronic current, see [29,30,32].

Quasilinear Dirichlet problems of the type:
⎧
⎨

⎩

−Δu + g(u)|∇u|2 = f(x, u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(3)

in the case when the right-hand side is not depending on u have been ex-
tensively studied in the pioneering works by Boccardo et al. [9,10,12], but
the case when f is nonlinear has been less studied. Arcoya et al. [3–5,7] con-
sidered Problem (3) in the case when g has singularity and described some
applications. Moreover, some results about uniqueness, comparison, and max-
imum principles for the general form of the quasilinear elliptic equations with
quadratic growth conditions have been proved in [15]. Orsina and Puel [37]
considered Problem (3) where g is a non-negative continuous function and
proved several existence results for positive solutions of (3) with a power-like
right-hand side. This case has been also studied recently by Boccardo et al.
[13,14]. Furthermore, it is shown that if g(u) = (1−u)−γ in (3) where γ > 0,
then the existence and non-existence of the solutions depend on the nonlin-
earity f and the value of γ. It is worth mentioning here that some related
problems are considered in [23–28] where the authors established several re-
sults related to existence, non-existence, or bifurcation of positive solutions
for the boundary value problem −Δu + K(x)g(u) + |∇u|a = λf(x, u) in Ω,
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u = 0 on ∂Ω, where Ω is a smooth bounded domain, 0 < a ≤ 2, λ is a positive
parameter, and f is smooth and has a sublinear growth.

Arcoya et al. [8] proved that in Problem (1), if f ′(s) − g(s)f(s) is an
increasing function, such that 1/f ∈ L1(0,∞) and there is a positive constant
c so that |f ′(s)/f2(s)| ≤ c(1 +

√
g(s)), then there exists a parameter λ∗ ∈

(0,+∞), such that Problem (1) has a bounded minimal solution for λ < λ∗

and no solution for λ > λ∗. Furthermore, they proved that, under suitable
conditions, the sequence of bounded minimal solutions for λ < λ∗ converges
to a weak solution of Problem (1) for λ = λ∗, which is also stable and minimal.
Molino [35] proved that if:
(H1) lim sups−→∞ g(s) < ∞,
(H2) f ′(s) − g(s)f(s) > 0 and non-singular (s ≥ 0),
(H3) e−G(s) ∈ L1(1,∞), where G(s) :=

∫ s

0
g(t)dt,

(H4) ∀C > 0, ∃C̃ > 0 : g(Cs) ≤ C̃g(s), ∀s < 1,
then there exists λ∗ ∈ (0,+∞], such that for every λ < λ∗, there is a bounded
minimal solution uλ of (1) and no solution for λ > λ∗. Also, the family
of functions {uλ}0<λ<λ∗ is increasing and bounded in W 1,2

0 (Ω) when the
functions f and g satisfy the following extra condition:

(H5) lims−→∞
s (f ′(s) − g(s)f(s))

f(s)
= τ ∈ (1,∞].

Moreover, it is proved that the increasing pointwise limit u∗(x) =
limλ−→λ∗ uλ(x) is a weak solution of (1) for λ = λ∗, which is called the ex-
tremal solution. Furthermore, under conditions (H1)-(H5), if f ′(s)−g(s)f(s)
is a strictly increasing function, then every stable solution of Problem (1)
is minimal. In particular, the extremal solution u∗ is stable and minimal,
Molino [35].

We raise the following natural question: when is the extremal solution
regular? Arcoya, Carmona, and Mart́ınez-Aparicio [8] proved that if:

α := lim
s→∞

g(s)f(s)
f ′(s)

and μ := lim
s→∞

f(s)[f ′(s) − g(s)f(s)]′

f ′(s)[f ′(s) − g(s)f(s)]
,

then the extremal solution of Problem (1) is bounded whenever:

N < 4(1 − α) + 2μ + 4
√

μ(1 − α).

Also (see [8, Remark 4.8]), if g ≥ 0 and for some p, k > 1, f(s) ∼ ksp for
s � 1, then the above result can be improved to:

N <
p

p − 1

(
4(1 − α) + 2μ + 4

√
μ(1 − α)

)
.

As a particular case, if f(u) = (1 + u)p and g(u) = m
1+u in (1), where m is a

positive constant and p > m + 1
m+1 , then u∗ is regular whenever:

3 ≤ N < 4
(p − m

p − 1

)
+ 2 + 4

√
p − m

p − 1
.

Molino [35] considered Problem (1) with f(s) = eG(s)h(s), where h(s) is
a differentiable function in [0,∞) and h(0) > 0, and improved the results un-
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der assumptions (H1)–(H5). He proved that the extremal solution of Problem
(1) (if h is convex) is regular whenever:

N <
4 + 2(μ̃ + α̃) + 4

√
μ̃ + α̃

1 + α̃
,

where

α̃ := lim
s−→∞

g(s)h(s)
h′(s)

and μ̃ := lim
s−→∞

h′′(s)h(s)
h′(s)2

. (4)

Remark 1. Notice that, in (4), we always have μ̃ ≥ 1 − 1
τ > 0, where

τ ∈ (1,∞] defined in (H5), which also implies that the function h must
be eventually strictly convex and f ′(s) − f(s)g(s) an eventually increasing
function. To see this, take an arbitrary μ > μ̃, then, by the definition of μ̃,
there exists sμ > 0, so that h′′(s)

h′(s) < μh′(s)
h(s) for all s > sμ. Then, by integrating

twice we get h(s) < C1t
1

1−μ for t large, where C1 is a positive constant. On
the other hand, from (H5), for an arbitrary τ ∈ (1, α), there exists sτ > 0,
such that h′(s)

h(s) > τ
s for all s > sτ , implies that h(s) > C2s

τ for all s > sτ ,
where C2 is a positive castanet. Thus, we must have μ ≥ 1 − 1

τ that proves
the claim. Moreover, notice that, by hypothesis (H2) on f and g, the func-
tion h is increasing, and as we have seen in the above, h is also a superlinear
function (that is, lims→∞

h(s)
s → ∞).

It is worth mentioning here that there is a large literature devoted to
the semi-linear analogue of (1), namely the Gelfand problem:

⎧
⎨

⎩

−Δu = λf(u), in Ω,
u ≥ 0, in Ω,
u = 0, on ∂Ω,

(5)

where Ω ⊂ R
N≥1 is a smooth bounded domain, λ is a positive parameter, and

f : [0,∞] −→ R is C1, non-decreasing, superlinear and f(0) > 0. Regularity
of the extremal solutions of (5) has been extensively studied in the literature,
and it is shown that it depends extremely on the dimension N , domain Ω and
the nonlinearity f ; see, for example [1,2,17,19–22,36]. It is proved that when
f(s) = es, the extremal solution u∗ of (5) is regular for N < 10; also if f(s) =
(1+s)p and p > 1, then u∗ is regular for N < 4+2(1−1/p)+4

√
1 − 1/p. Then,

it was conjectured (related to two open problems stated by Brezis [16] in the
context of “extremal solutions”) that u∗ is bounded in dimension N ≤ 9,
and also belongs to the natural energy space W 1,2

0 (Ω) in every dimension.
Very recently, Cabré et al. [18] completely solved these two open problems
and proved that stable solutions to semi-linear elliptic equations are bounded
(and thus smooth) in dimension N ≤ 9.

In this work, we consider Problem (1) with f belongs to a general class
of functions. At first, for the remainder of this paper, we set:

h(s) := f(s)e−G(s). (6)
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Then, we see that Problem (1) can be rewritten as:
⎧
⎨

⎩

−Δu + g(u)|∇u|2 = λeG(u)h(u), in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,

(7)

and a solution u of (7) is stable if eG(u)h′(u) ∈ L1
loc(Ω) and satisfies:

∫

Ω

|∇φ|2 ≥ λ

∫

Ω

eG(u)h′(u)φ2, (8)

for all φ ∈ W 1,2
0 (Ω).

In this case, hypotheses (H2) and (H5) take the following simple forms,
respectively:

h′(t) > 0, and is non-singular for s ≥ 0 and lim
s→∞

sh′(s)
h(s)

= τ ∈ (1,∞].

As we mentioned in Remark (1), all previous works assume that h is a
convex function (or eventually convex). However, in this paper, we remove
this extra restriction and allow the function h to be nonconvex. Thus, instead
of the parameters like as (4) used in previous works, we define the following
new ones:

α− : = lim inf
t−→∞

h′(t)H(t)
h(t)2

≤ α+ := lim sup
t−→∞

h′(t)H(t)
h(t)2

,

β− : = lim inf
t−→∞

g(t)H(t)
h(t)

≤ β+ := lim sup
t−→∞

g(t)H(t)
h(t)

,

where H(t) :=
∫ t

0
h(s)ds. Now, we state our main regularity result.

Theorem 1. Let u∗ be the extremal solution of Problem (7) and Ω be an
arbitrary bounded smooth domain. If 0 < α− ≤ α+ < ∞, β+ < ∞ and
2α− + β− ≥ 1, then u∗ ∈ L∞(Ω) whenever:

N <
4α−

α− + β+

(

1 +

√
α−(2α− + β− − 1)

α+
+

2α− + β− − 1
2α+

)

. (9)

If, in addition to the above assumptions, we have α− + β− ≤ 1, then u∗ ∈
L∞(Ω) whenever:

N <
4α−

α− + β+

(

1 +

√
2α− + β− − 1

α+
+

2α− + β− − 1
2α+

)

. (10)

1.1. Examples

We provide several examples of functions that fulfill the above hypotheses.

Example 1. Consider Problem (1) with g(t) ≡ C and f(t) = eγt ( γ > C > 0
), which is equivalent to Problem (7) with h(t) = e(γ−C)t. Here, it is easy
to see that we have α+ = α− = 1 and β+ = β− = C

γ−C . Then, by (9) in
Theorem 1, u∗ ∈ L∞(Ω) whenever:

N < 6 − 4
C

γ
+ 4

√

1 − C

γ
. (11)
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We remark that for a fixed γ > 0, by letting C −→ 0, the right-hand side
of (11) goes to 10 which gives the optimal regularity dimension N ≤ 9 for
the extremal solution of the limit equation [Eq. (5)], with the exponential
nonlinearity. Furthermore, the above result coincides with Proposition 3.2 in
[39].

Also with the above function g ≡ C where C is a positive constant, if
we set h(t) := et(1+0.1 sin t) in Problem (7), then we observe that h satisfies
the needed assumptions and also:

h′(t)H(t)
h(t)2

=
(1 + 0.1 cos t + 0.1 sin t)(1 + 0.05 sin t − 0.05 cos t)

(1 + 0.1 sin t)2
,

g(t)H(t)
h′(t)

=
C

(
1 + 0.05 sin t − 0.05 cos t)

1 + 0.1 sin t
,

which are periodic functions with period 2π. By Mathematica, we compute:

α− = min
[0,2π]

α(u) ≈ 0.933238, α+ = max
[0,2π]

α(u) ≈ 1.07681,

β− = min
[0,2π]

β(u) ≈ 0.9338C and β+ = max
[0,2π]

β(u) ≈ 1.0761C.

Then, by (9) in Theorem 1, we see that the extremal solution u∗ ∈ L∞(Ω)
whenever:

N <
3.7329

0.9332 + 1.0761C

(

1 +

√
0.9332(0.8664 + 0.9338C)

1.0768
+

0.8664 + 0.9338C

2.1536

)

.

However, if C < 1
9 , then α− + β− < 1 and by (10) in Theorem 1, we can get

a better upper bound for the regularity dimension for u∗, that is:

N <
3.7329

0.9332 + 1.0761C

(

1 +

√
0.8664 + 0.9338C

1.0768
+

0.8664 + 0.9338C

2.1536

)

.

Again note that by the above result, if C is sufficiently small, then u∗ is
regular for N ≤ 9.

Example 2. Consider Problem (7) with g(t) = δ
t+1 , where δ is a positive

constant and h(t) = (t2 +3t+3 cos t+4). It is not hard to see that h satisfies
all the needed assumptions, but is not convex even at infinity (and, hence,
none of the previous results apply). However, we easily see that β+ = β− = δ

3

and α+ = α− = 2
3 , and then, by Theorem 1, the extremal solution u∗ of

Problem (7) is bounded when:

N <
8

2 + δ

(

1 +

√
δ + 1

2
+

δ + 1
4

)

.

Example 3. Consider Problem (7) with g(t) = 1
tγ , where γ ≥ 1 and h(t) =

et(15+8 sin t). Here, h is increasing but not convex. Indeed, we have h′′(t) =
et(15 − 16 cos t), and hence, lim inft→∞ h′′(t) = −∞. However:

h′(t)H(t)
h(t)2

=
(15 + 4 sin t − 4 cos t)(15 + 8 sin t + 8 cos t)

(15 + 8 sin t)2
,



MJOM Regularity of Extremal Solutions Page 7 of 15 183

which is a periodic function with period 2π. By Mathematica, we can compute
that:

α− = min
[0,2π]

α(t) ≈ 0.547593 and α+ = max
[0,2π]

α(t) ≈ 1.80247.

Also, it is not hard to see that β+ = β− = 0. Then, by (10) in Theorem 1,
u∗ is bounded when N < 6.

2. Proof of the Main Result

The next simple technical lemma and its companion Proposition 1 are key
ingredients in the proof of our main result.

Lemma 1. Let uλ be the stable solution of (7). Also, m : [0,∞) −→ [0,∞) is
a C1 function which is zero in a neighborhood of zero and satisfies:

K(t) := eG(t)h′(t)m2(t) − h(t)

∫ t

0

eG(s)m′(s)2ds ≥ 0, for t sufficiently large,

(12)

where G(t) =
∫ t

0
g(s)ds. Then, ‖K(uλ)‖L1(Ω) ≤ C, where C is a constant

independent of λ.

Proof. Let u := uλ > 0 be the stable minimal solution of Problem (7). Taking
φ = m(u) in the stability inequality (8), we obtain:

∫

Ω

∇M · ∇u dx ≥ λ

∫

Ω

eG(u)h′(u)m(u)2 dx =⇒
∫

Ω

(−Δu)M(u) dx ≥ λ

∫

Ω

eG(u)h′(u)m(u)2 dx,

where M(s) :=
∫ s

0
m′(t)2dt. Then, according to Eq (7), we obtain:

∫

Ω

(λeG(u)h(u) − g(u)|∇u|2)M(u) dx ≥ λ

∫

Ω

eG(u)h′(u)m2(u) dx. (13)

On the other hand, u is a weak solution of (7), and hence:
∫

Ω

∇u · ∇ψ(x) dx +
∫

Ω

g(u)|∇u|2ψ(x) dx = λ

∫

Ω

eG(u)h(u)ψ(x) dx,

for every ψ ∈ W 1,2
0 (Ω). Set ψ(x) := M(u(x)) − e−G(u(x))

∫ u(x)

0
eG(t)m′(t)2dt,

x ∈ Ω. Then, notice that we have ψ(x) = 0 when u(x) is near zero (by the
assumption on the function m) and:

∇ψ = g(u)e−G(u)
(∫ u

0

eG(t)m′(t)2dt
)
∇u.

Therefore, since ∇ψ(x) = 0 when u(x) is near zero and g is continuous in
(0,∞), we get ψ ∈ W 1,2

0 (Ω). Now, we substitute ψ in the above equality as a
test function to get:
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∫

Ω

g(u)e−G(u)
( ∫ u

0

eG(t)m′(t)2dt
)
|∇u|2dx +

∫

Ω

g(u)M(u)|∇u|2dx

−
∫

Ω

g(u)e−G(u)
(∫ u

0

eG(t)m′(t)2dt
)
|∇u|2dx

= λ

∫

Ω

eG(u)h(u)M(u) dx − λ

∫

Ω

h(u)
( ∫ u

0

eG(t)m′(t)2dt
)
dx.

Canceling the first and the third terms on the left of the equality above, we
obtain:

∫

Ω

(
λeG(u)h(u) − g(u)|∇u|2

)
M(u) dx =

∫

Ω

h(u)
( ∫ u

0

eG(t)m′(t)2dt
)
dx.

(14)

Using (14) in (13), we then arrive at:
∫

Ω

eG(u)h′(u)m2(u) dx −
∫

Ω

h(u)
( ∫ u

0

eG(t)m′(t)2)dt
)
dx ≤ 0, (15)

Now, by the definition of the function K given in (12), the inequality (15)
can be read as:

∫

Ω

K(u) dx ≤ 0. (16)

Now, by the assumption (12), there is an s0 > 0 such that K(s) ≥ 0, where
s ≥ s0, and then, by (16), we can write:

∫

Ω

|K(u)|dx =
∫

u≤s0

|K(u)| dx +
∫

u≥s0

K(u) dx

≤
∫

u≤s0

(
|K(u)| − K(u)

)
dx ≤ C0|Ω|,

where |Ω| is the Lebesgue measure of Ω and C0 := sups∈[0,s0]

(
|K(u)|−K(u)

)

which is independent of u that proves the desired result. �

Proposition 1. Let uλ be the stable solution of (7) and w : [0,∞) −→ [0,∞)
be a C1 function, such that, for some t0 > 0, we have w(t) ≤ h′(t)

h(t) , w2(t) +
w′(t) + g(t)w(t) ≥ 0 for t ≥ t0, where:

E(t) := h(t)
(

h′(t)
h(t)

− w(t)
)

eG(t)e
2

∫ t
t0

w(s)+
√

w2(s)+w′(s)+g(s)w(s)ds
, (17)

and
E(t)
h(t)

−→ ∞ as t −→ ∞. Then, ‖E(uλ)‖L1(Ω) ≤ C, where C is a constant

independent of λ.

Proof. Let m : [0,∞) −→ [0,∞) be a C1 function which is zero in a neigh-
borhood of zero and:

m(t) = e
∫ t
t0

w(s)+
√

w2(s)+w′(s)+g(s)w(s)ds
, for t ≥ t0,
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where t0 and w given in the statement of the proposition. Then, using the
equality

m′(t) = m(t)
[
w(t) +

√
w2(t) + w′(t) + g(t)w(t)

]
for t ≥ t0,

we obtain:

d

dt

(

w(t)m2(t)eG(t) −
∫ t

t0

eG(s)m′(s)2ds

)

=

m2(t)eG(t)

(

w′(t) + 2
m′(t)
m(t)

w(t) + w(t)g(t) − (
m′(t)
m(t)

)2
)

= 0,

for all t ≥ t0. It follows that:
∫ t

t0

eG(s)m′(s)2ds = w(t)m(t)2eG(t) + C0, (18)

where C0 is a constant. Now, by (18), for t ≥ t0, we have:

K(t) := eG(t)m(t)2h′(t) − h(t)
∫ t

0

eG(s)m′(s)2ds = E(t) − C0h(t), (19)

which is positive for large t sufficiently large (by the assumption), and hence,
by Lemma 1, we get ‖K(uλ)‖L1(Ω) ≤ C1, where C1 is a constant independent
of λ. And since, by the assumption and (19), we have:

K(t) = E(t)[1 − C0
h(t)
E(t)

] ≥ E(t)
2

for t sufficiently large,

we get also that ‖E(uλ)‖L1(Ω) ≤ C2, where C2 is a constant independent of
λ, which is the desired result. �

2.1. Proof of Theorem 1

We now give the proof of our main result. The strategy for the proof is to
apply Proposition 1, by choosing a suitable function w in term of the nonlin-
earity h, so that the corresponding function E defined by (17) is comparable
to some power of h, to get some Lp estimates for eG(uλ)h(uλ) (the right-hand
side of Eq. (7)) independent of λ, and then applying the standard regularity
result by Stampacchia’s lemma [38].

Assume that α+, β+ < ∞ and 2α− + β− ≥ 1. Take arbitrary α1, α2, α3,
β1, β2, such that α1 < α2 < α− ≤ α+ < α3 and β1 < β− ≤ β+ < β2. Then,
by the definition of α± and β±, we can find a t0 > 0, so that for t ≥ t0:

α1 < α2 <
h′(t)H(t)

h2(t)
< α3 and β1 <

g(t)H(t)
h(t)

< β2. (20)

Let w : [0,∞) −→ [0,∞) be a C1 function, such that w(t) = α1
h(t)
H(t) for

t ≥ t0, where H(t) =
∫ t

0
h(s)ds as before. From (20), we have:

g(t) >
β1

α1
w(t) and

h′(t)
H(t)

> α1
h(t)2

H(t)2
.
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Thus, using these inequalities and the definition of w, we obtain:

w2(t) + w′(t) + g(t)w(t) ≥ α1

[
h′(t)
H(t)

+ (α1 + β1 − 1)
h(t)2

H(t)2

]

≥ α1(2α1 + β1 − 1)
h(t)2

H(t)2
(21)

for t ≥ t0.
The inequalities in (20) imply that:

g(t) ≥ β1

α3

h′(t)
h(t)

and
h′(t)
h(t)

≥ α2
h(t)
H(t)

for t ≥ t0;

hence:

eG(t) ≥ Ch(t)
β1
α3 and

h′(t)
h(t)

− w(t) ≥ (α2 − α1)
h(t)
H(t)

(22)

for t ≥ t0.
Let the function E(t) be given as in (18) in Proposition 1. By the

inequalities (20), (21), (22) and the fact that
∫ t

t0
w(s)ds = α1(ln H(t) −

lnH(t0)), we obtain:

E(t) = h(t)
(

h′(t)
h(t)

− w(t)
)

eG(t)e
2

∫ t
t0

w(s)+
√

w2(s)+w′(s)+g(s)w(s)ds

≥ Ch2+
β1
α3 H2α1+2

√
α1(2α1+β1−1)−1,

(23)

where C is a positive constant which depends only on h.
Now, writing the first inequality in (20) as h′(t)

h(t) < α3
h(t)
H(t) for t0 > 0 and

integrating from t0 to t, we obtain:

H(t) > Ch(t)
1

α3 for t ≥ t0. (24)

Using the above inequality in (23), we arrive at:

E(t) ≥ h(t)γ
, where γ := 2

(

1 +

√
α1(2α1 + β1 − 1)

α3
+

2α1 + β1 − 1
2α3

)

,

(25)

for all t ≥ t0.

Since
E(t)
h(t)

−→ ∞ as t −→ ∞, then from Proposition 1, we get

‖E(uλ)‖L1(Ω) ≤ C. Next, by (25), we deduce that ‖h(uλ)‖Lγ(Ω) ≤ C, where
C is a constant independent of λ. On the other hand, by (20), we have
g(t) ≤ β2

α1

h′(t)
h(t) for t ≥ t0. Thus, by integration over [t0, t], we obtain:

eG(t)h(t) ≤ Ch(t)
α1+β2

α1 for t ≥ t0. (26)

Therefore:

‖eG(uλ)h(uλ)‖Lμ(Ω) ≤ C
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for

μ :=
α1

α1 + β2
γ =

2α1

α1 + β2

(

1 +

√
α1(2α1 + β1 − 1)

α3
+

2α1 + β1 − 1
2α3

)

,

where C is a constant independent of λ.
Note that eG(uλ)h(uλ) is the right-hand side of Eq. (7), and therefore,

by Stampacchia’s lemma [38], we obtain u∗ ∈ L∞(Ω) for N < 2μ. Since
α1, α2, α3, β1, β2 were arbitrary (in the given ranges), we conclude that u∗ ∈
L∞(Ω) for:

N <
4α−

α− + β+

(

1 +

√
α−(2α− + β− − 1)

α+
+

2α− + β− − 1
2α+

)

,

which is the desired result in the first part of theorem.
To complete the proof, we assume that α−+β− ≤ 1. Thus, by the above

notation and by the first inequality in (20), we obtain:

w2(t) + w′(t) + g(t)w(t) ≥ α1

[
h′(t)
H(t)

− (1 − α1 − β1)
h2(t)
H2(t)

]

≥ (2α1 + β1 − 1)
h′(t)
H(t)

≥
(

2α1 + β1 − 1
α3

)
h′(t)2

h(t)2

(27)
for all t ≥ t0.

Assuming that the function E(t) is given as in (18) in Proposition 1,
relation (27) together with estimates (20) and (22) yields:

E(t) = h(t)
(

h′(t)
h(t)

− w(t)
)

eG(t)e
2

∫ t
t0

w(s)+
√

w2(s)+w′(s)+g(s)w(s)ds

≥ Ch
2+

β1
α3

+2
√

2α1+β1−1
α3 H2α1−1.

Using now (24), we deduce that:

E(t) ≥ Ch
2+

2α1+β1−1
α3

+2
√

2α1+β1−1
α3 ,

for t ≥ t0, where C is a positive constant depends only on h.
Next, with similar arguments as in the first part and using the above

inequality together with relations (24), (26), and Proposition 1, we get:

‖eG(uλ)h(uλ)‖Lθ(Ω) ≤ C for θ

:=
2α1

α1 + β2

(

1 +
√

2α1 + β1 − 1
α3

+
2α1 + β1 − 1

2α3

)

,

where C is a constant independent of λ, which implies that u∗ ∈ L∞(Ω) for
N < 2θ. Again, since α1, α2, α3, β1, β2 were arbitrary (in the given ranges),
we get u∗ ∈ L∞(Ω) for:

N <
4α−

α− + β+

(

1 +

√
2α− + β− − 1

α+
+

2α− + β− − 1
2α+

)

,

which completes the proof of the theorem. �
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[24] Ghergu, M., Rădulescu, V.: On a class of sublinear singular elliptic problems
with convection term. J. Math. Anal. Appl. 311, 635–646 (2005)
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Faculty of Applied Mathematics
AGH University of Science and Technology
30-059 Krakow
Poland

and



MJOM Regularity of Extremal Solutions Page 15 of 15 183

Department of Mathematics
University of Craiova
200585 Craiova
Romania
e-mail: radulescu@inf.ucv.ro

and

Simion Stoilow Institute of Mathematics of the Romanian Academy
21 Calea Grivitei Street
010702 Bucharest
Romania

Received: August 31, 2019.

Revised: March 25, 2020.

Accepted: October 6, 2020.


	Regularity of Extremal Solutions to Nonlinear Elliptic Equations with Quadratic Convection and General Reaction
	Abstract
	1. Introduction and Main Result
	1.1.  Examples

	2. Proof of the Main Result
	2.1. Proof of Theorem 1

	Acknowledgements
	References




