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Atomic Operators in Vector Lattices

Ralph Chill and Marat Pliev

Abstract. In this paper, we introduce a new class of operators on vec-
tor lattices. We say that a linear or nonlinear operator T from a vector
lattice E to a vector lattice F is atomic if there exists a Boolean homo-
morphism Φ from the Boolean algebra B(E) of all order projections on
E to B(F ) such that Tπ = Φ(π)T for every order projection π ∈ B(E).
We show that the set of all atomic operators defined on a vector lattice E
with the principal projection property and taking values in a Dedekind
complete vector lattice F is a band in the vector lattice of all regular
orthogonally additive operators from E to F . We give the formula for
the order projection onto this band, and we obtain an analytic repre-
sentation for atomic operators between spaces of measurable functions.
Finally, we consider the procedure of the extension of an atomic map
from a lateral ideal to the whole space.
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1. Introduction and Preliminaries

Local operators and, more generally, atomic operators in classical function
spaces find numerous applications in control theory, the theory of dynamical
systems and the theory of partial differential equations (see [6,19,23]). The
concept of a local operator was in the context of vector lattices first introduced
in [22]. It is an abstract form of the well-known property of a nonlinear
superposition operator and can be stated in the following form: the value
of the image function on a certain set depends only on the values of the
preimage function on the same set. In this article, we analyse the notion of
an atomic operator in the framework of the theory of vector lattices and
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orthogonally additive operators. Today, the theory of orthogonally additive
operators in vector lattices is an active area in functional analysis; see for
instance [1,2,7,8,10,11,13,14,16–18,25]. Abstract results of this theory can
be applied to the theory of nonlinear integral operators [12,21], and there are
connections with problems of convex geometry [24].

Let us introduce some basic facts concerning vector lattices and orthog-
onally additive operators. We assume that the reader is acquainted with the
theory of vector lattices and Boolean algebras. For the standard information,
we refer to [3,4,9]. All vector lattices below are assumed to be Archimedean.

Let E be a vector lattice. A net (xα)α∈Λ in E order converges to an

element x ∈ E (notation xα
(o)−→ x) if there exists a net (uα)α∈Λ in E+ such

that uα ↓ 0 and |xα − x| ≤ uα for all α ∈ Λ satisfying α ≥ α0 for some
α0 ∈ Λ. Two elements x, y of the vector lattice E are disjoint (notation
x⊥y), if |x| ∧ |y| = 0. The sum x + y of two disjoint elements x and y is
denoted by x 	 y. The equality x =

⊔n
i=1 xi means that x =

∑n
i=1 xi and

xi⊥xj if i 
= j. An element y of E is called a fragment of an element x ∈ E,
provided y⊥(x − y). The notation y � x means that y is a fragment of
x. If E is a vector lattice and x ∈ E then we denote by Fx the set of all
fragments of x. A positive, linear projection π : E → E is said to be an order
projection if 0 ≤ π ≤ Id, where Id is the identity operator on E. The set of
all order projections on E is denoted by B(E). The set B(E) is ordered by
π ≤ ρ :⇔ π ◦ ρ = π, and it is a Boolean algebra with respect to the Boolean
operations:

π ∧ ρ :=π ◦ ρ;
π ∨ ρ :=π + ρ − π ◦ ρ;

π =Id − π.

An element x of a vector lattice E is called a projection element if the band
generated by x is a projection band, and then we denote by πx the order
projection onto the band generated by x. A vector lattice E is said to have
the principal projection property if every element of E is a projection element.
For example, every σ-Dedekind complete vector lattice has the principal pro-
jection property.

A (possibly nonlinear) operator T : E → F from a vector lattice E into
a real vector space is called orthogonally additive if T (x + y) = T (x) + T (y)
for every disjoint elements x, y ∈ E. It is clear that if T is orthogonally
additive, then T (0) = 0. The set of all orthogonally additive operators from
E into F , denoted by OA(E,F ), is a real vector space for the natural linear
operations.

An operator T : E → F between two vector lattices E and F is said to
be

• positive, if Tx ≥ 0 for all x ∈ E;
• order bounded, if T maps order bounded sets in E to order bounded sets

in F ;
• laterally-to-order bounded, if for every x ∈ E the set T (Fx) is order

bounded in F .



MJOM Atomic Operators in Vector Lattices Page 3 of 20 138

An orthogonally additive operator T : E → F is

• regular, if T = T1 − T2 for two positive, orthogonally additive operators
T1 and T2 from E to F .

An orthogonally additive, order bounded operator T : E → F is called
an abstract Urysohn operator. This class of operators was introduced and
studied in 1990 by Mazón and Segura de León [12]. We notice that the
order boundedness is a restrictive condition for orthogonally additive oper-
ator. Indeed, every operator T : R → R satisfying T (0) = 0 is orthogonally
additive, but not every operator of this form is order bounded. Consider, for
instance, the positive function T defined by

T (x) =

{
1
x2 if x 
= 0
0 if x = 0.

The notion of a laterally-to-order bounded operator was introduced in
[15]. It is obviously weaker than the notion of order bounded operator. An
orthogonally additive, laterally-to-order bounded operator T : E → F is also
called a Popov operator.

We denote by OA+(E,F ) the set of all positive, orthogonally addi-
tive operators from E to F (so that OA(E,F ) becomes an ordered vector
space with this cone), by OAr(E,F ) := OA+(E,F ) − OA+(E,F ) the reg-
ular, orthogonally additive operators, and by P(E,F ) the laterally-to-order
bounded, orthogonally additive operators from E to F . Also OAr(E,F ) and
P(E,F ) are ordered vector spaces. In general, OAr(E,F ) 
= P(E,F ) (see
[15]), but for a Dedekind complete vector lattice F we have the following
strong properties of OAr(E,F ) and P(E,F ).

Theorem 1.1 [15, Theorem 3.6]. Let E and F be vector lattices, and assume
that F is Dedekind complete. Then OAr(E,F ) = P(E,F ), and OAr(E,F )
is a Dedekind complete vector lattice. Moreover, for every S, T ∈ OAr(E,F )
and every x ∈ E,

(1) (T ∨ S)(x) = sup{Ty + Sz : x = y 	 z};
(2) (T ∧ S)(x) = inf{Ty + Sz : x = y 	 z};
(3) (T )+(x) = sup{Ty : y � x};
(4) (T )−(x) = − inf{Ty : y � x};
(5) |Tx| ≤ |T |(x).

2. Basic Properties of Atomic Operators

In this section, we introduce a new subclass of orthogonally additive opera-
tors, namely the class of atomic operators, and show that under some assump-
tions on the vector lattices E and F the set of all atomic operators from E
to F subordinate to a Boolean homomorphism Φ : B(E) → B(F ) is a band
in the vector lattice OAr(E,F ). We further obtain a formula for the order
projection onto this band.
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Let us first recall the definition of Boolean homomorphisms. Let A, B
be Boolean algebras. A map Φ : A → B is called a Boolean homomorphism,
if the following conditions hold:
(1) Φ(x ∨ y) = Φ(x) ∨ Φ(y) for all x, y ∈ A.
(2) Φ(x ∧ y) = Φ(x) ∧ Φ(y) for all x, y ∈ A.
(3) Φ(x) = Φ(x) for all x ∈ A.

It is clear that Φ(0A) = 0B and Φ(1A) = 1B. If, moreover, Φ(
∨

λ∈Λ xλ) =∨
λ∈Λ Φ(xλ) for every family (resp. countable family) (xλ)λ∈Λ of elements

of A, then Φ is said to be an order continuous (resp. a sequentially order
continuous) Boolean homomorphism.

Let E and F be vector lattices and Φ be a Boolean homomorphism from
B(E) to B(F ). A map T : E → F is said to be an atomic operator subordinate
to Φ, or briefly atomic operator, if Tπ = Φ(π)T for every order projection
π ∈ B(E). The set of all atomic operators from E to F subordinate to Φ is
denoted by Φ(E,F ).

We remark that the class of atomic operators was first introduced in
[1]. It is easy to verify that Φ(E,F ) is a vector space. Indeed, let λ ∈ R, T ,
S ∈ Φ(E,F ), x ∈ E and π ∈ B(E). Then

Φ(π)λT (x) = λΦ(π)T (x) = λTπ(x) and

Φ(π)(T + S)(x) = Φ(π)T (x) + Φ(π)S(x)

= Tπ(x) + Sπ(x)

= (T + S)π(x).

Let us consider some examples of atomic operators.

Example 2.1. Recall that an operator T : E → E on a vector lattice is said
to be band preserving if T (D) ⊆ D for every band D of E. By [4, Theorem
2.37], if E is a vector lattice with the principal projection property, then a
linear operator T : E → E is band preserving if and only if T commutes
with every order projection on E. In other words, if E is a vector lattice
with the principal projection property, then a linear operator T : E → E
is band preserving if and only if it is atomic subordinate to the identity
homomorphism Φ : B(E) → B(E). In particular, if E has the principal
projection property, then every linear orthomorphism T : E → E (a band-
preserving, order-bounded operator) is atomic with respect to the identity
homomorphism.

Example 2.2. Let E = lp(Z) with 1 ≤ p ≤ ∞. For every subset A ⊆ Z,
one can define an order projection πA which corresponds, in fact, to the
multiplication by the characteristic function 1A. This gives a one-to-one cor-
respondence between the Boolean algebra P(Z) of all subsets of Z and the
Boolean algebra of order projections on E. With this identification and for
fixed k ∈ Z, if we define the shift Boolean homomorphism Φk : P(Z) → P(Z),
A �→ Φk(A) = {i + k : i ∈ A} and the shift operator Tk : E → E, f �→ Tkf
with (Tkf)(i) = f(i − k), then Tk is an atomic operator subordinate to Φk.

The following is an example of a nonlinear atomic operator.
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Example 2.3. Let (B,Ξ, ν) be a σ-finite measure space, L0(B,Ξ, ν) = L0(ν)
the vector space of all (equivalence classes of) measurable real valued func-
tions on B. A function N : B × R → R is called a K-function if it satisfies
the conditions:

(C0) N(s, 0) = 0 for ν-almost all s ∈ B;
(C1) N(·, r) is measurable for all r ∈ R;
(C2) N(s, ·) is continuous on R for ν-almost all s ∈ B.

If the function satisfies only the conditions (C1) and (C2), then we call it a
Carathéodory function. Given a Caratheodory function N : B × R → R, one
defines the superposition operator TN : L0(ν) → L0(ν) by

TNf := N(·, f(·)) (f ∈ L0(ν)).

We note that a superposition operator is in the literature also known as
Nemytskii operator. The theory of these operators is widely represented in
the literature (see [5]).

Lemma 2.4. If N : B × R → R is a K-function, then the superposition oper-
ator TN : L0(ν) → L0(ν) is an atomic operator subordinate to the identity
homomorphism Id : B(L0(ν)) → B(L0(ν)).

Proof. Let Ξ0 = {D ∈ Ξ : ν(D) = 0} be the set of all ν-null sets. Then Ξ0 is
an ideal in the Boolean algebra Ξ. We let Ξ′ := Ξ/Ξ0 be the factor algebra. It
is well known that the Boolean algebra B(L0(ν)) of all order projections on
L0(ν) is isomorphic to the Boolean algebra Ξ′. In fact, to every (equivalence
class of a) measurable subset D ∈ Ξ′ there corresponds an order projection
πD which is in fact the multiplication by the characteristic function 1D, and
vice versa; see [3, Section 1.6]. Now we show that

N(s, r1D(s)) = N(s, r)1D(s) for all D ∈ Ξ′.

First, for every s ∈ D,

N(s, r1D(s)) = N(s, r) = N(s, r)1D(s).

Second, for every s ∈ B\D, by condition (C0),

N(s, r1D(s)) = N(s, 0) = 0 = N(s, r)1D(s).

Hence, for every f ∈ L0(ν) and π = πD ∈ B(L0(ν)),

Tπf = T (f1D) = N(·, f1D(·)) = N(·, f(·))1D(·) = πTf,

and the assertion is proved. �

The following lemma shows that on Banach lattices with the principal
projection property every atomic operator is regular orthogonally additive.

Lemma 2.5. Let E be a vector lattice with the principal projection property, F
be a vector lattice, Φ be a Boolean homomorphism from B(E) to B(F ) and
T ∈ Φ(E,F ). Then T is orthogonally additive, laterally-to-order bounded
(that is, T ∈ P(E,F )) and disjointness preserving.
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Proof. Fix x, y ∈ E with x ⊥ y. Then

T (x + y) = T (πx + πy)(x + y)

= T (πx ∨ πy)(x + y)

= Φ(πx ∨ πy)T (x + y)

= (Φ(πx) ∨ Φ(πy))T (x + y)

= (Φ(πx) + Φ(πy))T (x + y)

= Φ(πx)T (x + y) + Φ(πy)T (x + y)

= Tπx(x + y) + Tπy(x + y)
= Tx + Ty.

Hence, T is orthogonally additive.
We next show that T is disjointness preserving. Let x, y ∈ E be dis-

joint elements. Then the order projections πx, πy are disjoint elements in the
Boolean algebra B(E), and hence Φ(πx) and Φ(πy) are disjoint elements in
the Boolean algebra B(F ). Since

Tx = Tπxx = Φ(πx)Tx and

Ty = Tπyy = Φ(πy)Ty,

then Tx ⊥ Ty.
Now fix x ∈ E and assume that y ∈ Fx. Then by definition y ⊥ (x− y),

and therefore, since T is disjointness preserving, Ty ⊥ T (x − y). Since T
is orthogonally additive, this implies T (Fx) ⊆ FTx, and hence |Ty| ≤ |Tx|.
Hence, T is a laterally-to-order bounded. �

It is worth to notice that without any assumption on the vector lattices
E and F the space P(E,F ) is not a vector lattice and we say nothing about
the order structure of the space of laterally-to-order bounded orthogonally
additive operators. Nevertheless, the next lemma shows that Φ(E,F ) is a
vector lattice if E has the principal projection property.

Lemma 2.6. Let E be a vector lattice with the principal projection property, F
be a vector lattice, and Φ be a Boolean homomorphism from B(E) to B(F ).
Then Φ(E,F ) is a vector lattice.

Proof. Let T ∈ Φ(E,F ). It suffices to show that |T | = T ∨(−T ) exists. Define
the operator R : E → F by

Rx := |Tx|, x ∈ E.

For every x ∈ E,

Tx ≤ |Tx| = Rx and (−Tx) ≤ |Tx| = Rx.

Thus, T ≤ R and (−T ) ≤ R. Assume that G is an orthogonally additive
operator from E to F such that T ≤ G and (−T ) ≤ G. Then for every x ∈ E,
Tx ≤ Gx and (−T )x ≤ Gx, and therefore, Tx ∨ (−Tx) = |Tx| = Rx ≤ Gx.
Hence, R = T ∨ (−T ).
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We show that R is orthogonally additive. Indeed, let x, y ∈ E with
x ⊥ y. By Lemma 2.5, T is disjointness preserving. Then

R(x + y) = |T (x + y)| = |Tx + Ty| = |Tx| + |Ty| = Rx + Ry.

Finally, we show that R is an atomic operator. Let π ∈ B(E) and x ∈ E.
Then

Rπ(x) = |Tπ(x)| = |Φ(π)Tx| = Φ(π)|Tx| = Φ(π)Rx,

and the proof is complete. �

The following theorem is the first main result of this section.

Theorem 2.7. Let E be a vector lattice with the principal projection property,
F be a Dedekind complete vector lattice and Φ be a Boolean homomorphism
from B(E) to B(F ). Then Φ(E,F ) is a band in the vector lattice OAr(E,F )
and for any T , S ∈ Φ(E,F ), x ∈ E the following relations hold:
(1) (T ∨ S)x = Tx ∨ Sx;
(2) (T ∧ S)x = Tx ∧ Sx;
(3) (T )+x = (Tx)+;
(4) (T )−(x) = (Tx)−;
(5) |T |x = |Tx|.
Proof. By Theorem 1.1, OAr(E,F ) is a vector lattice, and by Lemmas 2.5
and 2.6and Theorem 1.1, Φ(E,F ) is a linear sublattice of OAr(E,F ) =
P(E,F ). Suppose T , S ∈ Φ(E,F ) and x ∈ E. By Theorem 1.1,

(T ∨ S)(x) = sup{Ty + Sz : x = y 	 z} ≥ Tx ∨ Sx.

We remark that if x = y 	 z, then y = πyx = πyy, z = πzx = πzz, Φ(πy) ⊥
Φ(πz), Φ(πx) = Φ(πy) + Φ(πz) and Φ(πx)(Tx ∨ Sx) = Tx ∨ Sx. Hence,

Ty + Sz = Tπyy + Sπzz

= Tπyx + Sπzx

= Φ(πy)Tx + Φ(πz)Sx

≤ Φ(πy)(Tx ∨ Sx) + Φ(πz)(Tx ∨ Sx)

= Φ(πx)(Tx ∨ Sx)
= Tx ∨ Sx.

Passing to the supremum in the left-hand side of the above inequality over
all y, z ∈ Fx such that x = y 	 z yields to

(T ∨ S)(x) ≤ Tx ∨ Sx

and it follows that (T ∨ S)(x) = Tx ∨ Sx. Now it is easy to deduce formulas
for the infimum, module, positive and negative parts of operators.

(T ∧ S)(x) = − ((−T ) ∨ (−S)(x)) = − ((−Tx) ∨ (−Sx)) = Tx ∧ Sx;

T+(x) = (T ∨ 0)(x) = Tx ∨ 0 = (Tx)+;

T−(x) = (−T ∨ 0)(x) = −Tx ∨ 0 = (Tx)−;

|T |x = (T ∨ (−T ))(x) = Tx ∨ (−Tx) = |Tx|.
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Suppose S ∈ OA+(E,F ), T ∈ Φ(E,F ), and 0 ≤ S ≤ T . Then 0 ≤
Sπ(x) ≤ Tπ(x) for any π ∈ B(E) and x ∈ E. Since Φ(π)T = Tπ and
Φ(π) ⊥ Φ(π⊥) = (Φ(π))⊥, it follows that

(Φ(π))⊥Tπ(x) = 0 ⇒ (Φ(π)⊥)Sπ(x) = (Φ(π))⊥S(x) = 0.

Thus, Sπ(E) ⊆ Φ(π)S(E) and, therefore, Φ(π)S = Sπ. Hence, S ∈ Φ(E,F ),
and we have shown that Φ(E,F ) is an ideal in OAr(E,F ).

Finally, we show that Φ(E,F ) is a band in OAr(E,F ). Assume that

π ∈ B(E) and Tλ
(o)−→ T , where (Tλ)λ∈Λ ⊆ Φ(E,F ) and T ∈ OAr(E,F ).

Then we have

|Tπ − Φ(π)T | = |Tπ − Tλπ + Tλπ − Φ(π)T |
≤ |Tπ − Tλπ| + |Φ(π)T − Tλπ|
= |Tπ − Tλπ| + |Φ(π)T − Φ(π)Tλ|.

Since the net (|Tπ −Tλπ|+ |Φ(π)T −Φ(π)Tλ|) order converges to 0 it follows
that Tπ = Φ(π)T for any π ∈ B(E). �

Let E be a vector lattice with the principal projection property and F
be a Dedekind complete vector lattice. Then OAr(E,F ) is Dedekind com-
plete by Theorem 1.1, and therefore, by a theorem of F. Riesz, every band
is a projection band. By Theorem 2.7, every positive orthogonally additive
operator T : E → F thus has a unique decomposition T = T1 + T2 with
0 ≤ T1 ∈ Φ(E,F ) and T2 ∈ Φ(E,F )⊥. The next theorem, which is the sec-
ond main result of this section, gives a description of the band projection
onto Φ(E,F ).

By D0(E), or D0 for short, we denote the set of all finite partitions of
the identity operator Id, that is,

D0 =

{

(πi) : πk ∧ πj = 0, k 
= j;
n∑

i=1

πi = Id; n ∈ N

}

.

Theorem 2.8. Let E be a vector lattice with the principal projection property
and F be a Dedekind complete vector lattice and T ∈ OA+(E,F ). Then the
component T1 ∈ Φ(E,F ) is given by

inf

{
n∑

i=1

Φ(πi)Tπi : (πi) ∈ D0

}

.

Proof. For any T ∈ OA+(E,F ), set

A(T ) :=

{
n∑

i=1

Φ(πi)Tπi : (πi) ∈ D0

}

.

Clearly, A(T ) is a downward directed set of positive orthogonally additive
operators and taking into account the Dedekind completeness of the vector
lattice OAr(E,F ) we deduce that there exists R(T ) := inf A(T ). We verify
the following properties for every T ∈ OA+(E,F ):
(1) 0 ≤ R(T ) ≤ T ;
(2) R : OAr(E,F ) → OAr(E,F ) extends to a linear operator;
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(3) R(T ) = T ⇔ T ∈ Φ(E,F );
(4) R(R(T )) = R(T ).

The relation (1) is obvious. To prove (2), we show that R is additive on the
positive cone. If T1, T2 ∈ OA+(E,F ), then for arbitrary (πi), (πj) ∈ D0, we
have

∑

i

Φ(πi)T1πi +
∑

j

Φ(πj)T2πj

≥
∑

k

Φ(πk)(T1 + T2)πk

=
∑

k

Φ(πk)T1πk +
∑

k

Φ(πk)T2πk,

where (πk) ∈ D0 is finer than (πi) and (πj). Taking the infimum, we obtain

R(T1) + R(T2) = R(T1 + T2).

Let us prove the equivalence in (3). Assume that 0 ≤ T ∈ Φ(E,F ). We notice
that for every (πi) ∈ D0, we have that Φ(πi) = Id. Thus,

∑

i

Φ(πi)Tπi =
∑

i

Φ(πi)2T =
∑

i

Φ(πi)T = T.

Passing to infimum on the left-hand side of the above equality over all (πi) ∈
D0, we get that R(T ) = T . On the other hand, assume that R(T ) = T . We
show that T ∈ Φ(E,F ). Indeed, fix π ∈ B(E). Then T ≤ Φ(π)Tπ + Φ(Id −
π)T (Id − π). It follows that Φ(π)T ≤ Φ(π)Tπ and, therefore, Φ(π)T = Tπ.

It remains to verify the equality (4). Suppose that W = R(T ), with
T ∈ OA+(E,F ). For every ρ ∈ B(E), we may write

Wρ = inf

{
∑

i

Φ(πi)Tπiρ : (πi) ∈ D0

}

= inf

{
∑

i

Φ(π′
i)Tπ′

iρ :
∑

i

π′
i = ρ

}

= inf

{
∑

i

Φ(ρ)Φ(π′
i)Tπ′

i :
∑

i

π′
i = ρ

}

.

Thus, Wρ = Φ(ρ)W for every ρ ∈ B(E). By the equivalence (3) which is
established above, we obtain W = R(W ). �

We remark that a similar theorem for orthomorphisms was proved in
[20].

3. Atomic Operators in Spaces of Measurable Functions

In this section, we investigate atomic operators in spaces of real-valued, mea-
surable functions and get an analytic representation for this class of operators.

Let (B,Ξ, ν) be a σ-finite measure space. Choose an equivalent finite
measure λ on Ξ such that ν and λ have the same sets of measure 0. As in
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Example 2.3 above, we denote by L0(B,Ξ, ν) (or L0(ν) for brevity) the set
of all real-valued, measurable functions on B. More precisely, L0(ν) consists
of equivalence classes of such functions, where as usual two functions f and
g are said to be equivalent if they coincide almost everywhere on B; note
that L0(ν) and L0(λ) coincide. The vector space L0(ν) with the metric ρL0 ,
defined by

ρL0(f, g) :=
∫

B

|f(s) − g(s)|
1 + |f(s) − g(s)| dλ (f, g ∈ L0(ν)),

becomes a complete metric space, and the convergence with respect to the
metric ρL0 is equivalent to the convergence in measure, meaning here the
measure λ. Recall that (fn) converges to f in measure (notation fn

λ→ f ;
see [3, Theorem 1.82]), if, for every δ > 0, limn→∞ λ({|fn − f | > δ}) = 0.
More precisely, the convergence in measure is characterised by the following
statement.

Lemma 3.1 [3, Theorem 1.82]. Let (B,Ξ, ν) be a σ-finite measure space.
Choose an equivalent finite measure λ on Ξ such that ν and λ have the same
sets of measure 0. For a sequence (fn) ⊆ L0(ν) and element f ∈ L0(ν), the
following equivalent:

(1) fn
λ→ f ;

(2) every subsequence of (fn) has a subsequence that converges pointwise
ν-almost everywhere to f ;

(3) for every D ∈ Ξ with ν(D) < ∞,

lim
n→∞

∫

D

|fn(s) − f(s)|
1 + |fn(s) − f(s)| dν = 0.

We say that a function N : B ×R → R is a superpositionally measurable
function, or briefly that it is sup-measurable, if
(C ′

1) N(·, f(·)) is measurable for every f ∈ L0(ν).
We call the function N an S-function, if it is sup-measurable and if
(C0) N(s, 0) = 0 for ν-almost all s ∈ B.
This normalisation condition already appeared in Example 2.3, where we
also defined K-functions and Caratheodory functions. Note that every sup-
measurable function N satisfies automatically the condition (C1) from Exam-
ple 2.3, that is, N(·, r) is measurable for all r ∈ R. Indeed, it suffices to iden-
tify r ∈ R with the corresponding constant function r1B . It is well known
that every Carathéodory function N is sup-measurable; see for instance [5,
Chapter 1.4]. Sup-measurability of a function N : B ×R → R is the weakest
condition under which the superposition operator TN given by

TNf := N(·, f(·)) (f ∈ L0(ν))

is well defined on L0(ν).
Given two sup-measurable functions N , K : B × R → R, we write

N � K if, for every f ∈ L0(ν), N(·, f(·)) ≤ K(·, f(·)) ν-almost everywhere
on B. We say that N and K are sup-equivalent (notation N � K) if both
N � K and K � N .
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Let N : B × R → R be an K-function, and let TN be the associated
superposition operator on L0(ν). Then, by Example 2.3, TN is atomic with
respect to the identity Boolean homomorphism. In addition, since L0(ν) is
Dedekind complete and by Lemma 2.5 and Theorem 1.1, TN is regular orthog-
onally additive and disjointness preserving, but actually these two properties
can easily be verified directly for a superposition operator. The main result
of this section shows that in L0(ν), and up to Boolean homomorphisms, all
sequentially order continuous, atomic operators are superposition operators.
Before stating the precise statement, let us recall a definition and introduce
an operator.

We recall that an orthogonally additive operator T : E → F is sequen-
tially order continuous, if for every order convergent sequence (xn)n ⊆ E

with xn
(o)−→ x the sequence (Txn)n ⊆ F is order convergent to Tx.

Now, let (A,Σ, μ) be a second σ-finite measure space. Recall that for
every measurable set A′ ∈ Σ the multiplication operator πA′ associated with
the multiplication by the characteristic function 1A′ is an order projection on
L0(μ). In fact, every order projection is of this form, and when we consider
the factor Boolean algebra Σ′ = Σ/Σ0 as in Example 2.3 (factorization by
the sets of μ-measure zero), then we obtain a one-to-one correspondence, that
is, the Boolean algebras Σ′ and B(L0(μ)) are isomorphic.

Now let Φ : B(L0(μ)) → B(L0(ν)) be a Boolean homomorphism. We
identify it with a Boolean homomorphism Φ : Σ′ → Ξ′, and we define an
associated, linear shift operator SΦ : L0(μ) → L0(ν) in the following way.
First, for every simple function f =

∑n
i=1 ri1Ai

≥ 0 (where ri ∈ R and the
Ai ∈ Σ are mutually disjoint), we set

SΦf :=
n∑

i=1

ri1Φ(Ai).

The function SΦf is a simple function and, therefore, measurable, and its
definition does not depend on the representation of f . Note in this context
that since Φ is a Boolean homomorphism, then the Φ(Ai) are mutually dis-
joint, too. Second, for every positive, measurable function f ∈ L0(μ)+ there
exists an increasing sequence (fn) of positive, simple functions such that
f = supn fn. One can easily show that the sequence (Sfn) is order bounded
in L0(ν). We then put

SΦf := sup
n

SΦfn ∈ L0(ν)+.

This definition of SΦf does not depend on the choice of the approximating
sequence (fn). Finally, for arbitrary f ∈ L0(μ), we set

SΦf := SΦf+ − SΦf−.

The operator SΦ thus defined is a linear, positive operator from L0(μ) into
L0(ν).

Now let Φ be, in addition, a Boolean isomorphism. Then Φ−1 : Ξ′ → Σ′

is a Boolean isomorphism, too, and it follows from the definition that SΦ is
invertible and S−1

Φ = SΦ−1 . In particular, S−1
Φ is linear and positive, too.
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We show that SΦ is a sequentially order continuous operator. Assume, on
the contrary, that SΦ is not sequentially order continuous. Then there exists
a sequence (fn) in L0(μ) such that fn ↓ 0 and SΦfn 
↓ 0. Passing to an
appropriate subsequence, we can find g > 0 such that SΦfn ≥ g for every
n ∈ N. Applying S−1

Φ to this inequality yields fn ≥ S−1
Φ g for every n ∈ N.

Since S−1
Φ g > 0, this yields a contradiction.

The next theorem is the main result of the section.

Theorem 3.2. Let (A,Σ, μ) and (B,Ξ, ν) be σ-finite measure spaces, Φ : Σ′ →
Ξ′ be a Boolean isomorphism, and T : L0(μ) → L0(ν) be a regular orthogo-
nally additive operator. Then the following statements are equivalent:

(1) T is a continuous (with respect to the metric 	L0), atomic operator
subordinate to Φ;

(2) there exists a K-function N : B ×R → R such that T = TN ◦ SΦ, where
TN is the superposition operator associated with N and SΦ is the shift
operator associated with Φ, that is,

Tf = N(·, SΦf(·)) (f ∈ L0(μ)). (3.1)

Proof. (1) ⇒ (2). Let T : L0(μ) → L0(ν) be a continuous, atomic operator
subordinate to Φ. Then we define a function N̂ : B × R → R by

N̂(·, r) := T (r1A)(·) (r ∈ R).

We note that N̂(·, 0) = T (0) = 0 and, therefore, N̂(·, 0) = 0 ν-almost every-
where. Moreover, N̂(·, r) is Ξ-measurable for every r ∈ R. Now, take a simple
function f =

∑n
i=1 ri1Ai

, where the Ai are mutually disjoint measurable
subsets of A and ri ∈ R, 1 ≤ i ≤ n. Then

Tf = T

(
n∑

i=1

ri1Ai

)

=
n∑

i=1

T (ri1Ai
)

=
n∑

i=1

TπAi
(ri1A)

=
n∑

i=1

Φ(πAi
)T (ri1A)

=
n∑

i=1

N̂(·, ri) 1Φ(Ai)

=
n∑

i=1

N̂(·, ri1Φ(Ai))

= N̂

(

·,
n∑

i=1

ri1Φ(Ai)

)
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= N̂

(

·, SΦ

(
n∑

i=1

ri1Ai

))

= N̂(·, SΦf).

In other words, when we define the operator TN̂ : L0(ν) → L0(ν),
TN̂ := T ◦ S−1

Φ , then TN̂f = N̂(·, f(·)) for every finite step function f , so
that on the space of finite step functions, the operator TN̂ acts like a super-
position operator. At the same time, TN̂ is defined everywhere on L0(ν) and
it is continuous with respect to the metric 	L0 by assumption on T and by
sequential order continuity of S−1

Φ which implies continuity with respect to
	L0 .

It is, however, not clear whether N̂ is sup-measurable. If it was sup-
measurable, then we could invoke [5, Theorem 1.4] to show that N̂ is
sup-equivalent to a Caratheodory function N . For the construction of a
Caratheodory function associated with TN̂ , we proceed as in the proof of
[5, Lemma 1.7], that is, by regularisation and approximation.

We may for our purposes without loss of generality assume that (B,Ξ, ν)
is a finite measure space. In fact, if this measure space was only σ-finite,
then we could replace the measure ν by an equivalent finite measure λ, as
in the definition of the metric 	L0 . Define, for every k ∈ N, the function
tk : Ξ × L0(ν) → R by

tk(D, f) :=
∫

D

((−k) ∨ (TN̂f)(x) ∧ k) dν(x) (D ∈ Ξ, f ∈ L0(ν)),

and then for every k ∈ N and every λ > 0 the regularized function tk,λ :
Ξ × L0(ν) → R by

tk,λ(D, f) := inf
g∈L0

[tk(D, g) + λ

∫

D

(|g(x) − f(x)| ∧ k) dμ(x)].

Then, for every k ∈ N, D ∈ Ξ, f ∈ L0(ν), r, r̂ ∈ R,

tk,λ(D, f) ≤ tk,λ′(D, f) ≤ tk(D, f) for every 0 < λ ≤ λ′,(3.2)

lim
λ→∞

tk,λ(D, f) = tk(D, f), and(3.3)

|tk,λ(D, r) − tk,λ(D, r̂)| ≤ λμ(D) |r − r̂|,(3.4)

where in the third line, we identify a real number r with the corresponding
constant function r 1B . To see that tk,λ(D, f) ≤ tk(D, f) (see (3.2)), it suffices
simply to take g = f in the definition of tk,λ. Similarly, from the definition,
one sees that tk,λ increasing in λ > 0 (see (3.2)). The property (3.3) follows
from the order continuity of TN̂ . Finally, to prove (3.4), fix f , f̂ ∈ L0(ν). By
definition, for every g ∈ L0(ν),

tk,λ(D, f) ≤ tk(D, g) + λ

∫

D

(|g(x) − f(x)| ∧ k) dν(x).

Moreover, for every ε > 0, there exists gε ∈ L0(ν) such that

tk,λ(D, f̂) ≥ tk(D, gε) + λ

∫

D

(|gε(x) − f̂(x)| ∧ k) dν(x) − ε.
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When we subtract both inequalities and take g = gε in the first inequality,
then we obtain

tk,λ(D, f) − tk,λ(D, f̂) ≤ λ

∫

D

(|f(x) − f̂(x)| ∧ (2k)) dν(x) + ε,

or, when f = r and f̂ = r̂ are constant functions,

tk,λ(D, r) − tk,λ(D, r̂) ≤ λμ(D) |r − r̂| + ε.

Since this inequality holds for arbitrary ε > 0, and by changing the roles of
r and r̂, one obtains (3.4).

One easily shows that for every k ∈ N, λ > 0 and r ∈ R the function
tk,λ(·, r) is a measure on (B,Ξ). By the inequality (3.4), this measure is
absolutely continuous with respect to ν. By the Radon–Nikodym theorem,
for every k ∈ N, λ ∈ N and r ∈ Q, there exist densities Nk,λ(·, r) such that

tk,λ(D, r) =
∫

D

Nk,λ(x, r) dν(x).

Since we are only dealing with a countable set of parameters k, λ and r, by
the definition of tk,λ, and by the properties (3.2) and (3.4), there exists a set
D0 ∈ Ξ of ν-measure zero such that, for every k ∈ N, λ ∈ N, r, r̂ ∈ Q and
x ∈ B \ D0,

−k ≤ Nk,λ(x, r) ≤ k, (3.5)
Nk,λ(x, r) ≤ Nk,λ+1(x, r), and (3.6)
|Nk,λ(x, r) − Nk,λ(x, r̂)| ≤ λ |r − r̂|. (3.7)

From the last inequality it follows that, for every k ∈ N, λ ∈ N and every
x ∈ B\D0, the function Nk,λ(x, ·) uniquely extends to a Lipschitz continuous
function on R, which we still denote by Nk,λ(x, ·). In particular, the functions
Nk,λ are Caratheodory functions (more precisely, they are K-functions), and
the associated superposition operators are continuous on L0(ν) by Exam-
ple 2.3. Set

Nk(x, r) := sup
λ∈N

Nk,λ(x, r).

As a pointwise supremum of (Lipschitz) continuous functions, for every x ∈
B\D0, the function Nk(x, ·) is lower semicontinuous. By (3.6), for every x ∈
B\D0, r ∈ R,

Nk(x, r) = lim
λ→∞

Nk,λ(x, r).

By [5, Theorem 1.1], Nk is a so-called Shragin function.
By Lebesgue’s dominated convergence theorem, for every k ∈ N, every

D ∈ Ξ and every r ∈ R,
∫

D

Nk(x, r) dν(x) = lim
λ→∞

∫

D

Nk,λ(x, r) dν(x)

= lim
λ→∞

tk,λ(D, r)
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= tk(D, r)

=
∫

D

((−k) ∨ N̂(x, r) ∧ k) dν(x).

As a consequence, there exists a set D1 ∈ Ξ of ν-measure zero, such that
D1 ⊇ D0 and, for every x ∈ B\D1 and every r ∈ Q,

Nk(x, r) = (−k) ∨ N̂(x, r) ∧ k. (3.8)

In particular, the superposition operator associated with the Shragin function
Nk and the superposition operator associated with the function (−k)∨ N̂ ∧k
coincide on the space of rational step functions (step functions taking values in
Q). The latter operator, however, uniquely extends to a continuous operator
on L0(ν). By [5, Theorem 1.3], the function Nk already is a Caratheodory
function. It remains now to let k → ∞, and to note that Nk(x, ·) is uniquely
determined on [−k, k] ∩ Q by (3.8), independently of k ∈ N, to obtain a
Caratheodory function N : B×R → R such that the associated superposition
operator TN coincides with TN̂ on the space of rational step functions. Hence,
by continuity, TN = TN̂ everywhere on L0(ν). Since TN0 = 0, N is in fact a
K-function, and we have proved one implication.

(2) ⇒ (1). Assume that there exists a K-function N : B × R → R such
that for any f ∈ L0(ν)

Tf = N(·, SΦf(·)),
that is, T = TN ◦ SΦ. Since any superposition operator associated with a
Caratheodory function is order continuous, and since SΦ is order continuous,
then T : L0(μ) → L0(ν) is order continuous.

By Lemma 2.4, the superposition operator TN is an atomic operator
subordinate to the identity homomorphism. By construction, the shift oper-
ator SΦ is an atomic operator subordinate to Φ. It follows easily that the
composition T = TN ◦ SΦ is an atomic operator subordinate to Φ. The proof
is finished. �

4. An Extension of Positive Atomic Operators and Laterally
Continuous Orthogonally Additive Operators

In this section, we show that any atomic operator is laterally-to-order con-
tinuous. We also prove that an atomic, orthogonally additive map defined on
a lateral ideal can be extended to an atomic orthogonally additive operator
defined on the whole space.

Let E, F be vector lattices. A net (xα)α∈Λ ⊆ E is said to be laterally

convergent to x ∈ E if xα
(o)−→ x and (xβ −xγ)⊥xγ for all β, γ ∈ Λ, β ≥ γ. In

this case, we write xα
lat−→ x. An orthogonally additive operator T : E → F is

said to be laterally-to-order continuous, if for every laterally convergent net
(xα) ⊆ E with xα

lat−→ x the net (Txα) order converges to Tx.
The following lemma is a variant of Lemma 2.5.
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Lemma 4.1. Let E be a vector lattice with the principal projection property,
F be a vector lattice, Φ : B(E) → B(F ) be an order continuous homomor-
phism of Boolean algebras and T ∈ Φ(E,F ). Then T is orthogonally additive,
laterally-to-order continuous and disjointness preserving.

Proof. Take a laterally convergent net (xλ)λ∈Λ with xλ
lat−→ x. Denote by

πλ, ρλ and π the order projections onto the bands {xλ}⊥⊥, {x − xλ}⊥⊥ and
{x}⊥⊥, respectively. Since the elements x − xλ and xλ are disjoint for any
λ ∈ Λ it follows that

T (x) = T (x − xλ + xλ) = T (x − xλ) + T (xλ).

Moreover, the net (πλ) order converges to π and the net (ρλ) order converges
to 0B(E) in the Boolean algebra B(E). Taking into account that Φ is an
order continuous homomorphism of Boolean algebras we deduce that the net
Φ(ρλ) converges to 0B(F ) in the Boolean algebra B(F ). Hence,

|T (x) − T (xλ)| = |Tπ(x) − Tπλ(x)|
= |T (π − πλ)(x)|
= |Tρλ(x)|
= |Φ(ρλ)Tx| (o)−→ 0,

and this completes the proof. �

A subset D of a vector lattice E is said to be a lateral ideal if the
following conditions hold:
(1) if x ∈ D and y ∈ Fx, then y ∈ D;
(2) if x, y ∈ D and x⊥y, then x + y ∈ D.

Example 4.2. Let E be a vector lattice. Then any order ideal in E is a lateral
ideal.

Example 4.3. Let E be a vector lattice and x ∈ E. Then Fx is a lateral ideal.

Example 4.4. Let E, F be vector lattices and T : E → F a positive, orthog-
onally additive operator. Then the kernel

ker(T ) = {y ∈ E : T (y) = 0}
is a lateral ideal.

Let E, F be vector lattices, D be a lateral ideal in E. A map T : D → F
is said to be

• orthogonally additive, if T (x + y) = Tx + Ty for every disjoint elements
x, y ∈ D;

• positive, if Tx ≥ 0 for every x ∈ D;
• atomic, if Tπ = Φ(π)T for every order projection π ∈ B(E) .

Theorem 4.5 [15, Theorem 4.4]. Let E, F be vector lattices with F Dedekind
complete, D ⊆ E be a lateral ideal, and T : D → F be a positive, orthogonally
additive operator. Then the operator T̃ : E → F defined by

T̃Dx = sup{Ty : y ∈ Fx ∩ D} (x ∈ E),
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with the interpretation sup ∅ = 0, is positive, orthogonally additive and
laterally-to-order continuous, that is, T̃D ∈ P+(E,F ). Moreover, T̃Dx = Tx
for every x ∈ D.

The operator T̃D ∈ P+(E,F ) is called the minimal extension of the
positive, orthogonally additive operator T : D → F .

We recall the following auxiliary result.

Lemma 4.6 [17, Lemma 2]. Let E be a vector lattice. Then the relation � is
a partial order on E. Moreover, for every x ∈ E the set Fx, partially ordered
by �, is a Boolean algebra with the least element 0, maximal element x, and
the Boolean operations

z ∪ y := (z+ ∨ y+) − (z− ∨ y−),

z ∩ y := (z+ ∧ y+) − (z− ∧ y−),

z := x − z (y, z ∈ Fx).

The next theorem is the main result of this section. It shows that the
minimal extension of an atomic orthogonally additive map is an atomic oper-
ator as well.

Theorem 4.7. Let E be vector lattice with the principal projection property
and F be a Dedekind complete vector lattice, D be a lateral ideal in E, and T :
D → F be an atomic, positive, orthogonally additive map. Then the minimal
extension T̃D of T is an atomic, positive, orthogonally additive operator from
E to F as well.

Proof. By Theorem 4.5, the operator T̃D is well defined and T̃D ∈
OA+(E,F ). We show that T̃D is an atomic operator. Take an order pro-
jection π ∈ B(E) and x ∈ E. First, we show that D := {Ty : y ∈ Fx ∩ D}
is an upward directed set. Indeed, take y, z ∈ D. By Lemma 4.6 there exists
u ∈ Fx such that u = z ∩ y. Then y′ := y − u ∈ Fx ∩ D and y′ ⊥ z. Hence,
v := y′ + z ∈ Fx ∩ D, y � v and z � v. Thus, for every y, z ∈ Fx ∩ D there
exists v. Taking into account that the relation z � x implies that Tz ≤ Tx,
we deduce that for every y, z ∈ Fx ∩ D there exists v ∈ Fx ∩ D such that
Ty ≤ Tv and Tz ≤ Tv. Now,

T̃Dπ(x) = sup{Tπ(y) : y ∈ Fx ∩ D}
= sup{Φ(π)T (y) : y ∈ Fx ∩ D}.

Taking into account that the set {T (y) : y ∈ Fx ∩ D} is upward directed
and that Φ(π) is an order continuous positive linear operator for any order
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projection π ∈ B(E), we get

T̃Dπ(x) = sup{Φ(π)T (y) : y ∈ Fx ∩ D}
= o- lim

λ
{Φ(π)T (yλ) : yλ ∈ Fx ∩ D}

= Φ(π)
(

o- lim
λ

{T (yλ) : yλ ∈ Fx ∩ D}
)

= Φ(π) sup{T (y) : y ∈ Fx ∩ D}
= Φ(π)T̃D(x),

and the proof is finished. �
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