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Existence Result for a Superlinear Fractional
Navier Boundary Value Problems
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Abstract. In this paper, we study the following fractional Navier bound-
ary value problem

⎧
⎨

⎩

Dβ(Dαu)(x) = u(x)g(u(x)), x ∈ (0, 1),

lim
x−→0

x1−βDαu(x) = −a, u(1) = b,

where α, β ∈ (0, 1] such that α + β > 1, Dβ and Dα stand for the
standard Riemann–Liouville fractional derivatives and a, b are nonneg-
ative constants such that a + b > 0. The function g is a nonnegative
continuous function in [0, ∞) that is required to satisfy some suitable
integrability condition. Using estimates on the Green’s function and
a perturbation argument, we prove the existence of a unique positive
continuous solution, which behaves like the unique solution of the ho-
mogeneous problem.
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1. Introduction

Recently, many papers on fractional differential equations have been studied
extensively by many researches. The motivation for those works stems from
the fact that fractional equations serve as an excellent tool to describe many
phenomena in various fields of science and engineering such as viscoelasticity,
electrochemistry, control theory, porous media, electromagnetism and other
fields. Also, it provides an excellent tool to describe the hereditary properties
of various materials and processes. Concerning the development of theory
methods and applications of fractional calculus, we refer to [5,8–12,14,16,23,
24,26,28] and the references therein for discussions of various applications.

The theory of fractional differential equations with various boundary
conditions has been developed very quickly and the investigation for the
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existence, uniqueness and asymptotic behavior of positive continuous solu-
tions attracted a considerable attention of researches ( see [1–4,6,7,13,15,17–
19,21,22,25,29,30] and the references therein ).

In [18], Mâagli et al. studied the following initial value problem:
{

Dαu(x) = −p(x)uσ, x ∈ (0, 1),

lim
x−→0+

x1−αu(x) = 0,
(1.1)

where α ∈ (0, 1), σ < 1 and p is a nonnegative continuous function in (0, 1)
satisfying some appropriate conditions related to the Karamata class K ( see
Definition 4 below ). By a potential theory approach associated with Dα

and some technical tools relying to Karamata regular variation theory, the
authors proved the existence, uniqueness and asymptotic behavior of a posi-
tive solution to problem (1.1) in the weighted space of continuous functions
C1−α([0, 1]).

Later, in [19], Mâagli and Dhifli studied the following sublinear frac-
tional Navier boundary value problem:

⎧
⎨

⎩

Dβ(Dαu)(x) = −p(x)uσ, x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = 0, u(1) = 0,
(1.2)

where σ ∈ (−1, 1), α, β ∈ (0, 1] such that α + β > 1 and p is a nonnega-
tive continuous function in (0, 1). Under some appropriate conditions on the
function p and using the Schäder fixed point theorem, the authors proved the
existence of a unique positive solution to problem (1.2). Further, based on the
asymptotic behavior for the Green function and some technical tools relying
on Karamata regular variation theory, the authors gave a global asymptotic
behavior of such solutions to problem (1.2).

Inspired by the above-mentioned papers, we aim at studying in this
paper the following superlinear fractional Navier boundary value problem:

⎧
⎨

⎩

Dβ(Dαu)(x) = u(x)g(u(x)), x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = −a, u(1) = b,
(1.3)

where α, β ∈ (0, 1] such that α+β > 1 and a and b are nonnegative constants
such that a + b > 0. The nonlinear term g(t) is required to be a nonnegative
continuous function on [0,∞) satisfying some appropriate conditions related
to the class of functions Kα,β defined as follows.

Definition 1. Let α, β ∈ (0, 1]. A Borel measurable function q in (0, 1) belongs
to the class Kα,β if q satisfies the following:

∫ 1

0

rα−1(1 − r)α+β−1|q(r)|dr < ∞.

We use the properties of this class to investigate an existence result for
the fractional Navier boundary value problem (1.3). To state our main result
in this paper, we need to introduce some convenient notations. Throughout
this paper, we denote B((0, 1)) the set of Borel measurable functions in (0, 1)
and B+((0, 1)) the set of nonnegatives ones. We use Cr([0, 1]) to denote the
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set of continuous functions f on (0, 1] such that x → xrf(x) is continuous on
[0, 1].

For q ∈ B((0, 1)), we denote

κq := sup
x,t∈(0,1)

∫ 1

0

H(x, r)H(r, t)
H(x, t)

|q(r)|dr, (1.4)

where H(x, t) is the Green function of the operator u → −Dβ(Dαu) in (0, 1),
with boundary conditions limx−→0+ x1−βDαu(x) = 0 and u(1) = 0. We will
prove that if q ∈ Kα,β , then κq < ∞.

We denote by ω the unique solution of the following homogenous prob-
lem: ⎧

⎨

⎩

Dβ(Dαu)(x) = 0, x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = −a, u(1) = b.
(1.5)

We can easily verify that for x ∈ (0, 1)

ω(x) := ah1(x) + bh2(x),

where

h1(x) =
Γ(β)

Γ(α + β)
xα−1(1 − xβ) and h2(x) = xα−1. (1.6)

Finally, a combination of the following hypotheses on the term g is required:
(H1) g is a nonnegative continuous function in [0,∞).
(H2) There exists a nonnegative function q ∈ Kα,β ∩ C((0, 1)) satisfying:

(i) q(t) ≤ t−μ+1−αL(t) for t near 0 with μ ≤ 1 and L ∈ K satisfying∫ η

0
t−μL(t)dt < ∞.

(ii) κq ≤ 1
2 .

(iii) For each x ∈ (0, 1), the map t → t(q(x) − g(tω(x))) is nondecreasing on
[0, 1].

(H3) The function t → tg(t) is nondecreasing on [0,∞).
As a typical example of the function satisfying (H1)–(H3), we quote

g(t) = tσ, where σ ≥ 0.
Our main result is the following.

Theorem 1. Assume (H1)–(H2), then problem (1.3) has a positive solution u
in C1−α([0, 1]) satisfying

c0ω(x) ≤ u(x) ≤ ω(x), x ∈ (0, 1), (1.7)

where c0 is a constant in (0, 1).
Moreover, this solution is unique if hypothesis (H3) is also satisfied.

Observe that in Theorem 1, we obtain a positive solution u ∈ C1−α([0, 1])
to problem (1.3) whose behavior is not affected by the perturbed term. That
is, it behaves like the solution ω of the homogeneous problem (1.5).

Our paper is organized as follows. In Sect. 2, we give some estimates on
H(x, t). In Sect. 3, for a given function q ∈ Kα,β with κq ≤ 1

2 , we construct
the Green function H(x, t) of the perturbed operator u → −Dβ(Dαu)+q(x)u
with boundary conditions limx−→0+ x1−βDαu(x) = 0 and u(1) = 0 and we
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derive some of its properties. Exploiting these results, we prove our main
result in Sect. 4.

2. Definitions and Preliminary Results

2.1. Fractional Calculus

For the convenience of the reader, we recall in the following some basic def-
initions and elementary properties of fractional calculus (For more details,
see [9,23,26]).

Definition 2. The Riemann–Liouville fractional integral of order α > 0 of a
function f : (0, 1) −→ R is given by

Iαf(x) =
1

Γ(α)

∫ x

0

(x − t)α−1f(t)dt,

provided that the right-hand side is pointwise defined on (0, 1).

Definition 3. The Riemann–Liouville fractional derivative of order α > 0 of
a function f ∈ B((0, 1)) is given by

Dαf(x) =
1

Γ(n − α)

(
d
dx

)n ∫ x

0

(x − t)n−α−1f(t)dt =
(

d
dx

)n

In−αf(x),

where n = [α] + 1 and [α] mean the integer part of the number α, provided
that the right-hand side is pointwise defined on (0, 1).

Lemma 1 ([9,26]).

(i) Let α, β > 0 and 0 < a < 1. Let f ∈ L1((0, a))∩C((0, a)), then we have

DαIαf(x) = f(x) for x ∈ [0, a],

IβIαf(x) = Iα+βf(x) for x ∈ [0, a], β + α ≥ 1.

(ii) Let α > 0 and 0 < a < 1. Let f ∈ L1((0, a)), then

Dαf(x) = 0 if and only if f(x) =
n∑

k=1

ckxα−k,

where n is the smallest integer greater than or equal to α and (c1, . . . , cn)
∈ R

n.
(iii) Let α > 0 and 0 < a < 1. Let f such that Dαf ∈ L1((0, a)) ∩ C((0, a)),

then

IαDαf(x) = f(x) +
n∑

k=1

ckxα−k,

where n is the smallest integer greater than or equal to α and (c1, . . . , cn)
∈ R

n.
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2.2. Karamata Class K
In this subsection, we introduce the Karamata class K and we recall some
fundamental properties of functions belonging to this class.

Definition 4. The class K is the set of Karamata functions L defined on (0, η]
by

L(t) := c exp
(∫ η

t

z(s)
s

ds

)

for some η > 1, where c > 1 and z ∈ C([0, η]) such that z(0) = 0.

Remark 1. It is clear that a function L is in K if and only if L is a positive
function in C1((0, η]) for some η > 1, such that limt−→0+

tL′(t)
L(t) = 0.

As a typical example of function belonging to the class K, we quote

L(t) =
m∏

j=1

(

log
(

w

t

))ξj

,

where ξj are real numbers, logj x = log ◦ log . . . log x ( j times ) and w is a
sufficiently large positive real number such that L is defined and positive on
(0, η] for some η > 1.

Lemma 2 ([20,27]). Let γ ∈ R and L be a function in K defined on (0, η].
Then, we have that

(i) if γ > −1, then
∫ η

0
sγL(s)ds converges and

∫ t

0
sγL(s)ds ∼

t→0+

t1+γL(t)
γ+1 ;

(ii) if γ < −1, then
∫ η

0
sγL(s)ds diverges and

∫ η

t
sγL(s)ds ∼

t→0+
− t1+γL(t)

γ+1 .

Lemma 3 [19]. Let α, β ∈ (0, 1]. Let f ∈ C((0, 1)) such that the map t →
(1 − t)α+β−1f(t) is integrable and |f(t)| ≤ t−δL(t) for t near 0, with δ ≤ 1
and L ∈ K satisfying

∫ η

0
t−δL(t)dt < ∞. Then the function x → Iβf(x) ∈

C((0, 1))∩ L1((0, 1)) and limx→0 x1−βIβf(x) = 0.

2.3. Estimates on the Green’s Function H(x, t)

This subsection is devoted to give estimates on the Green function H(x, t).
From [19], the Green function of the operator u → −Dβ(Dαu) in (0, 1),
with boundary conditions limx−→0+ x1−βDαu(x) = 0 and u(1) = 0, is given
explicitly by

H(x, t) =
xα−1(1 − t)α+β−1 − ((x − t)+)α+β−1

Γ(α + β)
, (2.1)

where Γ is the Euler gamma function and for r ∈ R, r+ = max(r, 0).
First, we recall in the following lemma due to [19] some estimates on

the Green function H(x, t) and properties of the associated potential kernel
defined by

V f(x) =
∫ 1

0

H(x, t)f(t)dt, for f ∈ B+((0, 1)) and x ∈ (0, 1).
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Lemma 4 [19]. Let α, β ∈ (0, 1] such that α+β > 1 and ϕ ∈ B+((0, 1)). Then
we have

(i) For (x, t) ∈ (0, 1) × (0, 1), we have:

α + β − 1
βΓ(α + β)

K(x, t) ≤ H(x, t) ≤ 1
Γ(α + β)

K(x, t), (2.2)

where K(x, t) := xα−1(1 − t)α+β−2(1 − max(x, t)).
In particular,

α + β − 1
βΓ(α + β)

xα−1(1 − x)(1 − t)α+β−1 ≤ H(x, t)

≤ 1
Γ(α + β)

xα−1(1 − t)α+β−2 min(1 − t, 1 − x). (2.3)

(ii) For any ϕ ∈ B+((0, 1)), the function x → V ϕ(x) =
∫ 1

0
H(x, t)ϕ(t)dt

belongs to C1−α([0, 1]) if and only if
∫ 1

0
(1 − t)α+β−1ϕ(t)dt < ∞.

Next, we establish the following property of H(x, t).

Proposition 1. We have, for x, r, t ∈ (0, 1),

H(x, r)H(r, t)
H(x, t)

≤ β

(α + β − 1)Γ(α + β)
rα−1(1 − r)α+β−1. (2.4)

Proof. Using Lemma 4 (i), we have for each x, r, t ∈ (0, 1),

H(x, r)H(r, t)
H(x, t)

≤ βrα−1(1 − r)α+β−2

(α + β − 1)Γ(α + β)
(1 − max(x, r))(1 − max(t, r))

1 − max(x, t)
.

We claim that
(1 − max(x, r))(1 − max(t, r))

1 − max(x, t)
≤ 1 − r. (2.5)

Indeed, by symmetry, we may assume that x ≤ t. Then we deduce that

(1 − max(x, r))(1 − max(t, r))
1 − t

≤ 1 − max(x, r)

≤ 1 − r.

Now, by using (2.5), we obtain the required result. �

Next, we recall that ω(x) := ah1(x) + bh2(x), where

h1(x) =
Γ(β)

Γ(α + β)
xα−1(1 − xβ) and h2(x) = xα−1, for x ∈ (0, 1).

Proposition 2. Let α, β ∈ (0, 1] such that α + β > 1 and let q ∈ B((0, 1)).
Then we have

(i)

κq ≤ β

(α + β − 1)Γ(α + β)

∫ 1

0

rα−1(1 − r)α+β−1|q(r)|dr, (2.6)

where κq is given by (1.4).



MJOM Existence Result for a Superlinear Page 7 of 17 68

In particular, if q ∈ Kα,β, then κq < ∞.
(ii) For x ∈ (0, 1], we have

∫ 1

0

H(x, t)h1(t)|q(t)|dt ≤ κqh1(x) (2.7)

and ∫ 1

0

H(x, t)h2(t)|q(t)|dt ≤ κqh2(x). (2.8)

In particular for x ∈ (0, 1],
∫ 1

0

H(x, t)ω(t)|q(t)|dt ≤ κqω(x). (2.9)

Proof. Let q be a function in B((0, 1)).
(i) The inequality (2.6) follows immediately from (1.4) and (2.4).
(ii) Since for each x, t ∈ (0, 1), we have limr→0

H(t,r)
H(x,r) = H(t,0)

H(x,0) = h1(t)
h1(x)

, then
we deduce by Fatou’s lemma and (1.4) that
∫ 1

0

H(x, t)
h1(t)
h1(x)

|q(t)|dt ≤ lim inf
r→0

∫ 1

0

H(x, t)
H(t, r)
H(x, r)

|q(t)|dt ≤ κq,

which implies that for x ∈ (0, 1),
∫ 1

0

H(x, t)h1(t)|q(t)|dt ≤ κqh1(x).

Similarly, we prove inequality (2.8) by observing that

lim
r→1

H(t, r)
H(x, r)

=
h2(t)
h2(x)

.

Inequality (2.9) follows from (2.7) to (2.8) and the fact that ω(x) = ah1(x)+
bh2(x). �

Proposition 3 [19]. Let α, β ∈ (0, 1] such that α + β > 1. Let f ∈ C((0, 1))
such that the map t → (1 − t)α+β−1f(t) is integrable and |f(t)| ≤ t−δL(t)
near 0, with δ ≤ 1 and L ∈ K satisfying

∫ η

0
t−δL(t)dt < ∞. Then V f is the

unique solution in C1−α([0, 1]) of the boundary value problem:
⎧
⎨

⎩

Dβ(Dα)u(x) = −f(x), x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = 0, u(1) = 0.
(2.10)

3. Green’s Function of the Operator −Dβ(Dαu) + q(x)u

In this section, we will prove that the operator −Dβ(Dαu) + q(x)u has a
Green function for small nonnegative function q in Kα,β . To this end, we
need the following preliminary result. Let α, β ∈ (0, 1] such that α + β > 1
and let q ∈ B+((0, 1)). For (x, t) ∈ (0, 1] × (0, 1], put H0(x, t) = H(x, t) and

Hn(x, t) =
∫ 1

0

H(x, r)Hn−1(r, t)q(r)dr, n ≥ 1. (3.1)
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Now, let H : (0, 1] × (0, 1] −→ R be defined by

H(x, t) =
∞∑

n=0

(−1)nHn(x, t). (3.2)

For f ∈ B+((0, 1)) and x ∈ (0, 1), we put

Vqf(x) :=
∫ 1

0

H(x, t)f(t)dt.

Then, we have the following.

Lemma 5. Let α, β ∈ (0, 1] such that α + β > 1 and let q be a nonnegative
function in Kα,β with κq < 1. Then for (x, t) ∈ (0, 1] × (0, 1], we have

(i) For each n ∈ N,

Hn(x, t) ≤ κn
q H(x, t). (3.3)

In particular, H(x, t) is well defined on (0, 1] × [0, 1].
(ii) For each n ∈ N, we have

Lnxα−1(1 − x)(1 − t)α+β−1 ≤ Hn(x, t)

≤ Rnxα−1(1 − t)α+β−2 min(1 − t, 1 − x), (3.4)

where

Ln =
(

α + β − 1
βΓ(α + β)

)n+1(∫ 1

0

rα−1(1 − r)α+βq(r)dr

)n

and

Rn =
1

(Γ(α + β))n+1

(∫ 1

0

rα−1(1 − r)α+β−1q(r)dr

)n

.

(iii) For (x, t) ∈ (0, 1] × [0, 1], we have
∫ 1

0

H(x, r)H(r, t)q(r)dr =
∫ 1

0

H(x, r)H(r, t)q(r)dr. (3.5)

Proof. The assertions (i) and (ii) are obtained by simple induction. Let us
prove (iii). Let n ≥ 0 and x, t, r ∈ (0, 1]. By (3.3), we have

0 ≤ Hn(x, t)H(r, t)q(r) ≤ κn
q H(x, r)H(r, t)q(r).

Hence, the
∑

n≥0

∫ 1

0
Hn(x, r)H(r, t)q(r)dr converges. So by the dominated

convergence theorem, we deduce that
∫ 1

0

H(x, r)H(r, t)q(r)dr =
∞∑

n=0

(−1)n

∫ 1

0

Hn(x, r)H(r, t)q(r)dr

=
∞∑

n=0

(−1)n

∫ 1

0

H(x, r)Hn(r, t)q(r)dr

=
∫ 1

0

H(x, r)H(r, t)q(r)dr.

�



MJOM Existence Result for a Superlinear Page 9 of 17 68

Proposition 4. Let α, β ∈ (0, 1] such that α+β > 1 and let q be a nonnegative
function in Kα,β with κq < 1. Then the function (x, t) → x1−αH(x, t) is
continuous on [0, 1] × [0, 1].

Proof. Firstly, we claim that for n ∈ N, the function (x, t) → x1−αHn(x, t) is
continuous on [0, 1] × [0, 1]. Indeed, from (2.1) the function (x, t) → x1−αH0

(x, t) is continuous on [0, 1] × [0, 1].
Assume that the function (x, t) → x1−αHn−1(x, t) is continuous on

[0, 1] × [0, 1].
Using Lemmas 5(i) and 4(i), we have for all (x, t) ∈ [0, 1] × [0, 1] and

r ∈ (0, 1),

x1−αH(x, r)Hn−1(r, t)q(r) ≤ κn−1
q x1−αH(x, r)H(r, t)q(r)

≤ 1
(Γ(α + β))2

(1 − t)α+β−2

×min(1 − t, 1 − x)rα−1(1 − r)α+β−1q(r)

≤ 1
(Γ(α + β))2

rα−1(1 − r)α+β−1q(r).

Then since q ∈ Kα,β , we deduce by the dominated convergence theorem that
the function (x, t) → x1−αHn(x, t) is continuous on [0, 1]× [0, 1]. This proves
our claim.

Now, by using again Lemmas 5(i) and 4(i), we have for each x, t ∈ [0, 1],

x1−αHn(x, t) ≤ κn
q x1−αH(x, t) ≤ 1

Γ(α + β)
κn

q .

This implies that the series
∑

n≥0(−1)nHn(x, t) uniformly converges on [0, 1]×
[0, 1] and therefore the function (x, t) → x1−αH(x, t) is continuous on [0, 1]×
[0, 1]. The proof is completed. �

Lemma 6. Let α, β ∈ (0, 1] such that α + β > 1 and let q be a nonnegative
function in Kα,β with κq ≤ 1

2 . Then for (x, t) ∈ (0, 1] × [0, 1], we have

(1 − κq)H(x, t) ≤ H(x, t) ≤ H(x, t). (3.6)

Proof. Since κq ≤ 1
2 , we deduce from Lemma 5(i) that

|H(x, t)| ≤
∞∑

n=0

κn
q H(x, t) =

1
1 − κq

H(x, t). (3.7)

On the other hand, from the expression of H we have

H(x, t) = H(x, t) −
∞∑

n=0

(−1)nHn+1(x, t). (3.8)

Since the series
∑

n≥0

∫ 1

0
H(x, r)Hn(r, t)q(r)dr is convergent, we deduce by

(3.8) and (3.2) that
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H(x, t) = H(x, t) −
∞∑

n=0

(−1)n

∫ 1

0

H(x, r)Hn(r, t)q(r)dr

= H(x, t) −
∫ 1

0

H(x, r)
( ∞∑

n=0

(−1)nHn(r, t)
)

q(r)dr.

That is,
H(x, t) = H(x, t) − V (qH(., t))(x). (3.9)

On the other hand, since

V (qH(., t))(x) ≤ 1
1 − κq

V (qH(., t))(x)

=
1

1 − κq
H1(x, t)

≤ κq

1 − κq
H(x, t),

we deduce that

H(x, t) ≥ H(x, t) − κq

1 − κq
H(x, t) =

1 − 2κq

1 − κq
H(x, t) ≥ 0.

So it follows that 0 ≤ H(x, t) ≤ H(x, t) and by (3.9)

H(x, t) ≥ H(x, t) − V (qH(., t))(x) ≥ (1 − κq)H(x, t).

�

Corollary 1. Let α, β ∈ (0, 1] such that α + β > 1 and let q be a nonnegative
function in Kα,β with κq ≤ 1

2 . Let f ∈ B+((0, 1)), then

Vqf(x) ∈ C1−α([0, 1]) if and only if
∫ 1

0

(1 − t)α+β−1f(t)dt < ∞.

Next, we will prove that the kernel Vq satisfies the following resolvent
equation.

Lemma 7. Let α, β ∈ (0, 1] such that α + β > 1 and let q be a nonnegative
function in Kα,β with κq ≤ 1

2 . Let f ∈ B+((0, 1)), then Vqf satisfies the
following resolvent equation:

V f = Vqf + Vq(qV f) = Vqf + V (qVqf). (3.10)

In particular, if V (qf) < ∞, we have

(I − Vq(q.))(I + V (q.))f = (I + V (q.))(I − Vq(q.))f = f. (3.11)

Proof. Let (x, t) ∈ (0, 1] × (0, 1], then by (3.9), we have

H(x, t) = H(x, t) + V (qH(., t))(x),

which implies by the Fubini–Tonelli theorem that for f ∈ B+((0, 1)),

V f(x) =
∫ 1

0

(H(x, t) + V (qH(., t))(x))f(t)dt

= Vqf(x) + V (qVqf)(x).
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On the other hand, by Lemma 5(iii) and again the Fubini–Tonelli theorem,
we have

∫ 1

0

∫ 1

0

H(x, r)H(r, t)q(r)f(t)drdt =
∫ 1

0

∫ 1

0

H(x, r)H(r, t)q(r)f(t)drdt.

That is,
Vq(qV f)(x) = V (qVqf)(x).

So, we obtain
V f = Vqf + Vq(qV f) = Vqf + V (qVqf).

�

Proposition 5. Let α, β ∈ (0, 1] such that α+β > 1 and let q be a nonnegative
function in Kα,β ∩C((0, 1)) satisfying (i) and (ii) in (H2). Let f ∈ C+((0, 1))
such that the map t → (1 − t)α+β−1f(t) is integrable and f(t) ≤ t−δL̃(t)
near 0, with δ ≤ 1 and L̃ ∈ K satisfying

∫ η

0
t−δL̃(t)dt < ∞. Then, Vqf ∈

C1−α([0, 1]) and it is the unique nonnegative solution of the perturbed problem
⎧
⎨

⎩

Dβ(Dα)u(x) − q(x)u(x) = −f(x), x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = u(1) = 0,
(3.12)

satisfying
(1 − κq)V f ≤ Vqf ≤ V f. (3.13)

Proof. Since by Corollary 1 the function t → Vqf(t) is in C1−α([0, 1]), it
follows that the function t → q(t)Vqf(t) is continuous on (0, 1).

Using (3.6) and Lemma 4(i), there exists a nonnegative constant c such
that

Vqf(x) ≤ V f(x)

≤ 1
Γ(α + β)

xα−1

∫ 1

0

(1 − t)α+β−2 min(1 − t, 1 − x)f(t)dt

≤ 1
Γ(α + β)

xα−1

∫ 1

0

(1 − t)α+β−1f(t)dt

≤ cxα−1.

Therefore,
∫ 1

0

(1 − t)α+β−1q(t)Vqf(t)dt ≤ c

∫ 1

0

tα−1(1 − t)α+β−1q(t)dt < ∞

and q(t)Vqf(t) ≤ ctα−1q(t) ≤ ct−μL(t) for t near 0, where μ ≤ 1 and L ∈ K
satisfies

∫ η

0
t−μL(t)dt < ∞. Hence by using Proposition 3, we conclude that

the function u = Vqf = V f − V (qVqf) satisfies
⎧
⎨

⎩

Dβ(Dα)u(x) = −f(x) + q(x)u(x), x ∈ (0, 1),

lim
x−→0+

x1−βDαu(x) = u(1) = 0.

It remains to prove the uniqueness. Assume that there exists another non-
negative solution v in C1−α([0, 1]) of problem (3.12) satisfying (3.13).
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We remark that the function t → q(t)v(t) is continuous on (0, 1) and by
(3.13) and (2.3) we have

∫ 1

0

(1 − t)α+β−1q(t)v(t)dt ≤
∫ 1

0

(1 − t)α+β−1q(t)V f(t)dt

≤ c

∫ 1

0

tα−1(1 − t)α+β−1q(t)dt < ∞.

Moreover, we have

q(t)v(t) ≤ q(t)V f(t) ≤ ctα−1q(t) ≤ ct−μL(t) for t near 0,

where μ ≤ 1 and L ∈ K satisfies
∫ η

0
t−μL(t)dt < ∞.

It follows by Proposition 3, the function ṽ := v + V (qv) satisfies
⎧
⎨

⎩

Dβ(Dα)ṽ(x) = −f(x), x ∈ (0, 1),

lim
x−→0+

x1−βDαṽ(x) = ṽ(1) = 0.

From the uniqueness in Proposition 3, we deduce that ṽ := v + V (qv) = V f .
Hence,

(I + V (q.))(v − u) = 0.

Now, since for x ∈ (0, 1], there exists a nonnegative constant c such that
Vqf(x) ≤ V f(x) ≤ ch2(x), where h2 given by (1.6), it follows by (2.8) that

V (q|v − u|) ≤ 2cV (qh2) ≤ 2cκqh2 < ∞.

So by (3.11), we deduce that u = v. �

4. Proof of Theorem 1

Consider a ≥ 0 and b ≥ 0 such that a + b > 0. Let α, β ∈ (0, 1] such that
α + β > 1, and q ∈ Kα,β ∩ C((0, 1)) be such that (H2) is satisfied.

Let
Λ := {u ∈ B+((0, 1)) : (1 − κq)ω ≤ u ≤ ω},

where ω(x) = ah1(x) + bh2(x), h1 and h2 are defined by (1.6).
Define the operator T on Λ by

Tu = ω − Vq(qω) + Vq((q − g(u))u).

By (3.6) and (2.9), we have

Vq(qω) ≤ V (qω) ≤ κqω ≤ ω. (4.1)

Using (H2), we get
0 ≤ g(u) ≤ q for all u ∈ Λ. (4.2)

Next, we prove that Λ is invariant under T . Indeed, using (4.1) and (4.2), we
have for u ∈ Λ,

Tu ≤ ω − Vq(qω) + Vq(qu) ≤ ω

and
Tu ≥ ω − Vq(qω) ≥ (1 − κq)ω.
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Next, we will prove that the operator T is nondecreasing on Λ. Indeed, let
u, v ∈ Λ be such that u ≤ v. By (H2), the function t → t(q(x) − g(tω)) is
nondecreasing on [0, 1], for x ∈ (0, 1).

Then, we obtain

Tv − Tu = Vq([v(q − g(v)) − u(q − g(u))]) ≥ 0.

Now, define the sequence (un) by u0 = (1−κq)ω and un+1 = Tun for n ∈ N.
Since TΛ ⊆ Λ, we have u1 = Tu0 ≥ u0 and, by the monotonicity of T ,

we deduce that

(1 − κq)ω = u0 ≤ u1 ≤ · · · ≤ un ≤ un+1 ≤ ω.

Hence by (H1)–(H2) and the dominated convergence theorem, we deduce
that the sequence (un) converges to a function u ∈ Λ satisfying

u = (I − Vq(q.))ω + Vq((q − g(u))u),

that is,
(I − Vq(q.))u = (I − Vq(q.))ω − Vq(ug(u)).

By (2.9), we have V (qu) ≤ V (qω) ≤ ω < ∞; then applying the operator
(I + V (q.)) on both sides of the above equality and using (3.10) and (3.11),
we deduce that u satisfies

u = ω − V (ug(u)). (4.3)

It remains to prove that u is a solution of problem (1.3). Using (4.2) and
(1.6), we have

0 ≤ u(t)g(u(t)) ≤ q(t)ω(t) ≤ max
(

Γ(β)
Γ(α + β)

a, b

)

tα−1q(t). (4.4)

Therefore,
∫ 1

0

(1 − t)α+β−1u(t)g(u(t))dt ≤ max
(

Γ(β)
Γ(α + β)

a, b

)

∫ 1

0

tα−1(1 − t)α+β−1q(t)dt < ∞.

So, by Lemma 4(ii) the function x → V (ug(u))(x) is in C1−α([0, 1]). This
implies by (4.3), u ∈ C1−α([0, 1]). Now, we remark that the function t →
(1 − t)α+β−1u(t)g(u(t)) is continuous and integrable on (0, 1). Moreover, by
(4.2) and (H2), we have for t near 0

0 ≤ u(t)g(u(t)) ≤ max
(

Γ(β)
Γ(α + β)

a, b

)

t−μL(t),

where μ ≤ 1 and L ∈ K satisfies
∫ η

0
t−μL(t)dt < ∞.

Then, we deduce by Proposition 3 that u is a solution of (1.3).
Finally, suppose that hypotheses (H3) is satisfied and let us show that

problem (1.3) has a unique solution satisfying (1.7). Assume that v is another
nonnegative solution in C1−α([0, 1]) to problem (1.3) satisfying the inequality
(1.7).
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Since v ≤ ω, we deduce by (4.2) that

0 ≤ v(t)g(v(t)) ≤ q(t)ω(t) ≤ max
(

Γ(β)
Γ(α + β)

a, b

)

tα−1q(t).

This implies that, the function t → (1 − t)α+β−1v(t)g(v(t)) ∈ L1((0, 1)) ∩
C((0, 1)) and for t near 0, we have

0 ≤ v(t)g(v(t)) ≤ max
(

Γ(β)
Γ(α + β)

a, b

)

t−μL(t),

where μ ≤ 1 and L ∈ K satisfies
∫ η

0
t−μL(t)dt < ∞. Let ṽ := v + V (vg(v)).

By Proposition 3, we have
⎧
⎨

⎩

Dβ(Dα)ṽ(x) = 0, x ∈ (0, 1),

lim
x−→0+

x1−βDαṽ(x) = −a, ṽ(1) = b.

Hence,
v = ω − V (vg(v)). (4.5)

Now, let be h : (0, 1) → R defined by

h(t) :=

{
v(t)g(v(t))−u(t)g(u(t))

v(t)−u(t) , if v(t) �= u(t),
0, if v(t) = u(t).

By (H3), h ∈ B+((0, 1)) and from (4.3) and (4.5), we deduce that

(I + V (h.))(v − u) = 0.

From (H2), we have h ≤ q. So by using (2.9), we deduce that

V (h|v − u|) ≤ V (vg(v)) + V (ug(u))
≤ 2V (qω)
≤ 2κqω < ∞.

Hence by (3.11), we conclude that u = v. This completes the proof.
To illustrate our result proved in Theorem 1, we give the following ex-

ample.

Example 1. Let α, β ∈ (0, 1] such that α + β > 1, and let σ ≥ 1 and a ≥ 0,
b ≥ 0 such that a+b > 0. Then for nonnegative small λ, the following problem

{
Dβ(Dαu)(x) = λuσ(x), 0 < x < 1,

limx→0+ x1−βDαu(x) = −a, u(1) = b,

has a unique positive solution u in C1−α([0, 1]) satisfying

cω(x) ≤ u(x) ≤ ω(x) for x ∈ (0, 1),

where 0 < c < 1.
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