Correction to: Fractional Schrödinger Equation in Bounded Domains and Applications

Mohamed Ben Chrouda

Correction to: Mediterr. J. Math. (2017) 14:172
 https://doi.org/10.1007/s00009-017-0972-0

We take this opportunity to correct some errors in Theorems 1,2 and 3 of the original article. We keep the notations given in original article.

Theorem 1 was formulated in original article as follows:
Theorem 1. For every $f \in \mathcal{C}^{+}(\partial D)$, problem (9) admits one and only one nonnegative solution u. Furthermore,

$$
e^{-1} M_{D}^{\alpha} f \leq u \leq M_{D}^{\alpha} f \quad \text { on } D
$$

The mistake is only in the left hand side of the above inequality. The corrected version runs as follows:

Theorem A. For every $f \in \mathcal{C}^{+}(\partial D)$, problem (9) admits one and only one nonnegative solution u. Furthermore,

$$
\begin{equation*}
C M_{D}^{\alpha} f \leq u \leq M_{D}^{\alpha} f \text { on } D \tag{1}
\end{equation*}
$$

where $0<C<1$ is a constant depending on α, μ, f and D.
Before going to the proof, we need the following preparatory lemma.
Lemma 1. For every $t \geq 0$, let $L_{t}:=(I+t S)^{-1} S$. For every integer $n \geq 1$ and every $h \in \Lambda^{+}$, we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}\right)^{n} L_{t} h=(-1)^{n} n!L_{t}^{n+1} h \tag{2}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}\right)^{n}(I+t S)^{-1} h=(-1)^{n} n!L_{t}^{n}(I+t S)^{-1} h \tag{3}
\end{equation*}
$$

\]

Proof. Let $h \in \Lambda^{+}$and $n \geq 1$. Seeing that for every $t, t^{\prime} \geq 0$,

$$
\left(I+t^{\prime} S\right)^{-1}-(I+t S)^{-1}=-\left(t^{\prime}-t\right)(I+t S)^{-1} S\left(I+t^{\prime} S\right)^{-1}
$$

we immediately deduce that $L_{t^{\prime}} L_{t}=L_{t} L_{t^{\prime}}$ and

$$
\frac{\partial}{\partial t} L_{t} h:=\lim _{t^{\prime} \rightarrow t} \frac{L_{t^{\prime}} h-L_{t} h}{t^{\prime}-t}=-L_{t}^{2} h .
$$

Recalling that, for $n \geq 2$,

$$
L_{t^{\prime}}^{n}-L_{t}^{n}=\left(L_{t^{\prime}}-L_{t}\right)\left(L_{t^{\prime}}^{n}-1+L_{t^{\prime}}^{n-2} L_{t}+\cdots+L_{t^{\prime}} L_{t}^{n-2} L_{t}^{n-1}\right),
$$

we obtain that $\lim _{t^{\prime} \rightarrow t} L_{t^{\prime}}^{n} h=L_{t}^{h}$ and

$$
\frac{\partial}{\partial t} L_{t}^{n} h=-n L_{t}^{n+1} h .
$$

By induction, (2) follows. Moreover, since

$$
I-t L_{t}=I-t(I+t S)^{-1} S=(I+t S)^{-1}(I+t S-t S)=(I+t S)^{-1}
$$

we obtain that

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}\right)^{n}(I+t S)^{-1} h & =-\left(\frac{\partial}{\partial t}\right)^{n} t L_{t} h \\
& =-t\left(\frac{\partial}{\partial t}\right)^{n} L_{t} h-n\left(\frac{\partial}{\partial t}\right)^{n-1} L_{t} h
\end{aligned}
$$

which implies using (2) that

$$
\left(\frac{\partial}{\partial t}\right)^{n}(I+t S)^{-1} h=(-1)^{n} n!L_{t}^{n}(I+t S)^{-1} h .
$$

This completes the proof of (3).
Now, we are ready to prove the left inequality in (1).
Proof. Let $f \in \mathcal{C}^{+}(\partial D)$ and denote $\frac{M_{D}^{\alpha} f}{M_{D}^{\alpha} 1}$ by h. We recall from original article that the solution u of problem (9) is given by $u=M_{D}^{\alpha} 1(I+S)^{-1} h$. Let $x \in D$ and $\varepsilon \in] 0,1\left[\right.$ be fixed, and consider the function θ defined on \mathbb{R}_{+}by

$$
\theta(t)=\varepsilon+(I+t S)^{-1} h(x) .
$$

By [Lemma 3 in original article], the operators $(I+t S)^{-1}$ and L_{t} are nonnegative on Λ^{+}. This implies that $\theta>0$ and, by (3), $(-1)^{n} \theta^{(n)} \geq 0$ for all integer n. So, by Bernstein's theorem, $\ln \theta$ is convex. In particular, $\ln \theta(1) \geq$ $\ln \theta(\varepsilon)+(1-\varepsilon) \theta^{\prime}(\varepsilon) / \theta(\varepsilon)$, or equivalently,

$$
\begin{equation*}
\theta(1) \geq \theta(\varepsilon) e^{(1-\varepsilon) \frac{\theta^{\prime}(\varepsilon)}{\theta(\varepsilon)}} . \tag{4}
\end{equation*}
$$

We have $\theta(\varepsilon)=\varepsilon+(I+\varepsilon S)^{-1} h(x)$ and, by $(3), \theta^{\prime}(\varepsilon)=-L_{\varepsilon}(I+\varepsilon S)^{-1} h(x)$, whence $\lim _{\varepsilon \rightarrow 0} \theta(\varepsilon)=h(x)$ and $\lim _{\varepsilon \rightarrow 0} \theta^{\prime}(\varepsilon)=-S h(x)$. Hence, by letting ε tend 0 in (4), we obtain

$$
(I+S)^{-1} h(x) \geq h(x) e^{-\frac{S h(x)}{h(x)}}
$$

This completes the proof by taking $C:=e^{-\left\|\frac{S h}{h}\right\|}$.
Theorem 3 in original article, which depends on the estimate (1), requires to be put right as well:
Theorem B. it If $1 \leq \gamma<\frac{2+\alpha}{2-\alpha}$ then for every $f \in \mathcal{C}^{+}(\partial B)$, there exists a constant $0<C<1$ such that

$$
C M_{B}^{\alpha} f \leq M_{B}^{\alpha, \gamma} f \leq M_{B}^{\alpha} f
$$

The proof of Theorem B requires only to replace the constant e^{-1} in the proof of [Theorem 3 in original article] by the constant C given in (1).

At the beginning of the proof of [Theorem 2 original article], we used the passage

$$
u \in C(B) \cap L^{1}(B) \Longrightarrow u \leq c \delta^{-1}
$$

But this is not true in general. One can, for example, take $u(x)=\left|x-x_{0}\right|^{1-d}$ for some $x_{0} \in \partial B$. In fact, some supplementary condition on the solution u, under which the above passage holds true, is missing. Accordingly, the corrected version of [Theorem 2 in original article] should be reformulated as follows:

Theorem C. For every $1<\gamma<1+\alpha$, problem (16) has no nonnegative blow up solutions which behaves near the boundary ∂B like $\delta^{-\beta}$ for some real β.

Acknowledgements

The author thanks Nicola Abatangelo for calling attention to the error in [Theorem 2 in original article].

Mohamed Ben Chrouda
Institut supérieur d'informatique et de mathématiques
5000 Monastir
Tunisia
e-mail: benchrouda.ahmed@gmail.com

[^0]: The original article can be found online at https://doi.org/10.1007/s00009-017-0972-0.

