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Abstract. The main aim of this paper is to discuss the third Hankel deter-
minants for three classes: S∗ of starlike functions, K of convex functions
and R of functions whose derivative has a positive real part. Moreover,
the sharp results for twofold and threefold symmetric functions from
these classes are obtained.

Mathematics Subject Classification. 30C50.

Keywords. Hankel determinant, starlike functions, convex functions,
n-fold symmetric functions.

1. Introduction

Let Δ be the unit disk {z ∈ C : |z| < 1} and A be the family of all functions
f analytic in Δ, normalized by the condition f(0) = f ′(0) − 1 = 0. It means
that f has the expansion f(z) = z +

∑∞
n=2 anzn. Pommerenke (see, [11,12])

defined the q-th Hankel determinant for a function f as:

Hq(n) =

∣
∣
∣
∣
∣
∣
∣
∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

· · · · · · · · · · · ·
an+q−1 an+q . . . an+2q−2

∣
∣
∣
∣
∣
∣
∣
∣

, (1)

where n, q ∈ N.
In recent years, the research on Hankel determinants has focused on

the estimation of |H2(2)|. Many authors obtained results for various classes
of univalent functions. It is worth citing a few of them. The exact estimates
of |H2(2)| for the classes: S∗ of starlike functions, K of convex functions
and R of functions whose derivative has a positive real part were proved
by Janteng et al. [3,4]. They got the bounds: 1, 1/8 and 4/9, respectively.
For the class S∗(ϕ) of Ma-Minda starlike functions, the exact bound of the
second Hankel determinant was obtained by Lee et al. [5]. The proof of the
result |H2(2)| ≤ 1 for the class C of close-to-convex functions can be found
in the paper [15] by Selvaraj and Kumar. Other results in this direction
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are presented in [2,7,10,16]. On the other hand, in [19] we obtained the
sharp bounds: |H2(2)| ≤ 9 and |H2(3)| ≤ 15 for the class T of typically real
functions.

The case q = 3 appears to be much more difficult than the case q = 2.
Very few papers have been devoted to the third Hankel determinant. The
first one was the paper by Babalola [1], who tried to estimate |H3(1)| for
the classes S∗, K and R. Following this paper, some other authors published
their results concerning |H3(1)| (see, for example, [14,17,18]). In [1], it was
proved that

Theorem 1.1.

f ∈ S∗ ⇒ |H3(1)| ≤ 16, (2)
f ∈ K ⇒ |H3(1)| ≤ 0.714 . . . , (3)
f ∈ R ⇒ |H3(1)| ≤ 0.742 . . . . (4)

All results are sharp.

Moreover, Babalola claimed that the extremal functions for S∗ are the
rotations of f(z) = z

(1−z)2 . The estimates given in Theorem 1.1 are true, but
rather weak, and so, not sharp! We improve these estimates in the subsequent
section. There we also discuss particular subclasses of S∗, K and R consisting
of functions with so-called n-fold symmetry. The results for these classes,
which are presented in Theorem 3.1 and in Theorem 3.3, are sharp.

It appears interesting to discuss the third Hankel determinants for func-
tions which in particular case reduce to f(z) = z

(1−z)2 .

Example 1. For ft(z) = z
1−2zt+z2 , t∈ [−1, 1], we have f(z)=

∑∞
n=1 Un−1(t)zn.

The functions Un−1(t) = sin(nθ)
sin(θ) , θ = arccos t are Chebyshev polynomials of

the second kind. Then, applying the recurrence formula

Un+1(t) = 2tUn(t) − Un−1(t), t ∈ [−1, 1], n = 1, 2, . . . ,

and the properties of determinants, we get

H3(1) =

∣
∣
∣
∣
∣
∣

U0(t) U1(t) U2(t)
U1(t) U2(t) U3(t)
U2(t) U3(t) U4(t)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

U0(t) U1(t) 2tU1(t) − U0(t)
U1(t) U2(t) 2tU2(t) − U1(t)
U2(t) U3(t) 2tU3(t) − U2(t)

∣
∣
∣
∣
∣
∣
= 0.

It is obvious that for ft, t ∈ [−1, 1], this method yields that Hq(n) = 0
for every positive integers q, n, such that q ≥ 3.

To obtain our results, we need a few sharp estimates valid for func-
tions with a positive real part. The class of such functions p satisfying the
normalization condition p(0) = 1 is denoted by P.

Lemma 1.1 [13]. If p ∈ P, then the sharp estimate |pn| ≤ 2 holds for n =
1, 2, . . ..

Lemma 1.2 [8]. If p ∈ P, then the sharp estimate |pn − pkpn−k| ≤ 2 holds for
n, k = 1, 2, . . . , n > k.

Lemma 1.3 [2]. If p ∈ P, then the sharp estimate |pn − μpkpn−k| ≤ 2 holds
for n, k = 1, 2, . . . , n > k and μ ∈ [0, 1].



MJOM Third Hankel Determinants for Subclasses Page 3 of 10 19

Lemma 1.4. If p ∈ P, then the sharp estimate |pn − pk
2pn−2k| ≤ 6 holds for

n, k = 1, 2, . . . , n > 2k.

The last lemma immediately follows from Lemmas 1.1 and 1.2. It can
easily be seen when we write pn − pk

2pn−2k = (pn − pkpn−k) + pk(pn−k −
pkpn−2k).

Moreover, Libera and Z�lotkiewicz proved that

Lemma 1.5 [6]. If p ∈ P, then 2p2 = p1
2 + x(4 − p1

2) for some x such that
|x| ≤ 1.

2. Bounds of |H3(1)| for S∗, K and R
At the beginning, observe that H3(1) can be written in the form

H3(1) = (a3a5 − a4
2) + a2(a3a4 − a2a5) + a3(a2a4 − a3

2), (5)

or equivalently,
H3(1) = H2(3) + a2J2 + a3H2(2), (6)

where H2(k), k = 2, 3 are the second Hankel determinants defined by (1) and
J2 = a3a4 − a2a5. The expression J2 is a particular case of

Jn = an+1an+2 − anan+3. (7)

It seems interesting to discuss this functional in a general case for n ∈ N.
As it can be seen in (1), H3(1) is a polynomial of four variables: a2, a3,

a4, a5, where these numbers are successive coefficients of a function f in a
given class. However, in many cases it is possible to connect the coefficients
a2, a3, a4, a5 with coefficients p1, p2, p3, p4 of a function p ∈ P. To do this,
we need to know the correspondence between f and p.

Let f , g, h be univalent. Then

f ∈ S∗ ⇔ zf ′(z)
f(z)

∈ P, (8)

g ∈ K ⇔ 1 +
zg′′(z)
g′(z)

∈ P, (9)

h ∈ R ⇔ h′(z) ∈ P. (10)

In this section, we assume that f(z) = z + a2z
2 + a3z

3 + · · · , g(z) = z +
b2z

2 + b3z
3 + · · · , h(z) = z + c2z

2 + c3z
3 + · · · and p(z) = 1+p1z +p2z

2 + · · ·
are in S∗, K, R and P, respectively.

From (8), we obtain

(n − 1)an =
n−1∑

j=1

ajpn−j . (11)

From (11), it follows that

a2 = p1, a3 = 1
2 (p2 + p1

2), (12)

a4 = 1
3 (p3 + 3

2p1p2 + 1
2p1

3), a5 = 1
4 (p4 + 4

3p1p3 + 1
2p2

2 + p1
2p2 + 1

6p1
4).
(13)
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Hence, for f ∈ S∗ we have H3(1) = F (p1, p2, p3, p4), where

F (p1, p2, p3, p4)

=
1

144
[−p1

6 + 3p1
4p2 + 8p1

3p3 − 9p1
2p2

2 − 18p1
2p4 + 24p1p2p3

− 9p2
3 + 18p2p4 − 16p3

2]. (14)

According to the Alexander relation, nbn = an. Putting it into the
definition of H3(1) for a convex function and applying the formulae (12) lead
to H3(1) = G(p1, p2, p3, p4), where

G(p1, p2, p3, p4)

=
1

8640
[−p1

6 + 6p1
4p2 + 12p1

3p3 − 21p1
2p2

2 − 36p1
2p4 + 36p1p2p3

− 4p2
3 + 72p2p4 − 60p3

2]. (15)

Finally, if f ∈ R then ncn = pn−1, so directly from (1) it follows that
H3(1) = H(p1, p2, p3, p4), where

H(p1, p2, p3, p4) = − 1
20

p1
2p4 +

1
12

p1p2p3 − 1
27

p2
3 +

1
15

p2p4 − 1
16

p3
2. (16)

Now, we can prove

Theorem 2.1.

f ∈ S∗ ⇒ |H3(1)| ≤ 1, (17)

f ∈ K ⇒ |H3(1)| ≤ 49
540

= 0.090 . . . , (18)

f ∈ R ⇒ |H3(1)| ≤ 41
60

= 0.683 . . . . (19)

Proof. From (14),

F (p1, p2, p3, p4) =
1

144
[
10(p2 − p1

2)(p4 − p2
2) + 8(p2 − p1

2)(p4 − p1p3)

+ (p2 − p1
2)3 − 16(p3 − p1p2)2

]
. (20)

The triangle inequality and Lemma 1.2 lead to the declared bound for f ∈ S∗.
If f ∈ K then, from (15),

G(p1, p2, p3, p4) =
1

2160
[
2(p2 − 1

2p1
2)3 + 6p4(p2 − p1

2) + 9p2(p4 − p2
2)

+ 3(p2 − p1
2)(p4 − p1p3) − 15p3(p3 − 4

5p1p2) + 6p22(p2 − 3
8p1

2)
]
. (21)

As above, it is enough to apply the triangle inequality and Lemmas 1.1–1.3.
In the same way, we obtain the bound for f ∈ R taking into account

that

H(p1, p2, p3, p4) =
1
20

p4(p2 − p1
2) − 1

16
p3(p3 − p1p2)

+
1
27

p2(p4 − p2
2) − 1

48
p2(p4 − p1p3) +

1
2160

p2p4. (22)

�
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An analogous calculation can be applied to obtain the result for J2

defined by (7).

Theorem 2.2. If f ∈ S∗ then |J2| ≤ 2.

Proof. From (12), it follows that

J2 =
1
24

[p15 + 2p1
3p2 − 4p1

2p3 + 3p1p2
2 − 6p1p4 + 4p2p3],

and equivalently,

J2 =
1
24

[(p12 − p2)(p13 − p3) + 3(p12 − p2)(p1p2 − p3) + 6p1(p22 − p4)].

By Lemmas 1.1, 1.2 and 1.4, |J2| ≤ 2. Moreover, equality in this estimate
holds for f(z) = z

(1−z)2 . �

From the paper [9], we know that |J1| ≤ 2 for starlike functions. Hence,
it is a natural question: whether |Jn| ≤ 2 for all f ∈ S∗ and all positive
integers n? Such a conjecture is supported by the fact that for the Koebe
function f(z) = z

(1−z)2 we have |Jn| = 2 for n = 1, 2, . . .

3. Bounds of |H3(1)| for Twofold and Threefold Symmetric
Functions

Since the results in Theorem 2.1 are not sharp, it is interesting to pose a
question about the magnitude of |H3(1)| for the discussed classes. We can
give a partial answer considering functions satisfying an additional condition.

For a given class A ⊂ A, a function f ∈ A is said to be n-fold symmetric
if f(εz) = εf(z) holds for all z ∈ Δ, where ε = exp (2πi/n) means the
principal n-th root of 1. The set of all n-fold symmetric functions belonging
to A is denoted by A(n). If f ∈ A(n), then f has the Taylor series expansion
f(z) = z + an+1z

n+1 + a2n+1z
2n+1 + · · · . In case n = 2, the set A(2) consists

of all functions in A which are odd.
Observe that if f ∈ A(3) then f(z) = z + a4z

4 + a7z
7 + · · · , and conse-

quently H3(1) = −a4
2. Similarly, if f ∈ A(2) then f(z) = z+a3z

3+a5z
5+· · · ,

so H3(1) = a3(a5 − a3
2).

The definition of a n-fold symmetric function can be extended to func-
tions p normalized by p(0) = 1.

Theorem 3.1.

f ∈ S∗(3) ⇒ |H3(1)| ≤ 4
9
, (23)

f ∈ K(3) ⇒ |H3(1)| ≤ 1
36

, (24)

f ∈ R(3) ⇒ |H3(1)| ≤ 1
4
. (25)

All these bounds are sharp.
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Proof. 1. Since

f ∈ S∗ ⇔ 3
√

f(z3) ∈ S∗(3),

assuming that f(z) = z+a2z
2+ · · · and f̃(z) = 3

√
f(z3) = z+b4z

4+ · · ·
we have b4 = a2/3. Hence, for f̃ ∈ S∗(3),

|H3(1)| = |b4|2 =
1
9
|a2|2 ≤ 4

9
.

Equality holds for rotations of

f̃0(z) =
z

(1 − z3)2/3
= z + 2

3z4 + · · · .

For this function,

zf̃0
′(z)

f̃0(z)
= p̃0(z), p̃0(z) =

1 + z3

1 − z3
.

2. Taking into account the relation zg̃′(z) = f̃(z) valid for f̃ ∈ S∗(3) and
g̃ ∈ K(3), we obtain the expansion g̃(z) = z + b4

4 z4 + · · · and

|H3(1)| =
1
16

|b4|2 =
1

144
|a2|2 ≤ 1

36
,

with equality for

g̃0(z) =
∫ z

0

(1 − ζ3)−2/3 dζ = z + 1
6z4 + · · · .

Obviously,

1 +
zg̃0

′(z)
g̃0(z)

= p̃0(z).

3. For h̃(z) = z + c4z
4 + · · · ∈ R(3) and p̃(z) = 1 + p3z

3 + · · · ∈ P(3), there
is 4c4 = p3; consequently

|H3(1)| = |c4|2 =
1
16

|p3|2 ≤ 1
4
.

Equality holds for

h̃0(z) =
∫ z

0

p0(ζ) dζ = z + 1
2z4 + · · · .

�

Now, we turn to the case n = 2. We begin with the Fekete–Szegö type
functional for odd starlike functions.

For f(z) = z + α3z
3 + α5z

5 + · · · ∈ A(2) and a real number μ, let us
define

Φf (μ) ≡ ∣
∣α3

(
α5 − μα3

2
)∣
∣ . (26)

It is clear that

|H3(1)| = Φf (1).
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Th functional Φf is invariant under rotation. Indeed, for a given f and a real
δ, let us define fδ(z) = e−iδf(eiδz). Then, fδ(z) = z+α3e2iδz3+α5e4iδz5+· · · ,
so

Φfδ
(μ) =

∣
∣e2iδα3

(
e4iδα5 − μe4iδα3

2
)∣
∣ = Φf (μ).

Theorem 3.2. If f ∈ S∗(2), then

Φf (μ) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − μ μ ≤ 2/3
1

3
√

3(2μ−1)
μ ∈ [2/3, 1]

1

3
√

3(3−2μ)
μ ∈ [1, 4/3]

μ − 1 μ ≥ 4/3.

(27)

The estimate is sharp.

Proof. Let g(z) = z + a2z
2 + · · · ∈ S∗ and f(z) =

√
g(z2) = z + α3z

3 + · · · ∈
S∗(2). Since g ∈ S∗ ⇔ f ∈ S∗(2), comparing coefficients in

z2 + a2z
4 + a3z

6 + · · · =
(
z + α3z

3 + α5z
5 + · · · )2

we get

α3 = 1
2a2, α5 = 1

2a3 − 1
8a2

2.

Consequently, for f ∈ S∗(2),

Φf (μ) = 1
4

∣
∣
∣
∣a2

(

a3 − 1 + 2μ
4

a2
2

)∣
∣
∣
∣ . (28)

Lemma 1.5 and (12) result in

a3 = 3
4p1

2 + 1
4 (4 − p1

2)x. (29)

Combining (12) and (28–29), we obtain

Φf (μ) = 1
16

∣
∣p1

[
2(1 − μ)p12 + (4 − p1

2)x
]∣
∣ . (30)

Taking into account the invariance of Φf under rotation, we can assume that
α3, and so a2 and p1, are real. Hence, p1 = 2r for some r ∈ [0, 1]. Consequently

Φf (μ) = 1
2r

∣
∣2(1 − μ)r2 + (1 − r2)x

∣
∣ . (31)

1. Suppose now that μ ≤ 1. Then

Φf (μ) ≤ 1
2r

[
(1 − 2μ)r2 + 1

]
. (32)

Let us denote by q1(r) the right hand side of (32).
If μ ≤ 1/2, then q1 is increasing for r ∈ [0, 1] and so q1(r) ≤ q1(1).

For μ ∈ (1/2, 1], we have

q1(r) ≤
{

q1(1) μ ∈ (1/2, 2/3]
q1(1/

√
3(2μ − 1)) μ ∈ [2/3, 1].
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2. If now μ ≥ 1, then

Φf (μ) ≤ 1
2r

[
(2μ − 3)r2 + 1

]
. (33)

Denoting the right hand side of (33) by q2(r) and applying an argument
similar to that given in the previous part of the proof, we obtain

q2(r) ≤
{

q2(1/
√

3(3 − 2μ)) μ ∈ [1, 4/3]
q2(1) μ ≥ 4/3.

Finally, observe that (32) is obtained only in the case of x = 1. From
Lemma 1.5 it follows that p2 = 2. Hence, equality in (27) holds for f(z) =

z
1−z2 and its rotations if μ ≤ 2/3. On the other hand, if μ ∈ [2/3, 1], then the
extremal functions are

f(z) =
z

(1 − z2)t(1 + z2)1−t
, t = (1 + 1/

√
3(2μ − 1))/2 (34)

and its rotations. The Taylor series expansion of this function, in terms of μ,
is as follows:

f(z) = z +
1

√
3(2μ − 1)

z3 +
3μ − 1

3(2μ − 1)
z5 + · · · .

Equality in (33) holds while x = −1. From Lemma 1.5, it follows that p2 =
p1

2 − 2. We can deduce that if μ ≥ 4/3, then the extremal functions are
rotations of f(z) = z

1−z2 and if μ ∈ [1, 4/3], then equality in (27) holds for

f(z) =
z√

1 − 2tz2 + z4
, t = 1/

√
3(3 − 2μ), (35)

which has the expansion in terms of μ

f(z) = z +
1

√
3(3 − 2μ)

z3 +
μ − 1
3 − 2μ

z5 + · · · ,

as well as its rotations. �

Corollary 1. If f ∈ S∗(2) then
∣
∣α3

(
α5 − α3

2
)∣
∣ ≤ 1

3
√
3
. The estimate is sharp.

This and two other results for K(2) and R(2) are collected in the following
theorem.

Theorem 3.3.

f ∈ S∗(2) ⇒ |H3(1)| ≤ 1
3
√

3
= 0.192 . . . , (36)

f ∈ K(2) ⇒ |H3(1)| ≤ 4
135

= 0.029 . . . , (37)

f ∈ R(2) ⇒ |H3(1)| ≤ 2
√

6
45

= 0.108 . . . . (38)

All these bounds are sharp.

Proof. 2. From equivalence g ∈ K(2) ⇔ f(z) = zg′(z) ∈ S∗(2), where f(z) =
z + α3z

3 + · · · , g(z) = z + β3z
3 + · · · it follows that

β3 = 1
3α3, β5 = 1

5α5,
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so, for g ∈ K(2), there is

H3(1) =
∣
∣β3

(
β5 − β3

2
)∣
∣ =

1
15

∣
∣α3

(
α5 − 5

9α3
2
)∣
∣ .

Applying Theorem 3.2, we obtain the claimed bound.
3. Let h(z) = z +γ3z

3 + · · · ∈ R(2). Since h ∈ R(2) ⇔ h′ ∈ P(2), we can write
h′(z) = zf ′(z)

f(z) for some f ∈ S∗(2). Comparing coefficients in

(1 + 3γ3z2 + 5γ5z
4 . . .)(z + α3z

3 + α5z
5 + · · · ) = z + 3α3z

3 + 5α5z
5 + · · ·

leads to

γ3 = 2
3α3, γ5 = 4

5α5 − 2
5α3

2.

Hence, for h ∈ R(2),

H3(1) =
∣
∣γ3

(
γ5 − γ3

2
)∣
∣ =

8
15

∣
∣α3

(
α5 − 19

18α3
2
)∣
∣ .

Once again, from Theorem 3.2, we get the desired bound. The sharpness of
all these estimates follows from Theorem 3.2. �
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