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Abstract. The main aim of this paper is to discuss the third Hankel deter-
minants for three classes: S* of starlike functions, K of convex functions
and R of functions whose derivative has a positive real part. Moreover,
the sharp results for twofold and threefold symmetric functions from
these classes are obtained.
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1. Introduction

Let A be the unit disk {z € C: |z| < 1} and A be the family of all functions
f analytic in A, normalized by the condition f(0) = f/(0) — 1 = 0. It means
that f has the expansion f(z) =z + Y ., a,2". Pommerenke (see, [11,12])
defined the g-th Hankel determinant for a function f as:

Qn An+1 s Ap+q—1
_ Ap+41 Ap+2 N An4q
Ho(n)=\ 770 00 0 T (1)
Ap4q—1 [ s (p4-2q—2

where n,q € N.

In recent years, the research on Hankel determinants has focused on
the estimation of |H5(2)|. Many authors obtained results for various classes
of univalent functions. It is worth citing a few of them. The exact estimates
of |H2(2)| for the classes: S* of starlike functions, K of convex functions
and R of functions whose derivative has a positive real part were proved
by Janteng et al. [3,4]. They got the bounds: 1, 1/8 and 4/9, respectively.
For the class S*(¢) of Ma-Minda starlike functions, the exact bound of the
second Hankel determinant was obtained by Lee et al. [5]. The proof of the
result |Hz(2)] < 1 for the class C of close-to-convex functions can be found
in the paper [15] by Selvaraj and Kumar. Other results in this direction
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are presented in [2,7,10,16]. On the other hand, in [19] we obtained the
sharp bounds: [H2(2)| < 9 and |H3(3)| < 15 for the class T' of typically real
functions.

The case ¢ = 3 appears to be much more difficult than the case ¢ = 2.
Very few papers have been devoted to the third Hankel determinant. The
first one was the paper by Babalola [1], who tried to estimate |Hs(1)| for
the classes §*, K and R. Following this paper, some other authors published
their results concerning |Hs(1)| (see, for example, [14,17,18]). In [1], it was
proved that

Theorem 1.1.
f €S = |Hs(1)| <16,
feK=|Hs(1)] <0.714...,
fE€R=|H3(1)| <0.742....

—~ o~
IEENGVEN V)
- = =

All results are sharp.

Moreover, Babalola claimed that the extremal functions for S* are the
rotations of f(z) = ﬁ The estimates given in Theorem 1.1 are true, but
rather weak, and so, not sharp! We improve these estimates in the subsequent
section. There we also discuss particular subclasses of S*, K and R consisting
of functions with so-called n-fold symmetry. The results for these classes,
which are presented in Theorem 3.1 and in Theorem 3.3, are sharp.

It appears interesting to discuss the third Hankel determinants for func-

tions which in particular case reduce to f(z) = e

Ezample 1. For fi(2) = 1=5Z752, t€[~1,1], we have f(2) =377 Up_1(t)2".
The functions U,,_;(t) = Ssiinn((n;;)’
the second kind. Then, applying the recurrence formula

Un+1(t):2tUn(t)_Unfl(t)v te [_lvl}a n=12...,
and the properties of determinants, we get
Uo(t) Ui(t) Us(t) Uo(t) Uy(t) 2tUL(t) — Up(t)
Hs(1) = |Ui(t) Us(t) Us(t)| =|Ui(t) Ux(t) 2tUx(t) —Ui(t)| =0.
Ua(t)  Us(t) Us(t)] |Ua(t) Uslt) 20Us(t) — Un(t)

It is obvious that for f;, t € [—1,1], this method yields that H,(n) =0
for every positive integers ¢, n, such that ¢ > 3.

To obtain our results, we need a few sharp estimates valid for func-
tions with a positive real part. The class of such functions p satisfying the
normalization condition p(0) =1 is denoted by P.

0 = arccost are Chebyshev polynomials of

Lemma 1.1 [13]. If p € P, then the sharp estimate |p,| < 2 holds for n =
1,2,....

Lemma 1.2 [8]. If p € P, then the sharp estimate |p, — pxPn—r| < 2 holds for
nk=12,...,n>k.

Lemma 1.3 [2]. If p € P, then the sharp estimate |p, — pppPn—k| < 2 holds
forn,k=1,2,..., n>k and p € [0,1].
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Lemma 1.4. If p € P, then the sharp estimate |p, — pr?pn_2r| < 6 holds for
nk=12,..., n>2k.

The last lemma immediately follows from Lemmas 1.1 and 1.2. It can
easily be seen when we write p, — pk2pn—2k = (pn — pkpn—k) + Pk (pn—k -

PkPn—2k)-
Moreover, Libera and Zlotkiewicz proved that

Lemma 1.5 [6]. If p € P, then 2py = p12 + x(4 — p1?) for some x such that
x| < 1.

2. Bounds of |H3(1)| for S*, IC and R
At the beginning, observe that H3(1) can be written in the form

H3(1) = (a3a5 — a42) + ag(a3a4 — a2a5) + ag(a2a4 — a32), (5)
or equivalently,
Hs(1) = Ha(3) + agJo + azHa(2), (6)
where Hs(k), k = 2,3 are the second Hankel determinants defined by (1) and
Jo = agay — asas. The expression Js is a particular case of

In = Up4+10n4+2 — Gplni3- (7)

It seems interesting to discuss this functional in a general case for n € N.
As it can be seen in (1), H3(1) is a polynomial of four variables: as, as,
a4, as, where these numbers are successive coefficients of a function f in a
given class. However, in many cases it is possible to connect the coefficients
as, as, ag, as with coefficients p1, pa, p3, ps of a function p € P. To do this,
we need to know the correspondence between f and p.
Let f, g, h be univalent. Then

2f'(z)
fes e e P, 8
e )

29" (%)

eks 1+ e P, 9
g e (9)
heR & N1(z)eP. (10)
In this section, we assume that f(z) = z + a92® + azz® +---, g(z) = 2z +

boz? +b323 4+ h(2) = 2+ ce2? 4323+ and p(2) = 1+ prz+pe2?+- -
are in §*, I, R and P, respectively.
From (8), we obtain

n—1
(n—1)an =Y apn_;. (11)
j=1

From (11), it follows that
ax =pi, as=3(p2+pi?), (12)
as = 3(ps + 3pip2 + 3m?%), a5 = 2(pa+ Fpips + 3p2° + pi’p2 + Ep1?).
(13)
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Hence, for f € 8* we have H3(1) = F(p1,p2, p3, pa), where
F(plaPQ,PS»IM)
1
= ——[—p1® + 3p1*p2 + 8p1°ps — Ip1°p2® — 18p1®ps + 24p1paps

144
—9p2® + 18paps — 16p37]. (14)
According to the Alexander relation, nb, = a,. Putting it into the

definition of Hs(1) for a convex function and applying the formulae (12) lead
to H3(1) = G(p17p27p37p4)7 where

G(p1,p2,P3,P4)

1
8640[ p1°® + 6p1*pa + 12p1®ps — 21p12pa? — 36p12ps + 36p1paps

— 4po® + T2papy — 60ps”]. (15)
Finally, if f € R then nc, = p,—1, so directly from (1) it follows that
HS(l) = H(p13p23p33p4)3 where

H(p1,p2,p3,p4) = *%p12p4 + {gP1P2ps — %}?2‘3 + %pzm - T16p32' (16)
Now, we can prove
Theorem 2.1.
fe& = |Hs(1)] <1, (17)
f ek = Hy1)] < ok =009, (18)
feR:>\H3(1)|§%:O.683.... (19)

Proof. From (14),

1
T 1102 = p1*) (P4 = p2?) + 8(p2 = p1*) (P4 — P1ps)
+ (p2 — p1°)® — 16(ps — p1p2)?] - (20)
The triangle inequality and Lemma 1.2 lead to the declared bound for f € &*.
If f € K then, from (15),

F(p1,p2,p3,p4) =

G(p1,p2,p3,p1) = [2(p2 — 3p1%)* + 6pa(p2 — p1?) + Ip2(ps — p2°)

1
2160
+3(p2 — p1°)(pa — p1p3) — 15ps(ps — 2p1p2) + 6p22(p2 — 2p1?)] . (21)
As above, it is enough to apply the triangle inequality and Lemmas 1.1-1.3.
In the same way, we obtain the bound for f € R taking into account
that

212~ %) = 1ops(ns — pip2)
20194 P2 —p1 16103 P3 — P1p2
1

1
+ 27192( —po?) — @pz( — p1p3) +

H(p17p27p37p4) -

—paps.  (22)
O

2160
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An analogous calculation can be applied to obtain the result for J,
defined by (7).
Theorem 2.2. If f € §* then |J2| < 2.

Proof. From (12), it follows that

1
Jo = ﬁ[mS + 2p1®p2 — 4p1°ps + 3pip2® — 6p1pa + 4paps),

and equivalently,

1
T2 = 57 [(01* = p2)(01” = ps) + 3(p1” = p2)(p1p2 — ps) + 6p1(p2” — pa)l-
By Lemmas 1.1, 1.2 and 1.4, |J3| < 2. Moreover, equality in this estimate
holds for f(z) = e O

From the paper [9], we know that |.J;| < 2 for starlike functions. Hence,
it is a natural question: whether |J,| < 2 for all f € S* and all positive
integers n? Such a conjecture is supported by the fact that for the Koebe

function f(z) = ﬁ we have |J,| =2 forn=1,2,...

3. Bounds of |H3(1)| for Twofold and Threefold Symmetric
Functions

Since the results in Theorem 2.1 are not sharp, it is interesting to pose a
question about the magnitude of |H3(1)| for the discussed classes. We can
give a partial answer considering functions satisfying an additional condition.

For a given class A C A, a function f € A is said to be n-fold symmetric
if f(ez) = ef(#) holds for all z € A, where ¢ = exp (2mi/n) means the
principal n-th root of 1. The set of all n-fold symmetric functions belonging
to A is denoted by A" If f € A then f has the Taylor series expansion
f(2) =2+ an12™ Fagn 122"+ - In case n = 2, the set A consists
of all functions in A which are odd.

Observe that if f € A®) then f(2) = z + asz* + a72” + - - -, and conse-
quently Hs(1) = —a4?. Similarly, if f € A®) then f(2) = z+az2®+as2’+- -,
SO Hg(l) = 03(&5 - 032).

The definition of a n-fold symmetric function can be extended to func-
tions p normalized by p(0) = 1.

Theorem 3.1.
Fes'® om0 < g (23)
fEK® =m0 < o, (24
feR® = [Hy(1)] < 1. (25)

All these bounds are sharp.
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Proof. 1. Since
fes o Yf(3)es®

assuming that f(z) = z+a22+--- and f(2) = {/f(23) = 2+ byz*+- -
we have by = as/3. Hence, for f € S*(g)

4
[H3(1)] = [baf* = \02F <g
Equality holds for rotations of
3 z 2.4
fo(Z):m:”gZ o
For this function,
zfo () L - 1+ 23
fo(Z) = pO(Z)7 pO( ) 1_ ZS

2. Taking into account the relation z§’(z) = f(z) valid for f e &) and
G € K®) | we obtain the expansion g(z) =z + b4 24+ ... and

1 1

2 —_—
144| af” < 36

1 2
[Hy(1)] = 1lbal® =

with equality for
go(2) =/O 1= =2+ 42"+
Obviously,

FE

3. For h(z) = z+cqz* +--- € R®) and p(z) = 1+ p3z® +--- € PO, there
is 4cq4 = p3; consequently

1+

1
H(1)] = Jes? = JglmaP < 5.

Equality holds for

hO(Z):/O po(C) dC:er%z‘LJr...
O

Now, we turn to the case n = 2. We begin with the Fekete—Szego type
functional for odd starlike functions.

For f(2) = 2z + az2® + a5z® + --- € A® and a real number p, let us
define

() = |043 (Oés - ﬂOé32)| - (26)
It is clear that

[Hs(1)] = @5 (1).
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Th functional ®¢ is invariant under rotation. Indeed, for a given f and a real
8, let us define fs5(2) = e f(e¥2). Then, fs5(2) = z+aze? 23 +aze* 04 ..
SO

Pys (1) = |62i6043 (e4i5045 - Me4i60432)| =Py (p).

Theorem 3.2. If f € S*(Q), then

1—p w<2/3
—L _ uel2/3,1
@y < { VD " . (27)
53020 € [1,4/3]
uw—1 w>4/3.

The estimate is sharp.

Proof. Let g(z) = z+agz?+--- € 8* and f(2) = /9(22) = 2+ azz®+--- €
S5*@ Since geS* & fe S, comparing coefficients in

2
22+a2z4+a326+"':(2+a323+a525+"')
we get
— 1 _ 1 1.2
Q3 = 5(12, ()45—§a37§(12 .

Consequently, for f € S*(Q),

Dy(n) = g |az ( N 22”@2)‘ (28)
Lemma 1.5 and (12) result in
az = %p12 =+ i(‘l —p1?)z. (29)
Combining (12) and (28-29), we obtain
Dp(n) = 15 |p1 20 — wpi® + (4 — pi?)z]| . (30)

Taking into account the invariance of ®; under rotation, we can assume that
ag, and so ag and py, are real. Hence, p; = 2r for some r € [0, 1]. Consequently

Dp(p) = 3r 200 — p)r* + (1 —r?)z|. (31)
1. Suppose now that g < 1. Then
Dp(p) < Ar[(1-2u)r? +1]. (32)

Let us denote by ¢ (r) the right hand side of (32).
If p <1/2, then ¢, is increasing for r € [0, 1] and so ¢1(r) < ¢1(1).
For p € (1/2,1], we have

() < {ql(l) e (1/2,2/3]
T a(/V32r—1)) pel2/3,1].
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2. If now g > 1, then
Dp(p) < gr[(2pn—3)r? +1]. (33)

Denoting the right hand side of (33) by ¢2(r) and applying an argument
similar to that given in the previous part of the proof, we obtain

o) < @(1/\/3B3=2u) pel1,4/3)
| e2(1) > 4/3.

Finally, observe that (32) is obtained only in the case of z = 1. From
Lemma 1.5 it follows that po = 2. Hence, equality in (27) holds for f(z) =
1= and its rotations if 4 < 2/3. On the other hand, if € [2/3, 1], then the
extremal functions are

z
= t=(141/4/32u—-1))/2 34
f(Z) (1_22)75(1_'_22)1—157 ( + / ( o ))/ ( )
and its rotations. The Taylor series expansion of this function, in terms of p,
is as follows:

1 s 3u—1

z)=z+ 27+
fz) V302 —1) 3(2u—1)
Equality in (33) holds while z = —1. From Lemma 1.5, it follows that ps =

p12 — 2. We can deduce that if g > 4/3, then the extremal functions are
rotations of f(z) = == and if p € [1,4/3], then equality in (27) holds for

f(2) = e t=1/\/3(3 20, (35)

Z5+"'

V1 —2t22 + 2%
which has the expansion in terms of p
1 w—1 5
flz)=z+ 23 4 224,
(=) 3(3 —2u) 3—2p
as well as its rotations. 0

Corollary 1. If f € S*@ then |a3 (a5 — agz)} < ﬁ The estimate is sharp.

This and two other results for £(2) and R(?) are collected in the following
theorem.

Theorem 3.3.

1
€S*? = |H;(1)| € —= =0.192... ., 36
f Hy(D)] < o= (36)

4
Fek® = |H;1)| < 5 = 0.029..., (37)

2v/6

feR(z):>|H3(1)\§%=0~108-~-~ (38)

All these bounds are sharp.

Proof. 2. From equivalence g € K?) & f(2) = z¢/(2) € S*@ | where flz) =
z4+azzd+ -+, g(z) = 2+ B323 + - - it follows that

Bs = zas, fs=tas,
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so, for g € K| there is

1
Hy(1) = |83 (85 — B5%)| = 1z |os (a5 — §as®)| -
Applying Theorem 3.2, we obtain the claimed bound.
3. Let h(z) = 247328+ € R®. Since h € R < 1/ € PP, we can write
W(z) = z}c(S) for some f € 8*®. Comparing coefficients in

(14 37322 +5'y5z4...)(z+a323 +as2® + ) =2+ 3a32® + basz® + - -

leads to

_ 2 _ 4 2 2
Y3 = 303, 5= 5% — 503 .

Hence, for h € R,

8
Hs(1) = |v3 (v5 —13%)| = 'H los (a5 — Bas?)].

Once again, from Theorem 3.2, we get the desired bound. The sharpness of
all these estimates follows from Theorem 3.2. O

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

References

[1] Babalola, K.O.: On Hs(1) Hankel determinants for some classes of univalent
functions. In: Dragomir, S.S., Cho, J.Y. (eds.) Inequality Theory and Applica-
tions, vol. 6, pp. 1-7. Nova Science Publishers, New York (2010)

[2] Hayami, T., Owa, S.: Generalized Hankel determinant for certain classes. Int.
J. Math. Anal. 4(52), 2573-2585 (2010)

[3] Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose
derivative has a positive real part. J. Inequal. Pure Appl. Math. 7(2), 1-5 (2006)

[4] Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and con-
vex functions. Int. J. Math. Anal. 1(13), 619-625 (2007)

[5] Lee, S.K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel
determinant of certain univalent functions. J. Inequal. Appl. (2013). Art. 281.
doi:10.1186/1029-242X-2013-281

[6] Libera, R.J., Zotkiewicz, E.J.: Early coefficients of the inverse of a regular
convex function. Proc. Am. Math. Soc. 85, 225-230 (1982)

[7] Liu, M.S., Xu, J.F., Yang, M.: Upper bound of second Hankel determinant for
certain subclasses of analytic functions. Abstr. Appl Anal. (2014). Art. 603180.
doi:10.1155/2014/603180

[8] Livingston, A.E.: The coefficients of multivalent close-to-convex functions.
Proc. Am. Math. Soc. 21, 545-552 (1969)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1186/1029-242X-2013-281
http://dx.doi.org/10.1155/2014/603180

19 Page 10 of 10 P. Zaprawa MIOM

[9] Ma, W.: Generalized Zalcman conjecture for starlike and typically real func-
tions. J. Math. Anal. Appl. 234(1), 328-339 (1999)

[10] Noonan, J.W., Thomas, D.K.: On the Hankel determinants of areally mean
p-valent functions. Proc. Lond. Math. Soc. 3(25), 503-524 (1972)

[11] Pommerenke, C.: On the coefficients and Hankel determinants of univalent
functions. Proc. Lond. Math. Soc. 3(41), 111-122 (1966)

[12] Pommerenke, C.: On the Hankel determinants of univalent functions. Mathe-
matika 14, 108-112 (1967)

[13] Pommerenke, C.: Univalent functions. Vandenhoeck and Ruprecht, Gottingen
(1975)

[14] Raza, M., Malik, S.N.: Upper bound of third Hankel determinant for a class of
analytic functions related with lemniscate of Bernoulli. J Inequal. Appl. (2013).
Art. 412. doi:10.1186/1029-242X-2013-412

[15] Selvaraj, C., Kumar, T.R.K.: Second Hankel determinant for certain classes of
analytic functions. Int. J. Appl. Math. 28(1), 37-50 (2015)

[16] Vamshee Krishna, D., RamReddy, T.: Hankel determinant for starlike and
convex functions of order alpha. Thil. Math. J. 5, 65-76 (2012)

[17] Vamshee Krishna, D., Venkateswarlua, B., RamReddy, T.: Third Hankel de-
terminant for bounded turning functions of order alpha. J. Niger. Math. Soc.
34, 121-127 (2015)

[18] Vamshee Krishna, D., Venkateswarlua, B., RamReddy, T.: Third Hankel deter-
minant for certain subclass of p-valent functions. Complex Var. Elliptic Equ.
(2015). Available from http://dx.doi.org/10.1080/17476933.2015.1012162

[19] Zaprawa, P.: Second Hankel determinants for the class of typically real func-
tions. Abstr. Appl. Anal. (2016). Art. 3792367. doi:10.1155/2016/3792367

Pawel Zaprawa

Department of Mathematics
Faculty of Mechanical Engineering
Lublin University of Technology
Nadbystrzycka 38D

20-618 Lublin

Poland

e-mail: p.zaprawa@pollub.pl

Received: February 4, 2016.
Revised: November 9, 2016.
Accepted: November 24, 2016.


http://dx.doi.org/10.1186/1029-242X-2013-412
http://dx.doi.org/10.1080/17476933.2015.1012162
http://dx.doi.org/10.1155/2016/3792367

	Third Hankel Determinants for Subclasses of Univalent Functions
	Abstract
	1. Introduction
	2. Bounds of |H3(1)| for mathcalSast, mathcalK and mathcalR
	3. Bounds of |H3(1)| for Twofold and Threefold Symmetric Functions
	Open Access
	References




