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Abstract. We study k-jet ampleness of line bundles on hyperelliptic sur-
faces using vanishing theorems. Our main result states that on a hyper-
elliptic surface of an arbitrary type, a line bundle of type (m, m) with
m ≥ k + 2 is k-jet ample.
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1. Introduction

The concepts of higher order embeddings: k-spandness, k-very ampleness,
and k-jet ampleness were introduced and studied in a series of papers by
Beltrametti, Francia, and Sommese, see [6–8]. The last notion is of our main
interest in the present work.

The problem of k-jet ampleness has been studied on certain types of
algebraic surfaces. In [4], Bauer and Szemberg characterise k-jet ample line
bundles on abelian surfaces with Picard number 1. For an ample line bundle
L on a K3 surface, Bauer et al. in [2] and Rams and Szemberg in [21] explore
for which n, the line bundle nL is k-jet ample.

There are also several papers, concerning k-jet ampleness in higher di-
mensions, e.g., [3] studies k-jet ampleness on abelian varieties, [12] on toric
varieties, [9] on Calabi–Yau threefolds, and [11] on hyperelliptic varieties.

In this paper, we prove that on a hyperelliptic surface of an arbitrary
type, a line bundle of type (m,m) with m ≥ k + 2 is k-jet ample. Note that
a line bundle of type (k + 2, k + 2) is numerically equivalent to (k + 2)L1,
where L1 = (1, 1). By theory of hyperellipic surfaces, we know that L1 is
ample, so our result is consistent with results obtained on other algebraic
surfaces with Kodaira dimension 0. Our approach uses vanishing theorems
of the higher order cohomology groups—Kawamata–Viehweg Theorem and
Norimatsu Lemma.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-016-0775-8&domain=pdf
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Proof of the fact that a line bundle of type (k+2, k+2) is k-jet ample on
any hyperelliptic surface S which can also be found in [11]. The authors use
the fact that S is covered by an abelian surface divided by the group action,
and the results of [20]. We provide a self-contained and more elementary proof
of this fact. Application of Norimatsu Lemma turns out to be a powerful tool.

2. Preliminaries

Let us set up the notation and basic definitions. We work over the field
of complex numbers C. We consider only smooth reduced and irreducible
projective varieties. By D1 ≡ D2, we denote the numerical equivalence of
divisors D1 and D2. By a curve, we understand an irreducible subvariety of
dimension 1. In the notation, we follow [18].

Let X be a smooth projective variety of dimension n. Let L be a line
bundle on X, and let x ∈ X.

Definition 2.1. 1. We say that L generates k-jets at x, if the restriction
map

H0(X,L) −→ H0(X,L ⊗ OX/mk+1
x )

is surjective.
2. We say that L is k-jet ample, if for every points x1, . . ., xr the restriction

map

H0(X,L) −→ H0
(
X,L ⊗ OX/(mk1

x1
⊗ · · · ⊗ mkr

xr
)
)

is surjective, where
∑r

i=1 ki = k + 1.

Note that 0-jet ampleness is equivalent to being spanned by the global
sections, and 1-jet ampleness is equivalent to very ampleness.

The notion of k-jet ampleness generalises the notion of very ampleness
and k-very ampleness (see [8, Proposition 2.2]). We recall the definition of
k-very ampleness, as we mention this notion it the proof of the main theorem:

Definition 2.2. We say that a line bundle L is k-very ample if for every 0-
dimensional subscheme Z ⊂ X of length k + 1 the restriction map

H0(X,L) −→ H0(X,L ⊗ OZ)

is surjective.

In the other words, k-very ampleness means that the subschemes of
length at most k + 1 impose independent conditions on global sections of L.

We also recall the definition of the Seshadri constant:

Definition 2.3. The Seshadri constant of L at a given point x ∈ X is the real
number

ε(L, x) = inf
{

LC

multx C
: C � x

}
,

where the infimum is taken over all irreducible curves C ⊂ X passing through
x.
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If π : X̃ −→ X is the blow-up of X at x, and E is an exceptional divisor
of the blow-up, then equivalently the Seshadri constant may be defined as
(see [18, vol. I, Proposition 5.1.5]):

ε(L, x) = sup {ε : π∗L − εE is nef} .

We will use two vanishing theorems for the higher order cohomology
groups—Kawamata–Viehweg Vanishing Theorem and Norimatsu Lemma.

Theorem 2.4 (Kawamata–Viehweg Vanishing Theorem; [17], Vanishing The-
orem 5.2). Let D be an nef and big divisor on X. Then

Hi(X,KX + D) = 0 for i > 0.

Definition 2.5 ([18], vol. II, Definition 9.1.7). We say that D =
∑

Di is a
simple normal crossing divisor (or an SNC divisor for short) if Di is smooth for
each i, and D is defined in a neighbourhood of any point in local coordinates
(z1, . . . , zn) as z1 · . . . · zk = 0 for some k ≤ n.

Theorem 2.6 (Norimatsu Lemma; [18], vol. I, Vanishing Theorem 4.3.5). Let
D be an ample divisor on X and let F be an SNC divisor on X. Then

Hi(X,KX + D + F ) = 0 for i > 0.

3. Hyperelliptic Surfaces

First, let us recall the definition of a hyperelliptic surface.

Definition 3.1. A hyperelliptic surface S (sometimes called bielliptic) is a
surface with Kodaira dimension equal to 0 and irregularity q(S) = 1.

Alternatively (see [5, Definition VI.19]), a surface S is hyperelliptic if
S ∼= (A×B)/G, where A and B are elliptic curves, and G is an abelian group
acting on A by translation and acting on B, such that A/G is an elliptic curve
and B/G ∼= P

1. G acts on A×B coordinatewise. Hence, we have the following
situation:

S ∼= (A × B)/G
Φ−−−−→ A/G

Ψ

⏐
⏐
	

B/G ∼= P
1

where Φ and Ψ are the natural projections.
Hyperelliptic surfaces were classified at the beginning of twentieth cen-

tury by Bagnera and de Franchis in [10], and, independently, by Enriques and
Severi in [13,14]. They showed that there are seven non-isomorphic types of
hyperelliptic surfaces, characterised by the action of G on B ∼= C/(Zω ⊕ Z)
(for details, see [5, VI.20]). For each hyperelliptic surface, we have that the
canonical divisor KS is numerically trivial.

In 1990, Serrano in [22, Theorem 1.4] characterised the group of classes
of numerically equivalent divisors Num(S) for each of the surface’s type:
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Theorem 3.2 (Serrano). A basis of the group Num(S) for each of the hyper-
elliptic surface’s type and the multiplicities of the singular fibres in each case
are the following:

Type of a hyperelliptic surface G m1, . . . , ms Basis of Num(S)
1 Z2 2, 2, 2, 2 A/2, B
2 Z2 × Z2 2, 2, 2, 2 A/2, B/2
3 Z4 2, 4, 4 A/4, B
4 Z4 × Z2 2, 4, 4 A/4, B/2
5 Z3 3, 3, 3 A/3, B
6 Z3 × Z3 3, 3, 3 A/3, B/3
7 Z6 2, 3, 6 A/6, B

Let μ = lcm{m1, . . . , ms} and let γ = |G|. Given a hyperelliptic surface,
its basis of Num(S) consists of divisors A/μ and (μ/γ) B.

We say that L is a line bundle of type (a, b) on a hyperelliptic surface
if L ≡ a · A/μ + b · (μ/γ)B.

In Num(S), we have that A2 = 0, B2 = 0, and AB = γ. Note that a
divisor b · (μ/γ) B ≡ (0, b), b ∈ Z, is effective if and only if b · (μ/γ) ∈ N (see
[1, Proposition 5.2]).

The following proposition holds:

Proposition 3.3 (see [22], Lemma 1.3). Let D be a divisor of type (a, b) on a
hyperelliptic surface S. Then

1. χ(D) = ab;
2. D is ample if and only if a > 0 and b > 0; and
3. If D is ample then h0(D) = χ(D) = ab.

Now, we recall a bound for the self-intersection of a curve. The adjunc-
tion formula, applied to the normalisation of a curve C, implies the following
formula:

Proposition 3.4 (Genus formula, [16], Lemma, p. 505). Let C be a curve on a
surface S, passing through x1, . . ., xr with multiplicities respectively m1, . . .,
mr. Let g(C) denote the genus of the normalisation of C. Then

g(C) ≤ C2 + C.KS

2
+ 1 −

r∑

i=1

mi(mi − 1)
2

.

Note that:

Observation 3.5. A curve C on a hyperelliptic surface has genus at least 1.
Indeed, otherwise, the normalisation of C, of genus zero, would be a cover-
ing (via Φ) of an elliptic curve A/G. This contradicts the Riemann–Hurwitz
formula.
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4. Main Result

Our main result is the following.

Theorem 4.1. Let S be a hyperelliptic surface. Let L be a line bundle of type
(m,m) with m ≥ k + 2 on S. Then, L is k-jet ample.

By the results of Mella and Palleschi, see [19, Theorems 3.2–3.4], we
know that L ≡ (a, b) with at least one of the coefficients strictly smaller than
k + 2 is not k-very ample on an arbitrary hyperelliptic surface, in particular,
it is not k-very ample on a hyperelliptic surface of type 1. A line bundle
which is not k-very ample is not k-jet ample. Therefore, the line bundle
L ≡ (k + 2, k + 2) is the first natural object of study.

Proof. We will prove that L ≡ (k + 2, k + 2) is k-jet ample, and as a conse-
quence, we will get that a line bundle of type (m,m) with m ≥ k + 2 is k-jet
ample.

Let r ≥ 1. We have to check that for each choice of distinct points
x1, . . . , xr ∈ S, the map

H0(X,L) −→ H0
(
X,L ⊗ OX/(mk1

x1
⊗ · · · ⊗ mkr

xr
)
)

is surjective, where
∑r

i=1 ki = k + 1. �

We consider the standard exact sequence:

0 −→ (KS + L) ⊗ mk1
x1

⊗ · · · ⊗ mkr
xr

−→ KS + L

−→ (KS + L) ⊗ OX/(mk1
x1

⊗ · · · ⊗ mkr
xr

) −→ 0.

By the long sequence of cohomology, surjectivity of the map

H0(KS + L) −→ H0
(
(KS + L) ⊗ OX/(mk1

x1
⊗ · · · ⊗ mkr

xr
)
)

is implied by vanishing of H1
(
(KS + L) ⊗ mk1

x1
⊗ · · · ⊗ mkr

xr

)
.

By the projection formula, we have that

H1
(
(KS + L) ⊗ mk1

x1
⊗ · · · ⊗ mkr

xr

) ∼= H1

(

π∗(KS + L) −
r∑

i=1

kiEi

)

∼= H1

(

KS̃ −
r∑

i=1

Ei+π∗L−
r∑

i=1

kiEi

)
∼= H1

(

KS̃ +π∗L −
r∑

i=1

(ki + 1)Ei

)

.

We will show that H1
(
KS̃ + π∗L − ∑r

i=1(ki + 1)Ei

)
= 0, using vanish-

ing theorems.
We consider, separately, case r = 1, and, separately, case r ≥ 2.
First, let r = 1. We show that π∗L− (k +2)E is nef and big, and hence,

by the Kawamata–Viehweg vanishing theorem, we get that H1(KS̃ + π∗L −
(k + 2)E) = 0.

We have that

π∗L − (k + 2)E = π∗((k + 2, k + 2)) − (k + 2)E = (k + 2) (π∗(1, 1) − E) .
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By [15, Theorem 3.1], we know that on a hyperelliptic surface, the Se-
shadri constant of a line bundle of type (1, 1) at an arbitrary point x is at
least 1. Therefore

sup {ε : π∗L − εE is nef} = ε(L, x) = (k + 2) · ε ((1, 1), x) ≥ k + 2,

hence, the line bundle π∗L − (k + 2)E is nef. Thus to prove that π∗L − (k +
2)E is also big, it is enough to show that (π∗L − (k + 2)E)2 > 0, which is
equivalent to prove that L2 > (k + 2)2. The last inequality holds, as

L2 = (k + 2, k + 2)2 = 2(k + 2) · (k + 2) = 2(k + 2)2.

The case r = 1 is proved.
Now, let r ≥ 2. We will prove that H1

(
KS̃ + π∗L − ∑r

i=1(ki + 1)Ei

)
=

0. The proof will be divided in several cases, depending on the position of
points x1, . . ., xr.

Let k = 1. Generation of 1-jets is by definition equivalent to 1-very
ampleness. The line bundle L ≡ (3, 3) is 1-very ample on any hyperelliptic
surface by [19, Theorems 3.2–3.4].

Let k ≥ 2.
If ki = 0 for some i, then we can consider points x1, . . ., xi−1, xi+1,

. . ., xr. In this case, without lose of generality, we may take a smaller r.
From now on, we assume that ki ≥ 1 for every i. Obviously, r ∈ [2, k + 1] as∑r

i=1 ki = k + 1.
For simplicity, we present a proof for hyperelliptic surfaces of type 1.

For surfaces of other types, the proof is analogous. The small differences are
listed in Remark 4.15.

The proof consists of a few steps which we describe briefly before we
turn to the details.

First, in Case I, we consider a situation where on each singular fibre
A/2, on each fibre A, and on each fibre B, there are points xi with the sum
of multiplicities ki equal to at most k+1

2 .
Then, in Cases II and III, we consider a situation where there exists a

fibre A/2, respectively A, on which there are some points xi with the sum of
multiplicities ki greater than k+1

2 .
In both cases, we have two possibilities: (a) the sum of multiplicities of

points lying on any fibre B is smaller than k+1
2 ; and (b) there exists a fibre

B for which the sum of multiplicities of points on this fibre is at least k+1
2 .

Therefore, we divide Cases II and III into two subcases: IIa, IIb and IIIa,
IIIb, respectively.

Finally, in Case IV, we consider the situation where some points xi lie on
a fixed fibre B and their sum of multiplicities does not exceed k+1

2 ; moreover,
for each fibre A/2 and for each fibre A, the sum of multiplicities of points
lying on this fibre is at most k+1

2 . This covers all possibilities.
In all the cases described above, we prove that

H1
(
KS̃ + π∗L − ∑r

i=1(ki + 1)Ei

)
= 0, using Kawamata–Viehweg vanishing

theorem in Cases I and IIIa, and Norimatsu lemma in Cases IIa, IIb, IIIb, and
IV. In Cases I and IIIa, we show that a divisor M = π∗L − ∑r

i=1(ki + 1)Ei
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is big and nef; while in Cases IIa, IIb, IIIb, and IV, we define an appropri-
ate SNC divisor F and prove that a divisor N = M − F is ample, using
Nakai–Moishezon criterion.

In all the cases by C ≡ (α, β), we denote a reduced irreducible curve
on S passing through x1, . . ., xr with multiplicities respectively m1, . . ., mr,
where mi ≥ 0 for all i, and there exists j with mj > 0. We have C̃ =
π∗C − ∑r

i=1 miEi.

Define kW
i =

{
ki if xi ∈ W for a reduced fibre W of Φ or Ψ,
0 otherwise.

Let rW be the number of points from the set {x1, . . . , xr} which are
contained in W .

Let us now move on to considering the cases in more detail.

Case I. For an arbitrary fibre W (where W = A/2, or W = A, or W = B),
the sum of multiplicities of the points xi lying on this fibre is at most k+1

2 ,
that is

rW∑

i=1

kW
i ≤ k + 1

2
.

Since
∑rW

i=1 kW
i ≤ k+1

2 , in particular, we have that rW ≤ k+1
2 .

We will show that the line bundle M = π∗L − ∑r
i=1(ki + 1)Ei is big

and nef.

Lemma 4.2. M is a nef line bundle.

Proof. We ask whether MC̃ ≥ 0. We have to check that

(	) = MC̃ =

(

π∗L −
r∑

i=1

(ki + 1)Ei

)

.

(

π∗C −
r∑

i=1

miEi

)

≥ 0.

Let us consider the following cases:

(1) C = A/2, or C = B, or C = A. Then, for i = 1, . . . , r, we have mi = 1,
hence

(	) ≥ LC −
rW∑

i=1

(kW
i + 1) ≥ (k + 2) −

rW∑

i=1

(kW
i + 1)

≥ (k + 2) −
((

rW∑

i=1

kW
i

)

+ rW

)

≥ (k + 2) −
(

k + 1
2

+
k + 1

2

)
> 0.

(2) C is not a fibre. Hence, α > 0 and β > 0. We prove the inequality
MC̃ ≥ 0 in Proposition 4.9 at the end of the proof of the main theorem.

�

Lemma 4.3. M is big.

Proof. Since M is nef, it is enough to prove that M2 > 0. As M2 = 2(k +
2)2 − ∑r

i=1(ki + 1)2, we ask whether 2(k + 2)2 >
∑r

i=1(ki + 1)2. It suffices
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to show that

2(k + 2)2 >

(
r∑

i=1

k2
i

)

+ 2(k + 1) + r,

where r at the end of the formula is of the greatest possible value k+1. Since∑r
i=1 k2

i ≤ (
∑r

i=1 ki)
2 = (k + 1)2, our goal is to prove the inequality

2(k + 2)2 > (k + 1)2 + 3k + 3,

which is elementary. �

Case IIa. There exists a fibre A/2 on which there are points x1, . . ., xs

with the sum of multiplicities
∑s

i=1 ki > k+1
2 , and on each fibre B, we have∑rW

i=1 kW
i < k+1

2 .
Obviously, for any other fibre A/2 and for any fibre A, we have∑rW

i=1 kW
i < k+1

2 .
We write M = π∗L−∑r

i=1(ki +1) = π∗(A/2)−∑s
i=1 Ei +π∗((k+1, k+

2))−∑s
i=1 kiEi−

∑r
i=s+1(ki+1)Ei, so M = N +F , where N = π∗((k+1, k+

2)) − ∑s
i=1 kiEi − ∑r

i=s+1(ki + 1)Ei and F = π∗(A/2) − ∑s
i=1 Ei = Ã/2.

Clearly, F is a smooth and reduced divisor, and hence, F is an SNC divisor.
It remains to show that N is ample.

Lemma 4.4. N is ample.

Proof. We check that N2 > 0, and NC̃ > 0.
Let us estimate N2

N2 = 2(k + 1)(k + 2) −
r∑

i=1

k2
i − 2

r∑

i=s+1

ki − (r − s) ≥ k2 + 2k + 1 + s > 0,

as
∑r

i=s+1 ki < k+1
2 ,

∑r
i=1 k2

i ≤ (
∑r

i=1 ki)
2 = (k + 1)2 and r ≤ k + 1.

Now, we check whether

(�) = NC̃

=

(

π∗((k + 1, k + 2)) −
s∑

i=1

kiEi −
r∑

i=s+1

(ki + 1)Ei

)

.

(

π∗C −
r∑

i=1

miEi

)

> 0.

We consider the following cases:
(1) C is the fibre A/2 for which

∑s
i=1 ki > k+1

2 . Then, mi = 1 for all i, and

(	) = k + 2 −
s∑

i=1

ki ≥ k + 2 − (k + 1) = 1 > 0,

as
∑s

i=1 ki ≤ ∑r
i=1 ki = k + 1.

(2) C is a different fibre A/2, or C = A, or C = B. All mi = 1, hence

(	) ≥ k + 1 −
rW∑

i=1

(kW
i + 1) > k + 1 −

(
k + 1

2
+

k + 1
2

)
= 0,

as
∑rW

i=1 kW
i < k+1

2 and rW < k+1
2 .

(3) C is not a fibre—see Proposition 4.9.
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�

Case IIb. Points x1, . . ., xs lie on a fixed fibre A/2 with
∑s

i=1 ki > k+1
2 ;

moreover, there exists a fibre B, such that xs, . . ., xt lie on B with
∑t

i=s ki ≥
k+1
2 .

We define F := Ã/2 + B̃ = ˜A/2 + B. Clearly, F is an SNC divisor. We
define N := M −F = π∗((k+1, k+1))+Es −∑t

i=1 kiEi −
∑r

i=t+1(ki +1)Ei.
It remains to check that N is ample.

Lemma 4.5. N is ample.

Proof. Analogously to Case IIa, we show that N2 > 0, and that NC̃ > 0.
We estimate N2 from below, using inequalities

∑r
i=t+1 ki ≤ k+1

2 ,∑r
i=1 k2

i ≤ (k + 1)2, and r ≤ k + 1.

N2 = 2k2 + 4k + 1 −
r∑

i=1

k2
i − 2

r∑

i=t+1

ki − (r − t)

≥ 2k2 + 4k + 1 − (k + 1)2 − 2 · k + 1
2

− (k + 1 − t) = k2 + t − 2.

Hence, N2 > 0, because k ≥ 2.
Now, we check that

(	) = NC̃ > 0.

We consider the following cases:
(1) C is the fibre A/2 for which

∑s
i=1 ki > k+1

2 . Then

(	) = k + 1 + 1 −
s∑

i=1

ki ≥ k + 2 − (k + 1) = 1 > 0,

as
∑s

i=1 ki ≤ k + 1.
(2) C is a different fibre A/2, or C = A. Then

(	) ≥ k + 1 −
rW∑

i=1

(
kW

i + 1
)

> k + 1 −
(

k + 1
2

+
k + 1

2

)
= 0,

as
∑rW

i=1 kW
i < k+1

2 and rW < k+1
2 .

(3) C is the fibre B for which
∑t

i=s ki ≥ k+1
2 . Then

(	) = (k + 1) + 1 −
t∑

i=s

ki ≥ k + 2 − (k + 1) = 1 > 0.

(4) C is a different fibre B. Then

(	) ≥ (k + 1) −
rW∑

i=1

(kW
i + 1) > (k + 1) −

(
k + 1

2
+

k + 1
2

)
= 0,

as
∑rW

i=1 kW
i < k+1

2 and rW < k+1
2 .

(5) C is not a fibre—see Proposition 4.9.
�
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Case IIIa. Points x1, . . ., xs lie on a fixed fibre A with
∑s

i=1 ki > k+1
2 , and

for each fibre B, we have
∑rW

i=1 kW
i < k+1

2 .
Obviously, in this case, for any other fibre A and for any fibre A/2, we

have
∑rW

i=1 kW
i < k+1

2 .
Let M = π∗L−∑r

i=1(ki +1)Ei. We have already showed in Case I that
M2 > 0. It remains to prove that M jest nef.

Lemma 4.6. M is nef.

Proof. We ask whether

(	) = MC̃ ≥ 0.

We consider the following cases:

(1) C is the fibre A for which
∑s

i=1 ki > k+1
2 . Then

(	) = 2(k + 2) −
s∑

i=1

(ki + 1) ≥ 2(k + 2) −
r∑

i=1

ki − s

≥ 2(k + 2) − (k + 1) − (k + 1) = 2 > 0.

(2) C is a different fibre A, or C = A/2, or C = B. Then

(	) ≥ k + 2 −
rW∑

i=1

(kW
i + 1) ≥ k + 2 −

(
k + 1

2
+

k + 1
2

)
= 1 > 0.

(3) C is not a fibre—see Proposition 4.9. �

Case IIIb. Points x1, . . ., xs lie on a fixed fibre A with
∑s

i=1 ki > k+1
2 , and

there exists a fibre B, such that xs, . . ., xt lie on B and
∑t

i=s ki ≥ k+1
2 .

We define F := B̃ = π∗B − ∑t
i=s Ei. Clearly, F is an SNC divisor. Let

N := M −F = π∗((k+2, k+1))−∑s−1
i=1 (ki +1)Ei −

∑t
i=s kiEi −

∑r
i=t+1(ki +

1)Ei. It remains to check that N is ample.

Lemma 4.7. N is ample.

Proof. Let us estimate N2:

N2 = 2(k + 2)(k + 1) −
s−1∑

i=1

(ki + 1)2 −
t∑

i=s

k2
i −

r∑

i=t+1

(ki + 1)2

= 2(k + 2)(k + 1) −
r∑

i=1

k2
i − 2

(
s−1∑

i=1

ki −
r∑

i=t+1

ki

)

− (s − 1) − (r − t)

≥ 2k2 + 6k + 4 − (k + 1)2 − 2(k + 1) − s + 1 − r + t

≥ k2 + 2k + 2 − (k + 1) − (k + 1) + t = k2 + t > 0.

Now, we check that

(	) = NC̃ > 0.

Let us consider the following cases:
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(1) C is the fibre A for which
∑s

i=1 ki > k+1
2 . Then

(	) = 2(k + 1) −
s−1∑

i=1

(ki + 1) − ks ≥ 2(k + 1) −
s∑

i=1

ki − (s − 1)

≥ 2(k + 1) − (k + 1) − (k + 1) + 1 = 1 > 0.

(2) C is the fibre B for which
∑t

i=s ki ≥ k+1
2 . Then

(	) = k + 2 −
t∑

i=s

ki ≥ k + 2 − (k + 1) = 1 > 0.

(3) C is a different fibre A or a different fibre B, or C = A/2. Then

(	) ≥ k + 1 −
rW∑

i=1

(kW
i + 1) > k + 1 −

(
k + 1

2
+

k + 1
2

)
= 0.

(4) C is not a fibre—see Proposition 4.9. �

Case IV. Points x1, . . ., xs lie on a fixed fibre B with
∑s

i=1 ki > k+1
2 , and for

each fibre A/2 and for each fibre A, the sum of multiplicities of the points
lying on this fibre does not exceed k+1

2 .
We define F := B̃ = π∗B − ∑s

i=1 Ei. Of course, F is an SNC divisor.
We define N := M −F = π∗((k +2, k +1))−∑s

i=1 kiEi −∑r
i=s+1(ki +1)Ei.

It remains to prove that N is ample.

Lemma 4.8. N is ample.

Proof. Analogously to Case IIa,

N2 = k2 + 2k + 1 + s > 0.

We have to check that

(	) = NC̃ > 0.

Let us consider the following cases:
(1) C is the fibre B for which

∑s
i=1 ki > k+1

2 . Then

(	) = k + 2 −
s∑

i=1

ki ≥ k + 2 − (k + 1) = 1 > 0.

(2) C is a different fibre B or C = A. Then

(	) ≥ k + 2 −
rW∑

i=1

(kW
i + 1) ≥ k + 2 −

(
k + 1

2
+

k + 1
2

)
= 1 > 0.

(3) C = A/2.
If rW < k+1

2 , then

(	) = k + 1 −
rW∑

i=1

(kW
i + 1) > k + 1 −

(
k + 1

2
+

k + 1
2

)
= 0.

Otherwise, rW = k+1
2 . Hence, the situation is as follows: s points

whose sum of multiplicities is greater than k+1
2 lie on the fixed fibre B,
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and there exists a fibre A/2 with k+1
2 points whose sum of multiplicities

does not exceed k+1
2 , which implies that all the multiplicities of points

lying on A/2 equal 1. Hence, x1, . . ., xs lie on B and xs, . . ., xr lie on
A/2. Therefore

(	) = k + 1 − ks −
r∑

i=s+1

(ki + 1) = k + 1 − 1 − 2(r − s)

= k + 2 − 2 · k + 1
2

= 1 > 0.

(4) C is not a fibre—see Proposition 4.9. �

We have considered all the possible positions of x1, . . ., xr. Hence, the
proof will be completed if we show that for a curve C not being a fibre the
inequality, respectively, MC̃ ≥ 0 or NC̃ > 0 holds. We prove this fact in the
proposition below.

Proposition 4.9. We have the following inequalities for a curve C which is
not a fibre:

• MC̃ ≥ 0 in Cases I and IIIa, and
• NC̃ > 0 in Cases IIa, IIb, IIIb, and IV.

Proof. By assumption C ≡ (α, β) with α > 0 and β > 0. We have to prove
that

•
(( r∑

i=1

ki

)
+ 1

)
(α + β) −

r∑

i=1

(ki + 1)mi ≥ 0 in Cases I and IIIa;

•
( r∑

i=1

ki

)
(α + β) + α −

s∑

i=1

kimi −
r∑

i=s+1

(ki + 1)mi > 0 in Case IIa;

•
( r∑

i=1

ki

)
(α + β) + ms −

t∑

i=1

kimi −
r∑

i=t+1

(ki + 1)mi > 0 in Case IIb;

•
( r∑

i=1

ki

)
(α + β) + β −

s−1∑

i=1

(ki + 1)mi −
t∑

i=s

kimi −
r∑

i=t+1

(ki + 1)mi > 0

in Case IIIb;

•
( r∑

i=1

ki

)
(α + β) + β −

s∑

i=1

kimi −
r∑

i=s+1

(ki + 1)mi > 0 in Case IV.

Observe that in all the situations above, Proposition 4.9 will be proved
if we show that

(	)
( r∑

i=1

ki

)
(α + β) ≥

r∑

i=1

(ki + 1)mi.

Let D ≡ (4, 4). Since h0(D) = 4 · 4 = 16, for an arbitrary point x, there
exists a divisor Dx ∈ |D|, such that multx Dx = 5 (vanishing up to order 5
imposes 15 conditions). Hence, there are two possibilities: either α ≤ 4 and
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β ≤ 4, and then, C and Dx may have a common component C (the curve C
is irreducible); or α > 4 or β > 4, and then, by Bézout’s Theorem

4(α + β) = (α, β).(4, 4) = CD = CDx ≥ multx C · multx Dx ≥ 5mi.

Proof of the proposition in each case will be completed in Lemmas 4.10 and
4.12. �

Lemma 4.10. Proposition 4.9 holds if α > 4 or β > 4.

Proof. We begin with a useful observation: �

Observation 4.11. Let S be a hyperelliptic surface of any type, let C ≡ (α, β),
where α > 4 or β > 4. To prove (	), it suffices to prove the inequality

(		) r(α + β) ≥ 2
r∑

i=1

mi.

Proof. We have already observed that by Bézout’s Theorem, for every i ∈
{1, . . . , r}, we have that α + β ≥ 5

4mi ≥ mi, and hence

(ki − 1)(α + β) ≥ (ki − 1)mi.

Summing up these r inequalities with inequality (		), we obtain the inequality
(	). �

Now, we will show that if α > 4 or β > 4, then (		) is satisfied for r ≥ 3.
Let us denote i-th inequality in the inequality (		) by (		i), that is

(		i) (α + β) ≥ 2mi.

The inequality (		i) is satisfied for mi < 4. Indeed, C is not a fibre, and
by assumption, we have α ≥ 5 or β ≥ 5, and hence, α + β ≥ 5 + 1 = 6 ≥ 2mi

for mi ≤ 3. Therefore, we may assume that mi ≥ 4.
We delete from (		) all the inequalities (		i) with mi < 4 and consider

a modified inequality (		), possibly with a smaller number of points r. It may
even happen that r < 2 in the modified (		).

Now, we will prove (		) assuming that mi ≥ 4 for all i, and r ≥ 3.
Equivalently, we want to show that

r2(α + β)2 ≥ 4

(
r∑

i=1

mi

)2

.

By inequality between means, it is enough to check that

r2(α + β)2 ≥ 4r
r∑

i=1

m2
i .

It suffices to check that

r (2αβ) ≥ 2
r∑

i=1

m2
i .
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By the genus formula, 2αβ ≥ ∑r
i=1 m2

i − ∑r
i=1 mi (see Proposition 3.4 and

Observation 3.5), and hence, it is enough to prove that

r

(
r∑

i=1

m2
i −

r∑

i=1

mi

)

≥ 2
r∑

i=1

m2
i ,

(r − 2)

(
r∑

i=1

m2
i

)

− r

r∑

i=1

mi ≥ 0.

We assume that mi ≥ 4, so
∑r

i=1 m2
i ≥ 4

∑r
i=1 mi. Hence, it is enough to

show that

4(r − 2)

(
r∑

i=1

mi

)

− r

r∑

i=1

mi ≥ 0,

(3r − 8) · (4r) ≥ 0,

which is obviously true for r ≥ 3.
To finish the proof of Lemma, it remains to check that the assertion

holds for r < 3. If r = 0, then every inequality (		i) is satisfied, which
together with Observation 4.11 completes the proof of the lemma. Hence,
we have to consider cases r = 1 (when in the inequality (		), all but one
inequalities (		i) hold), and r = 2.

Let r = 2. We prove Lemma in Cases I and IIIa, and separately, in all
the remaining cases.

Let us consider Cases I and IIIa. We have to prove the inequality

(k1 + k2 + 1)(α + β) − (k1 + 1)m1 − (k2 + 1)m2 ≥ 0.

Analogously to Observation 4.11, it suffices to prove the inequality (1+
1)(α + β) + (α + β) ≥ 2m1 + 2m2. Indeed, adding two fulfilled inequalities of
the form (ki − 1)(α + β) ≥ (ki − 1)mi, we obtain the assertion.

Therefore, we have to check that

3(α + β) ≥ 2m1 + 2m2.

In the linear system of divisor D ≡ (4, 4), for each points x1, x2, there
exists such a divisor Dx1,x2 ≡ D that its multiplicity at x1 equals 4, and
multiplicity at x2 equals 2.

Since α > 4 or β > 4 and the curve C is irreducible, C is not a compo-
nent of D. Therefore, by Bézout’s Theorem, we have

4(α + β) = CD = CDx1,x2 ≥ 4m1 + 2m2. (4.1)

Analogously

4(α + β) ≥ 2m1 + 4m2.

Summing up two inequalities above, we obtain

8(α + β) ≥ 6m1 + 6m2.
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Hence

3(α + β) ≥ 9
4
m1 +

9
4
m2 ≥ 2m1 + 2m2,

and the assertion is proved.
Now let us consider Cases IIa, IIb, IIIb, and IV. There are two possibil-

ities:
(a) One of the points x1, x2 (without loss of generality x2) lies respectively:

on the fixed fibre A/2 in Case IIa, on the intersection of the fixed fibres
A/2 and B in Case IIb, on the intersection of the fixed fibres A and
B in Case IIIb, and on the fixed fibre B in Case IV. Then, the desired
inequalities NC̃ > 0 are implied by the inequality

(k1 + k2)(α + β) ≥ (k1 + 1)m1 + k2m2.

By observation analogous to Observation 4.11 it suffices to show that

2(α + β) ≥ 2m1 + m2.

The assertion holds by inequality (4.1).
(b) None of the points x1, x2 lies on the fixed fibre, respectively, A/2, A/2

intersected with B, A intersected with B, and B. By assumption of
Case, respectively, IIa, IIb, IIIb, and IV, at the beginning, there was a
point x3 on those fixed fibres or on the intersection of the fixed fibres,
and the inequality (		3) is satisfied. We restore this inequality, and we
want to prove that

(k1 + k2 + k3)(α + β) ≥ (k1 + 1)m1 + (k2 + 1)m2 + k3m3.

By observation analogous to Observation 4.11, it is enough to prove that

3(α + β) ≥ 2m1 + 2m2 + m3.

In the linear system of divisor D ≡ (4, 4), for each points x1, x2, and
x3, there exists such a divisor Dx1,x2,x3 ≡ D that its multiplicity at x1 equals
3, its multiplicity at x2 equals 3, and its multiplicity at x3 equals 2.

By Bézout’s Theorem, we obtain

4(α + β) = CD = CDx1,x2,x3 ≥
3∑

i=1

multxi
C · multxi

Dx1,x2,x3

≥ 3m1 + 3m2 + 2m3. (4.2)

Hence

3(α + β) ≥ 9
4
m1 +

9
4
m2 +

6
4
m3 ≥ 2m1 + 2m2 + m3,

and we are done.
Now let r = 1. At the beginning, the number of points r was at least

2, hence while deleting from the inequality (		) the inequalities (		i) with
mi ≤ 3, we deleted all by one inequalities.

We restore one of the deleted inequalities (		i): an arbitrary one in Cases
I and IIIa; in Cases IIa, IIb, IIIb, and IV—the inequality corresponding to
xi lying, respectively, on the fixed fibre A/2, on the intersection of the fixed
fibres A/2 and B, on the intersection of the fixed fibres A and B, and on
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the fixed fibre B (if x1 is not in such a position; an arbitrary inequality (		i)
otherwise). We obtained the inequality with r = 2 which was already proved
in subcase (a). �

Lemma 4.12. Proposition 4.9 holds if α ≤ 4 and β ≤ 4.

Proof. We denote

(	i) (α + β)ki ≥ (ki + 1)mi.

Observe the following property: �

Remark 4.13. For an arbitrary mi the inequality (	i) is satisfied if mi ≤
1
2 (α + β). Indeed, 2mi ≥

(
1 + 1

ki

)
mi for all ki.

In particular, if mi = 0 or mi = 1, then the inequality (	i) is satisfied,
since α ≥ 1 and β ≥ 1.

The multiplicities of C at x1, . . ., xr satisfy genus formula, i.e., 2αβ ≥∑r
i=1 m2

i −∑r
i=1 mi (see Proposition 3.4 and Observation 3.5). In particular,

for any xi, we have an upper bound 2αβ ≥ m2
i − mi.

If the inequality (	i) holds for some mi, then it holds also for all mul-
tiplicities ni < mi. After renumbering the points, we assume that the multi-
plicities are decreasing: m1 ≥ m2 ≥ · · · ≥ mr.

In the table below, for every curve C ≡ (α, β) with 0 < α ≤ 4 and
0 < β ≤ 4, we present the following quantities:

– an upper bound for the maximal possible multiplicity mi at any point
xi, obtained from genus formula,

– an upper bound for the multiplicity mi, for which by Remark 4.13,
the inequality (	i) holds,

– all possible values of m1 greater than the number from the previous
column, and for each such m1, the greatest possible value of m2 and mi for
i > 2 (or an upper bound in the latter case), all obtained from genus formula.

Case no. C ≡ (α, β) max mi
max mi such that

(�i) holds m1 m2 mi for i > 2

i (4, 4) 6 4 6
5

2
4 1

ii (4, 3) or (3, 4) 5 3 5
4

2
3 ≤2

iii (4, 2) or (2, 4) 4 3 4 2 ≤2
iv (4, 1) or (1, 4) 3 2 3 2 1
v (3, 3) 4 3 4 3 1
vi (3, 2) or (2, 3) 4 2 4

3
1
3 1

vii (3, 1) or (1, 3) 3 2 3 1 1
viii (2, 2) 3 2 3 2 1
ix (2, 1) or (1, 2) 2 1 2 2 1
x (1, 1) 2 1 2 1 1

Note that in each case (i)–(x), the inequality (	i) holds for each multi-
plicity mi where i > 2. Therefore, we would be done if we could prove (	) for
r = 2 and points x1, x2 with multiplicities m1, m2 listed in the table.

Simple computations give us the following.
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Remark 4.14. 1. For r = 2, if m1 + m2 ≤ α + β, then (	) holds.
2. Moreover for r = 2, if m1 + m2 ≤ α + β + 1, then the inequality from

Cases I and IIIa holds, i.e., (α + β) (
∑r

i=1 ki + 1) ≥ ∑r
i=1(ki + 1)mi.

Let us consider the cases listed in the table. In cases (ii), (iii), (iv), and
(vii), the inequality (	) holds by Remark 4.14(2). In cases (i), (v), (vi), (viii),
and (ix), we repeat the reasoning with restoring a certain inequality (	3), if it
is needed. Case (x) is the most subtle—in some subcases, we have to restore
two inequalities (	3) and (	4).

We explain the cases (i) and (x) in detail.
Case (i): C ≡ (4, 4).
It is enough to prove (	) in two subcases: r = 2, m1 = 6, m2 = 2, and

r = 2, m1 = 5, m2 = 4. In the first subcase, we get the assertion by Remark
4.14(1). In the second subcase, in some situations, we have to restore the
fulfilled inequality (	3) to prove (	). Our reasoning differs with respect to
cases of the main theorem:

– In Cases I and IIIa, the inequality (	) holds by Remark 4.14(2).
– In Cases IIa, IIIb, and IV, there are two possibilities:

• One of the points x1, x2 (without loss of generality x2) lies respectively:
on the fixed fibre A/2, in Case IIa, on the intersection of the fixed fibres
A and B, in Case IIIb, and on the fixed fibre B, in Case IV. Then, it is
enough to prove that

(α + β)(k1 + k2) + min{α, β} > (k1 + 1)m1 + k2m2,

8(k1 + k2) + 4 > 5(k1 + 1) + 4k2,

3k1 + 4k2 > 1.

The last inequality holds as ki ≥ 1 for all i.
• None of the points x1, x2 lies on the fixed fibre, respectively, A/2, A

intersected with B, and B. By assumption of Cases respectively IIa,
IIIb, and IV; at the beginning, there was a point x3 on the fixed fibre
or on the intersection of the fixed fibres, and the maximal possible by
genus formula multiplicity m3 is equal to 1. We restore the inequality
(	3), and we want to prove that

(α + β)(k1 + k2 + k3) + min{α, β} > (k1 + 1)m1 + (k2 + 1)m2 + k3m3,

3k1 + 4k2 + 7k3 > 5.

The inequality holds.

– In Case IIb, there are also two possibilities:
• One of the points x1, x2 is the intersection point of the fixed fibres A/2

and B. Then, the inequality

(α + β)(k1 + k2) + m2 > (k1 + 1)m1 + k2m2,

3k1 + 4k2 > 1

obviously, holds.



4800 �L. Farnik MJOM

• None of the points x1, x2 lies on the intersection of the fixed fibres A/2
and B. Then, by assumption of Case IIb, there was a point x3 with
m3 = 1 on this intersection. We restore the inequality (	3) and have to
check that the following inequality is satisfied

(α + β)(k1 + k2 + k3) + m3 > (k1 + 1)m1 + (k2 + 1)m2 + k3m3,

3k1 + 4k2 + 7k3 > 8,

which is true.
Case (x): C ≡ (1, 1).

We consider a situation r = 2, m1 = 2, and m2 = 1. If needed, we
restore one or two inequalities (	i) and prove (	) for r = 3, m1 = 2, m2 = 1,
m3 = 1 or for r = 4, m1 = 2, m2 = 1, m3 = 1, m4 = 1. Here, come the
details:

– In Cases I and IIIa, the inequality (	) holds by Remark 4.14(2).
– In Cases IIa, IIIb, and IV, there are two possibilities:

• One of the points x1, x2 (say x2) lies respectively: on the fixed fibre A/2
in Case IIa, on the intersection of the fixed fibres A and B in Case IIIb,
and on the fixed fibre B in Case IV. Then, it suffices to prove that

(α + β)(k1 + k2) + min{α, β} > (k1 + 1)m1 + k2m2

which gives

k2 > 1.

If k2 = 1, then respectively: on the fixed fibre A/2, on the fixed fibre
B, but outside the intersection of the fixed fibres A and B (otherwise
k = 1, but we have excluded such a situation at the beginning of main
theorem’s proof), on the fixed fibre B, there was originally at least one
more point, as for points on the fibre

∑
kW

i > k+1
2 . If x1 is the described

point, it suffices to prove that

(α + β)(k1 + k2) + min{α, β} > k1m1 + k2m2,

k2 + 1 > 0.

The inequality holds. If the described point is different from x1, then it
has multiplicity m3 = 1. We have to check that

(α + β)(k1 + k2 + k3) + min{α, β} > (k1 + 1)m1 + k2m2 + k3m3,

k2 + k3 > 1.

The inequality holds.
• None of the points x1, x2 lies on the fixed fibre, respectively, A/2, A

intersected with B, and B. By assumption of Case, respectively, IIa,
IIIb, and IV; at the beginning, there was a point x3 on the fixed fibre
or on the intersection of the fixed fibres, and the maximal possible by
genus formula multiplicity m3 is equal to 1. We restore the inequality
(	3), and we have to check that
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(α + β)(k1 + k2 + k3) + min{α, β} > (k1 + 1)m1

+(k2 + 1)m2 + k3m3,

k2 + k3 > 2.

If k3 = 1, then by assumption of Case IIa, IIIb, and IV, respectively, on
the fixed fibre A/2, on the fixed fibre B, but outside the intersection of
A and B, on the fixed fibre B, there is a point x4. In Case IIIb, x4 may
be equal to one of the points x1, x2—we obtain an inequality which was
already proved. Otherwise in Case IIIb, and in Cases IIa and IV, x4 is
different from x1, x2, x3, and m4 = 1. We have to prove that

(α + β)(k1 + k2 + k3 + k4) + m3 > (k1 + 1)m1

+ (k2 + 1)m2 + k3m3 + k4m4,

k2 + k3 + k4 > 2.

The inequality holds.

– In Case IIb, there are two possibilities as well:

• One of the points x1, x2 (say x2) is the intersection point of the fixed
fibres A/2 and B. Then, we have to prove that

(α + β)(k1 + k2) + m2 > (k1 + 1)m1 + k2m2,

k2 > 1.

If k2 = 1, then by assumption of Case IIb, there is at least one more
point x3 on the fixed fibre A/2. If x3 = x1, then it is enough to check that

(α + β)(k1 + k2) + m2 > k1m1 + k2m2,

k2 + 1 > 0.

The inequality holds. Otherwise, m3 = 1, and it suffices to show that

(α + β)(k1 + k2 + k3) + m2 > (k1 + 1)m1 + k2m2 + k3m3,

k2 + k3 > 1.

The inequality holds.
• None of the points x1, x2 lies in the intersection point of the fixed fibres

A/2 and B. Then, on this intersection, there is a point x3 with m3 = 1.
Hence, it is enough to prove that

(α + β)(k1 + k2 + k3) + m3 > (k1 + 1)m1 + (k2 + 1)m2 + k3m3,

k2 + k3 > 2.

If k3 = 1, then there is one more point x4 on the fixed fibre A/2. If x4

is equal to x1 or x2, then we get the already proved inequality

(α + β)(k1 + k2 + k3) + m3 > (k1 + 1)m1 + k2m2 + k3m3.
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If x4 is different from x1, x2, and x3, then m4 = 1, and we obtain the
inequality

(α + β)(k1 + k2 + k3 + k4) + m3 > (k1 + 1)m1

+(k2 + 1)m2 + k3m3 + k4m4,

which has been proved as well. �
The proof of the Lemmas 4.10 and 4.12 is completed, and hence, the

main theorem has been proved. �
We have presented the detailed proof for hyperelliptic surfaces of type 1.

Below, we list the small differences which occur in the proof for hyperelliptic
surfaces of types 2–7.

Remark 4.15.
• For a hyperelliptic surface of even type, there is no Case IIb nor IIIb,

as the divisor (μ/γ)B ≡ (0, 1) is not effective on such a surfaces. Hence,
while proving that, respectively, MC̃ ≥ 0 and NC̃ > 0, we do not
consider the curve C ≡ (μ/γ)B.

• For a hyperelliptic surface of type 3, 4, and 7, there are more types of
singular fibres mA/μ. Hence, in Cases I, IIa, IIIa, and IV, and for a
surfaces of type 3 and 7 also in Cases IIb and IIIb, we have to consider
the intersection of C with singular fibres of all admissible types mA/μ,
but they are estimated from below by the intersection with a fibre A/μ.

• For a hyperelliptic surface of type 3, 4, and 7, we consider additional
cases—points x1, . . ., xs lie on a fixed singular fibre mA/μ, where 1 <
m ≤ μ

2 . These cases are analogous to Cases IIIa and IIIb.

Proof of Theorem 4.1 for r = 1 gives us the following:

Corollary 4.16. Let S be a hyperelliptic surface. Let L be a line bundle of type
(k + 2, k + 2) on S. Then, L generates k-jets at any point x.
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