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Sharp Lp Bound for Holomorphic Functions
on the Unit Disc

Adam Osȩkowski

Abstract. For any 1 < p < ∞ and any X, Y ∈ R satisfying |X| ≤ Y , we
determine the optimal constant Cp(X,Y ) such that the following holds.
If F is a holomorphic function on the unit disc satisfying ReF (0) = X
and || ReF ||Lp(T) = Y , then

||F ||Lp(T) ≥ Cp(X,Y ).

This can be regarded as a reverse version of the classical estimates of
Riesz and Essén. The proof rests on the exploitation of certain families
of special subharmonic functions on the plane.
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1. Introduction

Let u, v be two harmonic functions on the unit disc D, satisfying Cauchy–
Riemann equations and normalized so that v(0) = 0. A classical problem,
which interested many mathematicians at the beginning of the previous cen-
tury, is the following: How is the size of v controlled by the size of u? Here,
the size of a function is measured, for instance, by the Lp norm on the unit
circle T equipped with the normalized Haar measure m. In other words, for
which 1 ≤ p ≤ ∞ is there a finite constant Cp, depending only on p, such
that

||v||Lp(T) ≤ Cp||u||Lp(T) (1.1)

for all u, v as above? This question was answered by Riesz [17,18]: the above
estimate holds with some Cp < ∞ if and only if 1 < p < ∞. This result
is of fundamental importance to harmonic and complex analysis and has
been modified and extended in numerous directions (cf. [2,4–6,9,11,23] to
name just a few). Moreover, the methods presented in the works of Riesz
have led to the development of many areas of research (e.g., interpolation
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theory, functional analysis) and have had a profound influence on the shape
of contemporary mathematics.

The question about the best value of Cp has gained some interest in the
literature. It was answered partially by Gohberg and Krupnik [8]: by the use
of a clever inductive argument, it was shown there that Cp = cot(π/(2p))
if p = 2, 4, 8, . . .. The identification of Cp in the full range p ∈ (1,∞) is
due to Pichorides [16] and Cole (unpublished: see Gamelin [7]): we have
Cp = cot(π/(2p∗)), where p∗ = max{p, p/(p − 1)}. There are several papers
which treat related sharp estimates for conjugate harmonic functions on the
disc; see e.g., Aarão and O’Neill [1], Davis [5], Janakiraman [10], Nazarov
and Treil [14], Osȩkowski [15], and consult references therein.

One can look at the estimate (1.1) from a slightly different perspective.
Obviously, u can be regarded as the real part of the holomorphic function
u+iv on the unit disc. Consequently, by the triangle inequality, the inequality
(1.1) is equivalent to the following statement: if F is a holomorphic function
on D satisfying the normalization condition ImF (0) = 0, then

||F ||Lp(T) ≤ Ep||Re F ||Lp(T), 1 < p < ∞, (1.2)

for some finite Ep depending only on p. Actually, as Essén [6] proved, the
choice Ep = sin−1(π/(2p∗)) is optimal. See also Tomaszewski [21] for the
sharp weak-type counterpart of this estimate.

The purpose of this paper is to study a certain reverse version of (1.2).
Clearly, if F is a holomorphic function on the unit disc (with no additional
assumptions on Im F (0)), then we have

||F ||Lp(T) ≥ ||Re F ||Lp(T). (1.3)

Of course, this bound is sharp: equality holds for constant real functions. How-
ever, one can study the following more sophisticated version of this problem:
namely, find the sharp analog of (1.3) subject to the restrictions

Re F (0) = X and ||Re F ||Lp(T) = Y. (1.4)

Clearly, the answer to this question provides us with more detailed informa-
tion on the behavior of the operator F �→ Re F . Such a type of problems
appears in many places in the literature, in the study of other classical oper-
ators and objects in harmonic analysis. See e.g., Melas [12], Melas et al. [13]
and Slavin et al. [19] for related problems concerning the dyadic maximal op-
erators; consult Burkholder [3] for related results for martingale transforms
and the Haar system on [0, 1]; Vasyunin [22] studied similar questions for
Ap-weights on the real line; Slavin and Vasyunin [20] investigated similar
problems for BMO functions on R; and more.

Coming back to (1.3) and the restriction (1.4), we easily see that if
Y �= |X|, then the lower bound for ||F ||Lp(T) can be improved. For instance,
suppose that p = 2 and put u = Re F and v = Im F . Since u, v satisfy
Cauchy–Riemann equations, we may write
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||F ||L2(T) =
(
||u||2L2(T) + ||v||2L2(T)

)1/2

=
(
||u||2L2(T) + ||v − v(0)||2L2(T) + |v(0)|2

)1/2

=
(
||u||2L2(T) + ||u − u(0)||2L2(T) + |v(0)|2

)1/2

=
(
2||u||2L2(T) − |u(0)|2 + |v(0)|2

)1/2

≥ (2Y 2 − X2)1/2

and equality can hold, for instance, if we take F (z) = z
√

2Y 2 − 2X2 + X.
What about other values of p? This question is answered in Theorem 1.1 to
formulate which we will need some auxiliary notation. Let X, Y be two real
numbers satisfying |X| ≤ Y . For 1 < p ≤ 2, define

Cp(X,Y ) =
[
sin−p

(
π

2p

)
(Y p − |X|p) + |X|p

]1/p

,

while for 2 < p < ∞, let

Cp(X,Y ) =
Y

cos φp
,

where φp is the unique number φ ∈ [0, π/(2p)), satisfying
( |X|

Y

)p

=
cos(pφ)
cosp φ

. (1.5)

The existence and uniqueness of φp follow from the fact that the right-hand
side of (1.5) is a continuous and strictly decreasing function of φ, which takes
value 1 at φ = 0 and converges to 0 as φ → π/(2p).

We are ready to state our main result.

Theorem 1.1. Let 1 < p < ∞. Then for any holomorphic function F : D → C,
satisfying Re F (0) = X and ||Re F ||Lp(T) = Y , we have

||F ||Lp(T) ≥ Cp(X,Y ). (1.6)

For each p, X and Y , the number Cp(X,Y ) cannot be replaced by a smaller
number.

The proof of this statement rests on the existence of certain families of
subharmonic functions on the plane. In the next section, we study the case
1 < p ≤ 2 of the above theorem, and Sect. 2 of the paper is devoted to the
case 2 < p < ∞. In the final part of the paper, we sketch some ideas which
lead to the discovery of special functions used in Sects. 2 and 3.

2. The Case 1 < p ≤ 2

As we have mentioned above, the proof will rest on the existence of certain
special subharmonic functions. Introduce Up : [0,∞)2 → R by

Up(x, y) =

⎧
⎪⎨
⎪⎩

Rp − sin−p
(

π
2p

)
|x|p if θ ≤ π

2 − π
2p ,

cot
(

π
2p

)
Rp cos

(
p

(
θ − π

2

))
if θ > π

2 − π
2p .
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Here x = R cos θ, y = R sin θ, where R ≥ 0 and θ ∈ [0, π/2], stand for the
polar coordinates. Let us extend Up to the whole plane R2 by the requirement
Up(x, y) = Up(−x, y) = Up(x,−y) for all x, y ∈ R. One easily checks that the
function Up is continuous; further properties of Up are gathered in a lemma
below.

Lemma 2.1. The function Up enjoys the following properties:
(i) We have Up(x, y) ≥ Up(x, 0) for all x, y ∈ R.
(ii) For all x, y ∈ R we have the majorization

Up(x, y) ≤ Rp − sin−p

(
π

2p

)
|x|p. (2.1)

(iii) The function Up is subharmonic.

Proof. (i) By the symmetry of Up, it is enough to prove that Upy(x, y) ≥ 0
for x, y ≥ 0. This estimate is evident if θ ≤ π/2 − π/(2p). If θ >
π/2 − π/(2p), then, using the identities Ry = y/R and θy = x/R2, we
compute that

Upy(x, y) = p cot
(

π

2p

)
Rp−1 sin

(
θ + p

(π

2
− θ

))
.

This is positive, since θ + p(π/2 − θ) ∈ (0, π).
(ii) By the symmetry of Up, we may restrict ourselves to nonnegative x and

y. Furthermore, we may assume that θ ∈ [π/2 − π/(2p), π/2], since for
the remaining θ’s both sides are equal. Under these additional assump-
tions, the majorization can be rewritten in the equivalent form

G(θ) :=
[
cot

(
π

2p

)
cos

(
p

(
θ − π

2

))
− 1

]
cos−p θ + sin−p

(
π

2p

)
≤ 0.

However, we have G(π/2 − π/(2p)) = 0 and, as we will show now, G is
nonincreasing on (π/2 − π/(2p), π/2). Since

G′(θ) = p · cot(π/(2p)) sin(θ − p(θ − π/2)) − sin θ

cosp+1 θ
,

the announced monotonicity of G is equivalent to saying that the nu-
merator is nonpositive. After the substitution ψ = π/2 − θ, the latter
can be rewritten as:

cos((p − 1)ψ)
cos((p − 1) π

2p )
≤ cos ψ

cos π
2p

, for ψ ∈ (0, π/2p).

But recall that we work in the case 1 < p ≤ 2; therefore, it is enough to
show that for any 0 ≤ s ≤ t ≤ π/2, the function

ξ(α) =
cos(αs)
cos(αt)

, α ∈ [0, 1],

is nondecreasing. A direct differentiation shows that

ξ′(α) =
−s sin(αs) cos(αt) + t sin(αt) cos(αs)

cos2(αt)

≥ −t sin(αs) cos(αt) + t sin(αt) cos(αs)
cos2(αt)

=
t sin(α(t − s))

cos2(αt)
≥ 0.
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This proves G′ ≤ 0 on (π/2−π/(2p), π/2) and establishes the majoriza-
tion (2.1).

(iii) It is easy to check that Up is of class C1 and hence, by the symmetry,
it is enough to verify the subharmonicity on (0,∞)2. Clearly, Up is
harmonic in the angle θ ∈ (π/2 − π/(2p), π/2). On the other hand, if
θ ∈ (0, π/2 − π/(2p)), we compute that

ΔUp(x, y) =
[

∂2

∂R2
+

1
R

∂

∂R
+

1
R2

∂2

∂2θ

]
Up(x, y)

= p(p − 1)Rp−2

[
p

p − 1
− sin−p

(
π

2p

)
cosp−2 θ

]
.

Since 1 < p ≤ 2, the expression in the square brackets is larger than

p

p − 1
− sin−p

(
π

2p

)
cosp−2

(
π

2
− π

2p

)
=

p

p − 1
− sin−2

(
π

2p

)
,

which is nonnegative. Indeed, after the substitution r = 1/p ∈ [1/2, 1),
we get

sin2

(
π

2p

)
− p − 1

p
= sin2

(πr

2

)
− 1 + r,

which is zero for r = 1/2 and is an increasing function of r ∈ (1/2, 1).
�

Proof of (1.6). We are ready to establish the lower bound’. Let us fix a func-
tion F as in the statement and gather some information. First, since ReF
belongs to Lp(T), the restriction F |T also has this property, by Riesz’ theorem.
But, clearly, we have |Up(x, y)| ≤ cpR

p for all x, y and some cp depending
only on p, so the restriction of Up ◦ F to the unit circle is integrable. Finally,
observe that by the third part of the above lemma, the composition Up ◦F is
a subharmonic function on the unit disc. Therefore, using the first two parts
of the lemma and the mean-value property, we obtain

Up(X, 0) ≤ Up(F (0)) ≤
∫

T

Up ◦ F (u)dm(u) ≤ ||F ||pp − sinp

(
π

2p

)
||Re F ||pp.

This is equivalent to

||F ||p ≥
(

sin−p

(
π

2p

)
(Y p − Xp) + Xp

)1/p

,

which is precisely the desired lower bound. � �

Sharpness. Let X be an arbitrary real number and fix ε > 0. Pick ϕ0 ∈
(0, π/2 − π/(2p)) and M < 0 such that the angle A = {(x, y) : x > 0, y ≥
M + x tan ϕ0} contains the point (X, 0). Let μ

(X,0)
∂A denote the harmonic

measure on ∂A with respect to the point (X, 0). Clearly, we have
∫

∂A

xdμ
(X,0)
∂A = X.
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We will prove that if ϕ0 and M are chosen appropriately, then
∫

∂A

|x|pdμ
(X,0)
∂A = Y p (2.2)

and ∫

∂A

(|x|2 + |y|2)p/2dμ
(X,0)
∂A < sin−p

(
π

2p

)
(Y p − |X|p) + |X|p + ε. (2.3)

This will yield the claim: if we take F to be the conformal map sending D

onto A and 0 onto (X, 0), then we will have Re F (0) = X and, by (2.2) and
(2.3),

||Re F ||Lp(T) = Y and ||F ||Lp(T) < (Cp(X,Y )p + ε)1/p,

so the sharpness will hold due to the fact that ε is arbitrary.
By symmetry and continuity, we may and do assume that X > 0. Let

us start with (2.2). The left-hand side does not change if we translate the
angle A and the point (X, 0) by the vector (0,−M). For the translated angle,
the analysis of the harmonic measure is simpler: the function

H(x, y) =
cosp ϕ0

cos(p(ϕ0 − π/2))
Rp cos(p(ϕ − π/2))

is harmonic on A+(0,−M) and equals (x, y) �→ |x|p on the boundary of this
set. Hence∫

∂A

|x|pdμ
(X,0)
A =

∫

∂A

|x|pdμ
(X,−M)
A+(0,−M)

= H(X,−M)

= (−M)p · cosp ϕ0

cos(p(ϕ0 − π/2))
cos(p(ψ − π/2))

sinp ψ
,

where ψ is the angle corresponding to the point (X,−M) (that is, ψ =
arctan(−M/X)). So, we can rewrite the above identity in the equivalent
form ∫

∂A

|x|pdμ
(X,0)
A =

cosp ϕ0

cos(p(ϕ0 − π/2))

×(M2 + X2)p/2 cos(p(arctan(−M/X) − π/2)). (2.4)

Now, suppose that ϕ0 is close to π/2 − π/(2p). The largest allowed value of
M is −X tan ϕ0: then the point (X, 0) lies at the boundary of A, so μ

(X,0)
A =

δ(X,0) and hence
∫

∂A
|x|pdμ

(X,0)
A = Xp. On the other hand, if we let M →

−∞, then ψ → π/2 and
∫

∂A
|x|pdμ

(X,0)
A → ∞. Finally, if we fix X and

ϕ0, then the right-hand side of (2.4) is a strictly increasing function of M .
Hence there is a unique number M = M(ϕ0) such that (2.2) holds. The
crucial observation is that M(ϕ) is bounded and ψ → π/2 − π/(2p) as ϕ0 →
π/2 − π/(2p). Indeed, when ϕ0 approaches π/2 − π/(2p), then we have

cosp ϕ0

cos(p(ϕ0 − π/2))
→ ∞,
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so, if the last expression in (2.4) is equal to Y p, the term cos(p(ψ − π/2)) must
tend to 0. This implies ψ → π/2 − π/(2p) and, in consequence, M(ϕ0) →
−X cot(π/(2p)). To deal with (2.3), note that

∫

∂A

(|x|2 + |y|2)p/2dμ
(X,0)
∂A

=
∫

∂A∩{|y|≤M}
(|x|2+|y|2)p/2dμ

(X,0)
∂A +

∫

∂A∩{|y|≥M}
(|x|2+|y|2)p/2dμ

(X,0)
∂A .

As ϕ0 → π/2 − π/(2p), the first integral tends to Xp, since the measures
μ
(X,0)
∂A converge weakly to δ(X,0). To deal with the second integral, observe

that |y| ≤ |x| tan ϕ0 when (x, y) ∈ ∂A and |y| ≥ M . Consequently
∫

∂A∩{|y|≥M}
(|x|2 + |y|2)p/2dμ

(X,0)
∂A

≤ cos−p ϕ0

∫

∂A∩{|y|≥M}
|x|pdμ

(X,0)
∂A

= cos−p ϕ0

[∫

∂A

|x|pdμ
(X,0)
∂A −

∫

∂A∩{|y|<M}
|x|pdμ

(X,0)
∂A

]

→ sin−p

(
π

2p

)[
Y p − Xp

]
.

Combining all the above facts, we obtain

lim inf
ϕ0→π/2−π/(2p)

∫

∂A

(|x|2 + |y|2)p/2dμ
(X,0)
∂A = Cp(X,Y ),

which yields (2.3). This completes the proof. �

3. The Case 2 ≤ p < ∞
Recall the number φp defined in (1.5) and introduce the parameters

cp =
sin(pφp)

cosp−1 φp sin((p − 1)φp)

and

αp = − sin φp

sin((p − 1)φp)
.

Consider the function Up : [0,∞) × R → R, given by

Up(x, y) =

{
αpR

p cos(pθ) if |θ| ≤ φp,

Rp − cpx
p if |θ| > φp,

where, as previously, we have used the polar coordinates. Let us extend Up

to the whole R
2, setting Up(x, y) = Up(−x,−y) for all x, y ∈ R. As in the

previous section, first we study some elementary properties of this special
function.
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Lemma 3.1. (i) We have Up(x, y) ≥ Up(x, 0) for all x, y ∈ R.
(ii) For all x, y ∈ R we have the majorization

Up(x, y) ≤ Rp − cp|x|p. (3.1)

(iii) The function Up is subharmonic.

Proof. (i) It suffices to show the inequality ∂
∂y Up(x, y) ≥ 0 for x, y > 0.

This is evident if θ ≥ φp, so let us assume that θ ∈ (0, φp). A direct
differentiation gives

∂

∂y
Up(x, y) = −pαpR

p−1 sin((p − 1)θ) > 0,

as needed.
(ii) By symmetry, we may assume that x, y > 0. Clearly, it suffices to verify

the majorization for θ ∈ (0, φp). We rewrite the bound in the equivalent
form

G(θ) =
αp cos pθ − 1

cosp θ
≤ −cp.

Both sides are equal when θ = φp, so it is enough to prove that G is
nondecreasing. We derive that G′(θ) equals

p

cosp+1 θ

[ − αp sin((p − 1)θ) − sin θ
]

=
p sin φp

cosp+1 θ

[
sin((p − 1)θ)
sin((p − 1)φp)

− sin θ

sin φp

]
.

Since p − 1 ≥ 1 and (p − 1)θ ≤ (p − 1)φp ≤ π/2, we will be done if we
prove that for any fixed 0 < s < t, the function

ξ(α) =
sin αs

sin αt

is nondecreasing on (0, π/(2y)). We compute that

ξ′(α) =
sin αs

α sin αt
[αs cot αs − αt cot αt]

and note that the function ζ(u) = u cot u is decreasing on (0, π/2):
ζ ′(u) = (2 sin2 u)−1(sin 2u − 2u) ≤ 0. This implies that ξ′ ≤ 0 and the
majorization follows.

(iii) The function Up is of class C1 on the plane, and it is harmonic on the
set {|θ| < φp}. Consequently, it suffices to check that the Laplacian of
Up is nonnegative on {|θ| > φp}. We derive that on this set, we have

ΔUp(x, y) = p(p − 1)Rp−2

[
p

p − 1
− cp cosp−2 θ

]

≥ p(p − 1)Rp−2

[
p

p − 1
− cp cosp−2 φp

]

= p(p − 1)Rp−2

[
p

p − 1
− sin(pφp)

cos φp sin((p − 1)φp)

]
.
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Note that

lim
r→0

[
p

p − 1
− sin(pr)

cos r sin((p − 1)r)

]
= 0.

Therefore, we will be done if we show that the function

ξ(r) =
sin(pr)

cos r sin((p − 1)r)
, r ∈ (0, π/(2p)),

is nonincreasing. A direct differentiation shows that

ξ′(r) =
sin

[
2(p − 1)r

] − (p − 1) sin 2r

2 cos2 r sin2((p − 1)r)
.

If we denote the numerator by ζ(r), we see that ζ(0) = 0 and

ζ ′(r) = 2(p − 1)
{

cos
[
2(p − 1)r

] − cos 2r
} ≤ 0 for r ∈ (0, π/(2p)),

since the cosine function is decreasing on (0, (p − 1)π/p). Thus, ζ is
nonpositive on (0, π/(2p)) and hence ξ is nonincreasing. This proves the
claim. �

Equipped with the above lemma, we turn our attention to Theorem 1.1.

Proof. Proof of (1.6) The reasoning is the same as in the case 1 < p ≤ 2: we
obtain

Up(x, 0) ≤ Up(F (0)) ≤
∫

T

Up ◦ F (u)dm(u) ≤ ||F ||pp − cp||Re F ||pp,

or, equivalently,

||F ||pp ≥ cpY
p + αp|X|p.

Now, by the definition of cp, αp and the identity (1.5), the latter estimate is
equivalent to

||F ||p ≥ Y

cos φp
= Cp(X,Y ),

which is the claim. �

Sharpness. Here the reasoning is a bit simpler than in the case 1 < p ≤ 2.
Consider the angle A = {(x, y) : x > 0, |θ| ≤ φp} and let μ be the harmonic
measure on ∂A with respect to the point (X, 0). The restriction of the function
Up to the set A is harmonic and Up(x, y) = xp(cos−p φp − cp) for (x, y) ∈ ∂A.
Consequently, by the mean-value property, we see that
∫

∂A

xdμ = X and
∫

∂A

xpdμ =
Up(X, 0)

cos−p φp − cp
=

αpX
p

cos−p φp − cp
= Y p.

Consequently,
∫

∂A

(x2 + y2)p/2dμ =
∫

∂A

(x2 + x2 tan2 φp)p/2dμ =
Y p

cosp φp
.
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Therefore, if F is the univalent mapping which sends D onto A and 0 onto
(X, 0), then Re F (0) = X, ||Re F ||Lp(T) = Y and

||F ||Lp(T) =
(∫

∂A

(x2 + y2)p/2dμ

)1/p

=
Y

cos φp
.

So, the lower bound (1.6) is attained and the proof is complete.

4. On the Search of the Special Functions

In this section, we will explain briefly some informal argumentation which
leads to the discovery of the special functions Up used above. We will focus
on the case 2 ≤ p < ∞, for 1 < p < 2 the reasoning is similar. For the sake
of clarity, let us start with the general idea behind the proof of Theorem 1.1.
Given 2 ≤ p < ∞ and a constant β > 0, one searches for the optimal (i.e.,
the largest) constant γ(p, β) such that

||F ||pLp(T) ≥ β||Re F ||pLp(T) + γ(p, β)|Re F (0)|p (4.1)

for all holomorphic functions F on the unit disc. This clearly gives some
initial insight into (1.6): having analyzed (4.1), we see that

||F ||Lp(T) ≥ sup
{

(βY p + γ(p, β)|X|p)1/p : β > 0
}

. (4.2)

Is this bound optimal? To answer this question, suppose that for each p
and β, there is an extremizer: a nonzero function F = F p,β for which both
sides are equal. Clearly, for any p and β such an object is not unique: the
inequality (4.1) is homogeneous of order p, so if we multiply an extremizer by
a constant, we again obtain an extremizer. It is evident how to proceed: we
take the number β for which the supremum in (4.2) is attained, consider the
extremizer of (4.1), scaled so that ReF p,β(0) = X, and verify that it satisfies
||Re F ||p = Y . So, we see that the problem boils down to a thorough analysis
of the inequality (4.1).

Next, the reasoning presented in the papers [2,6,16] links the validity
of the estimate (4.1) with the existence of special functions on the plane.
Namely, given p and β, we search for a largest subharmonic function Up,β on
R

2, satisfying the majorization

Up,β(x, y) ≤ (y2 + x2)p/2 − β|x|p. (4.3)

Then, as we have already seen in the previous sections, the mean-value prop-
erty yields:

||F ||pLp(T) ≥ β||Re F ||pLp(T) + Up,β(F (0)).

Hence, one is forced to take γ(p, β) = infx,y Up,β(x, y)/|x|p.
How to find Up,β? Such a function, if it exists, must satisfy the symmetry

condition Up,β(x, y) = Up,β(x,−y) = Up,β(−x, y) for all x, y ∈ R; indeed, if
this did not hold, we could replace Up,β with a larger subharmonic function

(x, y) �→ max {Up,β(x, y), Up,β(−x, y), Up,β(x,−y), Up,β(−x,−y)} ,
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for which the majorization (4.3) is still valid. A similar argument shows that
Up,β must be homogeneous of order p: otherwise Up,β would be strictly ma-
jorized by the subharmonic function supλ>0 λpUp,β(·/λ, ·/λ). So, Up,β can be
written in polar coordinates as:

Up,β(x, y) = Rpgp,β(θ),

for some function gp,β to be found. Now, we assume that Up,β is of class C2;
despite the fact that the function we obtain at the end does not have this
regularity, it will facilitate our further considerations. A closer look at the
papers [2,6,16] suggests that there is a number κ(p, β) > 0 such that either

(i) Up,β is harmonic on the set {(x, y) : |y| < κ(p, β)|x|}, and Up,β(x, y)
= (y2 + x2)p/2 − β|x|p on {(x, y) : |y| ≥ κ(p, β)|x|}, or

(ii) Up,β is harmonic on the set {(x, y) : |x| < κ(p, β)|y|}, and Up,β(x, y)
= (y2 + x2)p/2 − β|x|p on {(x, y) : |x| ≥ κ(p, β)|y|}.

So, we have two possibilities to check. Suppose that (i) holds true and takes
φ(p, β) ∈ (0, π/2) such that κ(p, β) = tan φ(p, β). A direct calculation shows
that ΔUp,β = 0 if and only if g′′(θ) + p2g(θ) = 0, so we see that

g(θ) = a1 cos(pθ) + a2 sin(pθ), θ ∈ [−φ(p, β), φ(p, β)],

for some unknown constants a1, a2. Since Up,β(x, y) = Up,β(x,−y), we con-
clude that a2 = 0. To derive a1, we use the fact that Up,β is of class C1 and see
what happens on the common boundary of the sets {(x, y) : |y| > κ(p, β)|x|}
and {(x, y) : |y| ≤ κ(p, β)|x|}. By the continuity of Up,β , we get that

a1 cos(pφ(p, β)) = 1 − β cosp φ(p, β),

while the comparison of the partial derivatives yields

−a1 sin(pφ(p, β)) = β cosp−1 φ(p, β) sin φ(p, β).

The system of these two equations can be easily solved: we get

β =
sin(pφ(p, β))

cosp−1 φ(p, β) sin((p − 1)φ(p, β))

and

a1 = − sin φ(p, β)
sin((p − 1)φ(p, β))

.

This suggests to use the number φ = φ(p, β) ∈ (0, π/2) as a “free” parameter
(instead of β). We obtain the candidate for the special function Up,β ; it can
be checked, with similar calculations as those presented in Sect. 3, that it
enjoys all the required properties; furthermore

γ(p, β) = inf
x,y>0

Up,β(x, y)
|x|p = a1 = − sin φ(p, β)

sin((p − 1)φ(p, β))
.

It remains to check that the right-hand side of (4.2) is precisely the constant
Cp(X,Y ); when we take φ(p, β) = φp (defined in (1.5)), then Up,β is precisely
the function Up used above.
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Finally, let us say a few words about the search for the appropriate
extremizers F in (4.1). A look at the above proof immediately gives three
conditions on F . First, we must have equality in the majorization (4.3), i.e.,

Up,β(F (eiθ)) = |F (eiθ)|p − β|Re F (eiθ)|p

for almost all θ ∈ [−π, π). That is, F must send the unit circle into the
set {(x, y) : |x| ≥ κ(p, β)|y|}. The second condition is that the mean value
property, applied to the subharmonic function Up,β ◦F , must return equality:
this suggests that F must send the open unit disc into {(x, y) : x > 0, |y| <
κ(p, β)|x|}, inside which Up,β is harmonic. Finally, we must have F (0) = X;
this will guarantee the equality Up,β(F (0)) = γ(p, β)|X|p. Let us combine the
three observations: we see that a natural choice for F is a conformal mapping
of D onto the angle A = {(x, y) : x > 0, |y| ≤ κ(p, β)x}, sending 0 ∈ D onto
(X, 0) ∈ A. One can check that this is indeed the right choice.
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Vol. 13 (2016) Holomorphic Functions 139

[10] Janakiraman, P.: Best weak-type (p, p) constants, 1 ≤ p ≤ 2 for orthogonal
harmonic functions and martingales. Ill. J. Math. 48, 909–921 (2004)

[11] Kolmogorov, A.N.: Sur les fonctions harmoniques conjugées et les séries de
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