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On Solutions of Quadratic Integral Equations
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Abstract. In this paper we study the quadratic integral equation of the
form

x(t) = g(t) + λ · G(x)(t) ·
∫ b

a

K(t, s)f(s, x(s))ds.

We discuss the existence of solutions for the above equation in differ-
ent function spaces. We stress on the case when f has non-polynomial
growth which leads to solutions in Orlicz spaces. The detailed theory
for a wide class of spaces is presented. Some existence theorems for
a.e. monotonic solutions in Orlicz spaces are proved either for strongly
nonlinear functions f or for rapidly growing kernel K. The presented
method allows us to extend the current results as well as to unify the
proofs for both quadratic and non-quadratic cases.
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1. Introduction

The paper is devoted to study the following quadratic integral equation

x(t) = g(t) + G(x)(t) · λ

∫ b

a

K(t, s)f(s, x(s))ds. (1.1)

Since the quadratic problems are related with the pointwise product of two
operators, it is usually solved in the space of continuous functions or in a
context of Banach algebras of continuous functions. This approach has some
disadvantages. Firstly, for classical equations (G(x) = const.) discontinuous
solutions are frequently considered and such solutions are applicable. Sec-
ondly, for some quadratic problems like the Chandrasekhar equation [4,5]
discontinuous solutions are expected (see some comments in [13]), then con-
tinuous solutions seem to be inadequate for integral problems and lead to
several restrictions on considered functions. Moreover, we allow to consider
problems in which either the growth of the function f or the kernel K is not
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polynomial. An operator G is supposed to be continuous on a required space
of solutions. The problem is modelled on some quadratic integral equations
(for which G is identity operator or the Nemytskii superposition operator, we
are not restricted only to this case). Thus we have one more motivation: our
approach allows to include also classical integral equations. For this class of
integral equations there are different types of considered equations. Usually
this implies some restriction for the growth of f and K. Recall that similar
investigations for quadratic integral equations relate mainly to continuous
solutions. The key point is to ensure that an operator of pointwise multi-
plication is well defined and has some compactness properties. We prefer an
approach to this problem allowing us to consider a wide class of integral
equations with solutions in some spaces of discontinuous functions (growth
conditions are relaxed).

Let us briefly recall a historical background and some motivations. We
prefer a method, which allows us to unify classical and quadratic integral
equations and to consider the same classes of solutions. We started such an
approach in [13], but it was done only in that case of Banach–Orlicz algebras
or in case when an intermediate space (described later) is L∞ ([12]). Here we
show a detailed theory and omit such restrictions.

The new starting point is to consider some integral problems with
exponential nonlinarities (see [10]) or with rapidly growing kernels ([11], for
instance). In such a case the Nemytskii operator should be considered as act-
ing on some Orlicz spaces ([11]). In our opinion, it is very convenient and we
will try to keep this class of solutions for quadratic equations. This suggest
an operator-oriented approach. In a class of Orlicz spaces we consider spaces
associated with a kind of assumed growth for G and f .

For a moment denote by X an Orlicz space of solutions for our problem
and by F the Nemytskii superposition operator generated by f . Thus, we
have G : X → W1, F : X → U and finally the linear integral operator H
with a kernel K is acting from U into W2. The space U is depending on some
growth assumptions of f—not necessarily of polynomial type. In a typical
case of quadratic problems the spaces W1 and W2 are supposed both to be
the space of continuous functions and then some properties of this Banach
algebra allow to solve the problem. Unfortunately, this is really restrictive
assumption. We started to replace this assumption by considering X = L1(I)
and W2 = L∞(I) ([12]). Then, we considered some Banach–Orlicz algebras
([13], but such spaces are “small” so this still leads to some restrictions on H.

Here we present a complete theory for such problems. In general, allow-
ing U be an Orlicz space we consider the triple of Orlicz spaces (not neces-
sarily Banach algebras) for which the pointwise multiplication takes a pair
of functions from W1 and W2 into X. For a given U a correct choice of W1

and W2 allows us to control both acting and growth conditions for considered
operators. As will be clarified later some additional assumptions on U allow
us to prove their boundedness and continuity. To show a detailed theory we
need to consider a few different cases (for different classes of Orlicz spaces).

Since for equations of this type an approach via the Schauder fixed point
theorem is not useful and the Banach contraction principle is too restrictive
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in many applications, we prefer to investigate the properties of operators
with respect to the topology of convergence in measure. We investigate some
properties of this topology on considered Orlicz spaces and then use the
Darbo fixed-point theorem for proving main results.

2. Notation and Auxiliary Facts

Let R be the field of real numbers. In this paper by I we will denote a compact
interval [a, b] ⊂ R. Assume that (E, ‖ · ‖) is an arbitrary Banach space with
zero element θ. Denote by Br(x) the closed ball centered at x and with radius
r. The symbol Br stands for the ball B(θ, r). When necessary we will also
indicate the space using the notation Br(E).

Let S = S(I) denotes the set of measurable (in Lebesgue sense) func-
tions on I and let meas stands for the Lebesgue measure in R. Identifying
the functions equals almost everywhere the set S becomes a complete metric
space. Note that the topology of convergence in measure on I is metrizable
(cf. Proposition 2.14 in [14]). The compactness in such spaces we will call
a “compactness in measure” and such sets have important properties when
considered as subsets of some Orlicz spaces.

To make the paper self-contained we need to recall some basic notions
and facts in the theory of Orlicz spaces.

Let M and N be complementary N -functions, i.e. N(x) = supy≥0(xy −
M(x)), where N : [0,+∞) → [0,+∞) is continuous, even and convex with
limx→0

N(x)
x = 0, limx→∞

N(x)
x = ∞ and N(x) > 0 if x > 0 (N(u) = 0 ⇐⇒

u = 0). The Orlicz class, denoted by OM , consists of measurable functions
x : I → R for which ρ(x;M) =

∫
I
M(x(t))dt < ∞. We shall denote by

LM (I) the Orlicz space of all measurable functions x : I → R for which
‖x‖M = infλ>0

{∫
I
M

(
x(s)

λ

)
ds ≤ 1

}
. Let EM (I) be the closure in LM (I)

of the set of all bounded functions. Note that EM ⊆ LM ⊆ OM .
For Orlicz spaces we have different situations than for Lebesgue ones.

The inclusion LM ⊂ LP holds if, and only if, there exist positive constants
u0 and a such that P (u) ≤ aM(u) for u ≥ u0.

An important property of EM spaces lies in the fact that this is a class
of functions from LM having absolutely continuous norms. Moreover, we have
EM = LM = OM if M satisfies the Δ2-condition, i.e. there exists ω, t0 ≥ 0
such that for t ≥ t0, we have M(2t) ≤ ωM(t).

An N -function M is said to satisfy Δ′-condition if there exists K, t0 ≥ 0
such that for t, s ≥ t0, we have M(ts) ≤ KM(t)M(s). If the N -function M
satisfies the Δ′-condition, then it also satisfies Δ2-condition.

The last important class of N -functions consists of functions which
increase more rapidly than power functions. An N -function M is said to
satisfy Δ3-condition if there exists K, t0 ≥ 0 such that for t ≥ t0, we have
tM(t) ≤ M(Kt).

Sometimes, we will use more general concept of function spaces, i.e.
ideal spaces. A normed space (X, ‖·‖) of (classes of) measurable functions
x : I → U (U is a normed space) is called pre-ideal if for each x ∈ X and
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each measurable y : I → U the relation |y(s)| ≤ |x(s)| (for almost all s ∈ I)
implies y ∈ X and ‖y‖ ≤ ‖x‖. If X is also complete, it is called an ideal space
(see [15]). The class of Orlicz spaces stands for an important (but not unique)
example of ideal spaces. If possible, we will describe our results in terms of
ideal spaces. This will indicate the possible extensions for our results.

3. Nonlinear Operators

In our paper we propose to reduce the considered problem to the operator
form. In particular, we will investigate many properties of operators acting
on different function spaces.

One of the most important operator studied in nonlinear functional
analysis is the so-called superposition (or : Nemytskii) operator [16]. Assume
that a function f : I × R → R satisfies Carathéodory conditions, i.e. it is
measurable in t for any x ∈ R and continuous in x for almost all t ∈ I.
Then to every function x(t) being measurable on I we may assign the function
F (x)(t) = f(t, x(t)), for t ∈ I. The operator F in such a way is called the
superposition operator generated by the function f . We will be interested in
the case when F acts between some Orlicz spaces.

A full discussion about necessary and sufficient conditions for continu-
ity and boundedness of such a type of operators can be found in [16]. The
following property will be used:

Lemma 3.1. Assume that a function f : I × R → R satisfies Carathéodory
conditions. Then, the superposition operator F transforms measurable func-
tions into measurable functions.

We will utilize the fact that Carathéodory mappings transforming mea-
surable functions into the same space are sequentially continuous with respect
to topology of convergence in (finite) measure.

Lemma 3.2 ([17, Lemma 17.5] in S and [18] in LM (I)). Assume that a func-
tion f : I ×R → R satisfies Carathéodory conditions. The superposition oper-
ator F maps a sequence of functions convergent in measure into a sequences
of functions convergent in measure.

In our proofs we have to control the domain and the range of consid-
ered operators. The following lemma seems to be useful for the superposition
operator:

Lemma 3.3 ([11, Theorem 17.5]). Assume that a function f : I × R → R

satisfies Carathéodory conditions. Then

M2(f(s, x)) ≤ a(s) + bM1(x),

where b ≥ 0 and a ∈ L1(I), if and only if the superposition operator F acts
from LM1(I) to LM2(I).

In Orlicz spaces there is no automatic continuity of superposition oper-
ators like in Lp spaces, but we have a useful result (remember, that the Orlicz
space LM is ideal and if M satisfies Δ2 condition it is also regular cf. [19,
Theorem 1]):
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Lemma 3.4 ([15, Theorem 5.2.1]). Let f be a Carathéodory function, X an
ideal space, and W a regular ideal space. Then the superposition operator
F : X → W is continuous.

Let us note, that in the case of functions of the form f(t, x) = g(t)h(x),
the superposition operator F is continuous from the space of continuous
functions C(I) into LM (I) even when M does not satisfy Δ2 condition ([19]).
Since EM (I) is a regular part of an Orlicz space LM (I) (cf. [14, p.72]), in the
context of Orlicz spaces, we will use the following (see also Lemma 3.3):

Lemma 3.5. Let f be a Carathéodory function. If the superposition operator
F acts from LM1(I) into EM2(I), then it is continuous.

The problem of boundedness of such a type of operators in different
classes of Orlicz spaces will be described in the proofs of our main results (cf.
also [11] or [16]).

Two more operators will play an important role it this paper, namely
the linear integral operator H(x) = λ

∫ b

a
K(t, s)x(s)ds and the pointwise

multiplication operator. The first one is well known and all necessary results
concerning the properties of such a kind of operators in Orlicz spaces can
be found in [11], so here we omit the details and important results will be
pointed out in the proofs of our main results.

Now, we need to describe the second one. By U(x)(t) we will denote the
operator of the form:

U(x)(t) = G(x)(t) · A(x)(t),

where A = H ◦ F is a Hammerstein operator.
Generally speaking, the product of two functions x, y ∈ LM (I) is not

in LM (I). However, if x and y belong to some particular Orlicz spaces, then
the product x · y belongs to a third Orlicz space.

We need to consider the converse direction: if we are looking or solutions
in a given Orlicz space Lϕ, then we need to indicate the spaces Lϕ1 and Lϕ2

such that the product of functions from that spaces belong to Lϕ. We are
interested in finding that spaces as big as possible.

Let us note, that one can find two functions belonging to Orlicz spaces:
u ∈ LU (I) and v ∈ LV (I) such that the product uv does not belong to any
Orlicz space (this product is not integrable). Nevertheless, we have:

Lemma 3.6 ([11, Lemma 13.5]), [20, Theorem 10.2]. Let ϕ1, ϕ2 and ϕ are
arbitrary N -functions. The following conditions are equivalent:

1. For every functions u ∈ Lϕ1(I) and w ∈ Lϕ2 , u · w ∈ Lϕ(I).
2. There exists a constant k > 0 such that for all measurable u,w on I we

have ‖uw‖ϕ ≤ k‖u‖ϕ1‖w‖ϕ2 .
3. There exists numbers C > 0, u0 ≥ 0 such that for all s, t ≥ u0 ϕ

(
st
C

) ≤
ϕ1(s) + ϕ2(t).

4. lim supt→∞
ϕ−1

1 (t)ϕ−1
2 (t)

ϕ(t) < ∞.

Let us recall the following simple sufficient condition for the above state-
ments hold true.
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Lemma 3.7 ([11, p. 223]). If there exist complementary N -functions Q1 and
Q2 such that the inequalities

Q1(αu) < ϕ−1[ϕ1(u)], Q2(αu) < ϕ−1[ϕ2(u)]

are satisfied for large values of the argument and for certain constant α, then
for every functions u ∈ Lϕ1(I) and w ∈ Lϕ2 , u · w ∈ Lϕ(I). If moreover ϕ
satisfies the Δ2-condition, then it is sufficient that the inequalities

Q1(αu) < ϕ1[ϕ−1(u)], Q2(αu) < ϕ2[ϕ−1(u)]

hold.

An interesting discussion about necessary and sufficient conditions for
product operators can be found in [11,20]. We will consider the triple of
spaces (ϕ,ϕ1, ϕ2) satisfying the above property.

4. Monotone Functions

We are interested in finding of (almost everywhere) monotonic solutions for
our problem. For the case of discontinuous functions we should describe this
class of functions in considered solution spaces.

Let us recall, in metric spaces the set U0 is compact if and only if each
sequence from U0 has a subsequence that converges in U0 (i.e. sequentially
compact). In particular, we need to use this simple fact in the space S.

Recall some consideration from [11] by adding some additional com-
ments for Orlicz spaces. Let X be a bounded subset of measurable functions.
Assume that there is a family of subsets (Ωc)0≤c≤b−a of the interval I such
that measΩc = c for every c ∈ [0, b − a], and for every x ∈ X, x(t1) ≥ x(t2),
(t1 ∈ Ωc, t2 ∈ Ωc).

It is clear, that by putting Ωc = [0, c) ∪ Z or Ωc = [0, c)\Z, where
Z is a set with measure zero, this family contains nonincreasing functions
(possibly except for a set Z). We will call the functions from this family “a.e.
nonincreasing” functions. This is the case, when we choose a measurable and
nonincreasing function y and all functions equal a.e. to y satisfy the above
condition. This means that such a notion can be also considered in the space
S. Thus, we can write that elements from LM (I) belong to this class of
functions. Further, let Qr stands for the subset of the ball Br consisting of
all functions which are a.e. nonincreasing on I. Functions a.e. nondecreasing
are defined by a similar way.

It is known that such a family constitutes a set which is compact in
measure in S (cf. [17, section 19.8]). It is a little bit surprising that the proof
of this property is not published anywhere. We are also interested, if the set
is still compact in measure as a subset of some subspaces of S. In general, it
is not true, but for the case of Orlicz spaces, we have the following:

Lemma 4.1. Assume, that a bounded set U is a subset of an Orlicz space
LM (I) of real-valued functions over a bounded interval I consisting only of
a.e. monotonic functions. Then, this set is compact in measure in the space
LM (I).
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Proof. Since the convergence in measure is a metric convergence, we need only
to check sequential compactness. Without loss of generality, let us restrict to
the case of a.e. increasing functions. We will follow some ideas from the Helly
theorem. Take an arbitrary sequence (xn) ⊂ U . Denote by W the set such that
the functions xn are increasing outside W (a countable union of countable
sets), i.e. on J = I\W . Let Z be countable dense subset of J . Since {xn(t)}
is bounded on Z (except perhaps the point t = b), by a diagonal procedure
we can subtract a subsequence (xnk

) of (xn) which is pointwise convergent
(on Z).

Then, a limit x = limk→∞ xnk
is an increasing function on Z. It is

known that this function can be extended to an increasing function y defined
on J in such a way that y is a limit of (xnk

) on Z.
Let t0 be an arbitrary internal point in J . Since Z is dense in J we are

able to find two sequences (sn) and (τn) of points in Z tending to t0 such
that sn < t0 < τn. For any fixed k ∈ N, (xnk

) is increasing on J and we have

xnk
(sn) < xnk

(t0) < xnk
(τn)

and passing to the limit with k → ∞ we obtain

y(sn) ≤ lim inf
k→∞

xnk
(t0) ≤ lim sup

k→∞
xnk

(t0) ≤ y(τn).

By passing to the limit with n → ∞ we get

y(t0−) ≤ lim inf
k→∞

xnk
(t0) ≤ lim sup

k→∞
xnk

(t0) ≤ y(t0+).

For any point of continuity of y we have y(t) = limk→∞ xnk
(t). As the set D

of all points of discontinuity of this function is at most countable, y is a.e.
increasing.

Since the measure of I is finite and LM ⊂ S, the sequence (xn) contains
an a.e. convergent subsequence. As its limit is a.e. finite, by the Lebesgue
theorem the subsequence is also convergent in measure. Summarising: arbi-
trary sequence in U contains a subsequence which is convergent in measure
to some y ∈ U and then this set is compact in measure. �

We have also an important

Lemma 4.2 (Lemma 4.2 in [21]). Suppose the function t → f(t, x) is a.e.
nondecreasing on a finite interval I for each x ∈ R and the function x →
f(t, x) is a.e. nondecreasing on R for any t ∈ I. Then, the superposition
operator F generated by f transforms functions being a.e. nondecreasing on I
into functions having the same property.

We will use the fact that the superposition operator takes the bounded
sets compact in measure into the sets with the same property. Namely, we
have

Proposition 4.3. Assume that a function f : I×R → R satisfies Carathéodory
conditions and the function t → f(t, x) is a.e. nondecreasing on a finite inter-
val I for each x ∈ R and the function x → f(t, x) is a.e. nondecreasing on
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R for any t ∈ I. Assume, that F : LM (I) → EM (I). Then, F (V ) is com-
pact in measure for arbitrary bounded and compact in measure subset V of
LM (I).

Proof. Let V be a bounded and compact in measure subset of LM (I). By
our assumption F (V ) ⊂ EM (I). As a subset of S the set F (V ) is compact in
measure (cf. [22]). Since the topology of convergence in measure is metrizable,
the compactness of the set is equivalent with the sequential compactness. By
taking an arbitrary sequence (yn) ⊂ F (V ) we get a sequence (xn) in V such
that yn = F (xn). Since (xn) ⊂ V , as follows from Lemma 3.2 F transforms
this sequence into the sequence convergent in measure. Thus, (yn) is compact
in measure, so is F (V ). �

Let us recall, that if M satisfies Δ2-condition, then the assumption
F : LM (I) → EM (I) is satisfied whenever F : LM (I) → LM (I) (see Lemma
3.3).

5. Measures of Noncompactness

Our operators need not be neither Lipschitz nor compact, in general. For qua-
dratic integral equations the Darbo fixed-point theorem seems to an appro-
priate tool. It is based on a contraction property with respect to a measure of
noncompactness. Although it seems to be known, we recall necessary notions
for completeness.

By ME denote the family of all nonempty and bounded subsets of E
and by NE its subfamily consisting of all relatively compact subsets. We
denote the standard algebraic operations on sets by the symbols k · X and
X + Y . If X is a subset of E, then X̄ and convX denote the closure and
convex closure of X, respectively. We recall an axiomatic approach to the
definition of measures of noncompactness.

Definition 5.1. [23] A mapping μ : ME → [0, ∞) is said to be a measure
of noncompactness in E if it satisfies the following conditions:

(i) μ(X) = 0 ⇒ X ∈ NE

(ii) X ⊂ Y ⇒ μ(X) ≤ μ(Y ).
(iii) μ(X̄) = μ(convX) = μ(X).
(iv) μ(λX) = |λ| μ(X), for λ ∈ R.
(v) μ(X + Y ) ≤ μ(X) + μ(Y ).
(vi) μ(X

⋃
Y ) = max{μ(X), μ(Y )}.

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such
that Xn+1 ⊂ Xn, n = 1, 2, 3, . . ., and limn→∞ μ(Xn) = 0, then the set
X∞ =

⋂∞
n=1 Xn is nonempty.

An example of such a mapping is the following [23]: let X be a nonempty
and bounded subset of E. The Hausdorff measure of noncompactness βH(X)
is defined as
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inf{r > 0 : there exists a finite subset Y of E such that x ⊂ Y + Br}.

We need one more interesting notion. For any ε > 0, let c be a measure
of equiintegrability of the set X in LM (I) (cf. Definition 3.9 in [14] or [24,25]):

c(X) = lim
ε→0

sup
mesD≤ε

sup
x∈X

‖x · χD‖LM (I),

where χD denotes the characteristic function of D.
The following theorem clarifies the connections between different coef-

ficients in Orlicz spaces. Since all Orlicz spaces LM (I) are regular, when M
satisfies Δ2 condition, then the Theorem 1 in [25] is read as follows:

Proposition 5.2. Let X be a nonempty, bounded and compact in measure
subset of an ideal regular space Y . Then

βH(X) = c(X).

As a consequence, we obtain that bounded sets which are additionally
compact in measure are compact in LM (I) iff they are equiintegrable in
this space (i.e. have equiabsolutely continuous norms cf. [26], in particular
X ⊂ EM (I)).

An importance of such a kind of functions can be clarified using the
contraction property with respect to this measure instead of compactness in
the Schauder fixed-point theorem. Namely, we have the Darbo theorem ([23]):

Theorem 5.3. Let Q be a nonempty, bounded, closed and convex subset of E
and let V : Q → Q be a continuous transformation which is a contraction
with respect to the measure of noncompactness μ, i.e. there exists k ∈ [0, 1)
such that

μ(V (X)) ≤ kμ(X),

for any nonempty subset X of E. Then, V has at least one fixed point in the
set Q and the set FixV of all fixed points of V satisfy μ(FixV ) = 0.

6. Main Results

Denote by B the operator associated with the right-hand side of the Eq. (1.1)
i.e. B(x) = g+U(x), where U(x)(t) = G(x)(t) ·λ ∫ b

a
K(t, s)f(s, x(s))ds. Thus

B = g + G · A = g + G · H ◦ F .
We will try to choose the domains of operators defined above in such a

way to obtain the existence of solutions in a desired Orlicz space Lϕ(I). We
stress on conditions allowing us to consider strongly nonlinear operators and
simultaneously to cover both quadratic and classical integral equations.

Let us note that our assumptions on G are also referred to the case of
standard quadratic integral equations (i.e. for G(x)(t) = q(t) · x(t)).

We need to distinguish two different cases. This allow us to obtain more
general growth conditions on f (cf. [27–30] for non-quadratic equations). In
every case we need to describe some assumptions on “intermediate” spaces
being the images of Lϕ(I) for G and F (Lϕ1(I) and LM (I), respectively)



910 M. Cichoń, M. M. A. Metwali MJOM

and the range for H (i.e. Lϕ2(I)). This approach is based on a classical (non-
quadratic) case as in [27–29]) and seems to be important in view of optimality
of assumptions for every considered case. The main difference is in the part
of the proof for continuity of integral operators.

6.1. The Case of ϕ Satisfying the Δ′-condition
Theorem 6.1. Assume, that ϕ,ϕ1, ϕ2 are N -functions and that M and N are
complementary N -functions. Moreover, put the following set of assumptions:
(N1) there exists a constant k1 > 0 such that for every u ∈ Lϕ1(I) and

w ∈ Lϕ2(I) we have ‖uw‖ϕ ≤ k1‖u‖ϕ1‖w‖ϕ2 ,
(C1) g ∈ Eϕ(I) is nondecreasing a.e. on I,
(C2) f : I×R → R satisfies Carathéodory conditions and f(t, x) is assumed

to be nondecreasing with respect to both variables t and x separately,
(C3) |f(t, x)| ≤ b(t) + R(|x|) for t ∈ I and x ∈ R, where b ∈ EN (I) and R is

nonnegative, nondecreasing, continuous function defined on R
+,

(C4) Let N satisfies the Δ′-condition and suppose that there exist ω, γ, u0 ≥
0 for which

N(ω(R(u))) ≤ γϕ2(u) ≤ γM(u) for u ≥ u0,

(G1) G : Lϕ(I) → Lϕ1(I) takes continuously Eϕ(I) into Eϕ1(I) and there
exists a constant G0 > 0 such that ‖G(x)‖ϕ1 ≤ G0‖x‖ϕ and that G
takes the set of all a.e. nondecreasing functions into itself,

(K1) s → K(t, s) ∈ LM (I) for a.e. t ∈ I,
(K2) K ∈ EM (I2) and t → K(t, s) ∈ Eϕ2(I) for a.e. s ∈ I with ‖K‖M <

1
2k1·|λ|·G0·R(1) ,

(K3)
∫ b

a
K(t1, s)ds ≥ ∫ b

a
K(t2, s)ds for t1, t2 ∈ [a, b] with t1 < t2.

Then there exists a number ρ > 0 such that for all λ ∈ R with |λ| < ρ and
for all g with ‖g‖ϕ < 1 there exists a solution x ∈ Eϕ(I) of (1.1) which is
a.e. nondecreasing on I.

Proof. We need to divide the proof into a few steps.
I. The operator B is well defined from Lϕ(I) into itself and continuous on

a domain depending on the considered case.
II. We will construct an invariant ball Br for B in Lϕ(I).

III. We construct a subset Qr of this ball which contains a.e. nondecreasing
functions and investigate the properties Qr.

IV. We check the continuity and monotonicity properties of B in Qr, so
U : Qr → Qr.

V. We prove that B is a contraction with respect to a measure of noncom-
pactness.

VI. We use the Darbo fixed-point theorem to find a solution in Qr.
I. First of all observe that under the assumptions (C2) and (C3) by

Lemma 3.3 the superposition operator F acts from Lϕ(I) to LN (I).
In this case we will prove that U is a continuous mapping from the unit

ball in Eϕ(I) into the space Eϕ(I).
Let us recall that x ∈ Eϕ(I) iff for arbitrary ε > 0 there exists δ > 0

such that ‖xχT ‖ϕ < ε for every measurable subset T of I with the Lebesgue
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measure smaller that δ (i.e. x has absolutely continuous norm). First, let us
observe that in view of Lemma 3.6, it is sufficient to check this property for
the operator A = H ◦ F .

Since N is an N -function satisfying Δ′-condition and by (C3), we are
able to use [11, Lemma 19.1]. From this there exists a constant C (not
depending on the kernel) such that for any measurable subset T of I and
x ∈ Lϕ(I), ‖x‖ϕ ≤ 1 we have

‖A(x)χT ‖ϕ2 ≤ C‖KχT×I‖M . (6.1)

Now, by the Hölder inequality and the assumption (C2) we get

|K(t, s)f(s, x(s))| ≤ ‖K(t, s)‖ · |f(s, x(s))| ≤ ‖K(t, s)‖ · | (b(s) + R(|x(s)|)) |
for t, s ∈ I. Put k(t) = 2‖K(t, ·)‖M for t ∈ I. As K ∈ EM (I2) this function
is integrable on I. By the assumptions (K1) and (K2) about the kernel K of
the operator H (cf. [29]) we obtain that

‖A(x)(t)‖ ≤ k(t) · (‖b‖N + ‖R(|x(·)|)‖N ) for a.e. t ∈ I.

Whence for arbitrary measurable subset T of I and x ∈ Eϕ(I)

‖A(x)χT ‖ϕ2 ≤ ‖kχT ‖ϕ2 · (‖b‖N + ‖R(|x(·)|‖N ) .

Finally if t is such that K(t, ·) ∈ EM (I) and x ∈ Eϕ(I) we have∫
T

‖K(t, s)f(s, x(s))‖ds ≤ 2‖K(t, ·)χT ‖M · (‖b‖N + ‖R(|x(·)|)‖N )

for a.e. t ∈ I. From this it follows that A maps B1(Eϕ(I)) into Eϕ2(I).
We are in a position to prove the continuity of A as a mapping from the

unit ball B1(Eϕ(I)) into the space Eϕ2(I). Let xn, x0 ∈ B1(Eϕ(I)) be such
that ‖xn − x0‖ϕ → 0 as n tends to ∞. Suppose, contrary to our claim, that
A is not continuous and the ‖A(xn) − A(x0)‖ϕ2 does not converge to zero.
Then, there exists ε > 0 and a subsequence (xnk

) such that

‖A(xnk
) − A(x0)‖ϕ2 > ε for k = 1, 2, . . . (6.2)

and the subsequence is a.e. convergent to x0. Since (xn) is a subset of the ball
the sequence (

∫ b

a
ϕ(|xn(t)|)dt) is bounded. As the space Eϕ2(I) is regular the

balls are norm-closed in L1(I) so the sequence (
∫ b

a
|xn(t)|dt) is also bounded.

Moreover, by (C3) and (C4) there exist ω, γ, u0 > 0, s.t. (cf. [11, p.
196])

‖R(|x(·)|)‖N =
1
ω

‖ωR(|x(·)|)‖N

≤ 1
ω

inf
r>0

{∫
N(ωR(|x(t)|)/r)dt ≤ 1

}

≤ 1
ω

(
1 +

∫ b

a

N(ωR(|x(t)|))dt

)

≤ 1
ω

(
1 + N(ωR(u0)) · (b − a) + γ

∫ b

a

ϕ2(|x(t)|)dt

)
,

whenever x ∈ Lϕ(I) with ‖x‖ϕ ≤ 1.
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Thus∫
T

‖K(t, s)f(s, xn(s))‖ds ≤ 2‖K(t, ·)χT ‖M · (‖b‖N + ‖R(|xn(·)|)‖N )

≤ 2‖K(t, ·)χT ‖M ·
(

‖b‖N
1
ω

×
[
1 + N(ωR(u0))(b − a)γ

∫ b

a

ϕ2(|xn(t)|)dt

])

and then the sequence (‖K(t, s)f(s, xn(s))‖) is equiintegrable on I for a.e.
t ∈ I. By the continuity of f(t, ·) we get limk→∞ K(t, s)f(s, xnk

(s)) =
K(t, s)f(s, x0(s)) for a.e. s ∈ I. Now, applying the Vitali convergence theo-
rem we obtain that

lim
k→∞

A(xnk
)(t) = A(x0)(t) for a.e. t ∈ I.

But the Eq. (6.1) implies that A(xnk
) is a subset of Eϕ2(I) and then

limk→∞ A(xnk
)(t) = A(x0)(t) which contradicts the inequality (6.2). Since A

is continuous between indicated spaces, By our assumption (G1) the operator
G is continuous from B1(Eϕ(I)) into Eϕ1(I) and then by (N1) the operator U
has the same property and then U is a continuous mapping from B1(Eϕ(I))
into the space Eϕ(I). Finally, by the assumption (C1) B maps B1(Eϕ(I))
into Eϕ(I) continuously.

II. We will prove the boundedness of the operator U , namely we will
construct the invariant ball for this operator. By B we will denote the right-
hand side of our integral equation, i.e. B = g + U .

Set r ≤ 1 and let

ρ =
1 − ‖g‖ϕ

2k1 · C · G0 · ‖K‖M
.

Let x be an arbitrary element from B1(Eϕ(I)). Then using the above con-
sideration, the assumption (C3), the formula (6.1) and Proposition 3.6 for
sufficiently small λ (i.e. |λ| < ρ) we obtain

‖B(x)‖ϕ ≤ ‖g‖ϕ + ‖Ux‖ϕ

= ‖g‖ϕ + ‖G(x) · A(x)‖ϕ

≤ ‖g‖ϕ + k1‖G(x)‖ϕ1 · ‖A(x)‖ϕ2

= ‖g‖ϕ + k1|λ| · G0 · ‖x‖ϕ · ‖
∫ b

a

K(·, s)f(s, x(s))ds‖ϕ2

≤ ‖g‖ϕ + 2k1 · |λ| · C · G0 · ‖x‖ϕ · ‖K‖M

≤ ‖g‖ϕ + 2k1 · |λ| · C · G0 · r · ‖K‖M

≤ ‖g‖ϕ + 2k1 · ρ · C · G0 · ‖K‖M ≤ r

whenever ‖x‖ϕ ≤ r.
Then we have B : Br(Eϕ(I)) → Br(Eϕ(I)). Moreover, B is continuous

on Br(Eϕ(I)) (see the part I of the proof).
III. Let Qr stand for the subset of Br(Eϕ(I)) consisting of all functions

which are a.e. nondecreasing on I. Similarly as claimed in [31] this set is
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nonempty, bounded (by r) and convex (direct calculation from the definition).
It is also a closed set in Lϕ(I).

Indeed, let (yn) be a sequence of elements in Qr convergent in Lϕ(I)
to y. Then, the sequence is convergent in measure and as a consequence of
the Vitali convergence theorem for Orlicz spaces and of the characterization
of convergence in measure (the Riesz theorem) we obtain the existence of a
subsequence (ynk

) of (yn) which converges to y almost uniformly on I (cf.
[27]). Moreover, y is still nondecreasing a.e. on I which means that y ∈ Qr

and so the set Qr is closed. Now, in view of Lemma 3.2 the set Qr is compact
in measure.

IV. Now, we will show that B preserve the monotonicity of functions.
Take x ∈ Qr, then x is a.e. nondecreasing on I and consequently F (x) is also
of the same type in virtue of the assumption (C2) and Lemma 4.2. Further,
A(x) = H ◦ F (x) is a.e. nondecreasing on I thanks for the assumption (K3).
Since the pointwise product of a.e. monotone functions is still of the same
type and by (G1), the operator U is a.e. nondecreasing on I.

Moreover, the assumption (C1) permits us to deduce that Bx(t) =
g(t) + U(x)(t) is also a.e. nondecreasing on I. This fact together with the
assertion that B : Br(Eϕ(I)) → Br(Eϕ(I)) gives us that B is also a self-
mapping of the set Qr. From the above considerations it follows that B maps
continuously Qr into Qr.

V. We will prove that B is a contraction with respect to the measure of
noncompactness μ. Assume that X is a nonempty subset of Qr and let the
fixed constant > 0 be arbitrary. Then for an arbitrary x ∈ X and for a set
D ⊂ I, measD ≤ ε we obtain

‖B(x) · χD‖ϕ ≤ ‖gχD‖ϕ + ‖U(x) · χD‖ϕ

= ‖gχD‖ϕ + ‖G(x) · A(x)χD‖ϕ

≤ ‖gχD‖ϕ + k1‖G(x)χD‖ϕ1 · ‖A(x) · χD‖ϕ2

= ‖gχD‖ϕ + k1|λ|‖G(x)χD‖ϕ1‖
∫

D

K(·, s)f(s, x(s))ds‖ϕ2

≤ ‖gχD‖ϕ+k1|λ|G0‖xχD‖ϕ‖
∫

D

|K(·, s)|(b(s)+R(|x(s)|))ds‖ϕ2

≤ ‖gχD‖ϕ + k1|λ|G0‖xχD‖ϕ2‖K‖M‖[bχD + R(r))]‖N

≤ ‖gχD‖ϕ + 2k1|λ|G0‖xχD‖ϕ‖K‖M [ ‖bχD‖N + R(1)].

Hence, taking into account that g ∈ Eϕ, b ∈ EN

lim
ε→0

{ sup
mes D≤ε

[sup
x∈X

{‖gχD‖ϕ = 0}]} and lim
ε→0

{ sup
mes D≤ε

[sup
x∈X

{‖bχD‖N = 0}]}.

Thus, by definition of c(x) and by taking the supremum over all x ∈ X and
all measurable subsets D with measD ≤ ε we get

c(B(X)) ≤ 2k1 · |λ| · G0 · ‖K‖M · R(1) · c(X).

Since X ⊂ Qr is a nonempty, bounded and compact in measure subset of an
ideal regular space Eϕ, we can use Proposition 5.2 and get

βH(B(X)) ≤ 2k1 · |λ| · G0 · ‖K‖M · R(1) · βH(X).
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The inequality obtained above together with the properties of the operator
B and the set Qr established before and the inequality from the Assumption
(K2) allows us to apply the Darbo Fixed-Point Theorem 5.3, which completes
the proof. �
6.2. The Case of ϕ Satisfying the Δ3-Condition

Let us consider the case of N -functions with the growth essentially more
rapid than a polynomial. In fact, we will consider N -functions satisfying Δ3-
condition. This is very large and important class, especially from an appli-
cation point of view (cf. [32–35]). An extensive description of this class can
be found in [34, Section 2.5]. Recall, that an N -function M determines the
properties of the Orlicz space LM (I) and then the less restrictive rate of the
growth of this function implies the “worser” properties of the space. By ϑ
we will denote the norm of the identity operator from Lϕ(I) into L1(I), i.e.
sup{‖x‖1 : x ∈ B1(Lϕ(I))}. For the discussion about the existence of ϕ which
satisfies our conditions see [17, p. 61].

Theorem 6.2. Assume, that ϕ,ϕ1, ϕ2 are N -functions and that M and N are
complementary N -functions and that (N1), (C1), (C2), (C3), (G1), (K1)
and (K3) hold true. Moreover, put the following assumptions:
(C5) 1. N satisfies the Δ3-condition,

2. K ∈ EM (I2) and t → K(t, s) ∈ Eϕ2(I) for a.e. s ∈ I,
3. There exist β, u0 > 0 such that

R(u) ≤ β
M(u)

u
, for u ≥ u0,

(K4) ϕ2 is an N-function satisfying∫∫

I2

ϕ2(M(|K(t, s)|)) dtds < ∞

and

2k1 · (2 + (b − a)(1 + ϕ2(1))) · |λ| · G0 · ‖K‖ϕ2◦M · R(r0) < 1,

where

r0 =
1
ϑ

[
ω

2|λ| · k1 · G0 · (2 + (b − a)(1 + ϕ2(1))) · ‖K‖ϕ2◦M
− ‖b‖N

]
.

Then, there exist a number ρ > 0 and a number � > 0 such that for
all λ ∈ R with |λ| < ρ and for all g ∈ Eϕ(I) with ‖g‖ϕ < � there exists a
solution x ∈ Eϕ(I) of (1.1) which is a.e. nondecreasing on I.

Proof. We will indicate only the points of the proof if they differ from the
previous case.

I. In this case the operator B can be considered as continuous when
acting on the whole Eϕ(I).

By [17, Lemma 15.1 and Theorem 19.2] and the assumption (K4):

‖A(x)χT ‖ϕ2 ≤ 2·(2+(b−a)(1+ϕ2(1)))·‖K·χT×I‖ϕ2◦M (‖b‖N + ‖R(|x(·)|)‖N )
(6.3)

for arbitrary x ∈ Lϕ(I) and arbitrary measurable subset T of I.
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Let us note that the assumption (C5) 3. implies that there exist con-
stants ω, u0 > 0 and η > 1 such that N(ωR(u)) ≤ ηu for u ≥ u0.

Thus for x ∈ Lϕ(I)

‖R(|x(·)|)‖N ≤ 1
ω

(
1 +

∫
I

N(ωR(|x(s)|)ds

)

≤ 1
ω

(
1 + ηu0(b − a) + η

∫
I

|x(s)|ds

)
.

The remaining estimations can be derived as in the first main theorem and
then we obtain that A : Eϕ(I) → Eϕ2(I), so by the properties of G we get
B : Eϕ(I) → Eϕ(I).

II. Put

ρ =
1

2k1G0(2 + (b − a)(1 + ϕ2(1)))‖K‖ϕ2◦M

[‖b‖N + 1
ω (1 + ηu0(b − a))

] .

Fix λ with |λ| < ρ.
Choose a positive number r in such a way that

‖g‖ϕ + 2|λ|k1G0(2 + (b − a)(1 + ϕ2(1)))‖K‖ϕ2◦M

·r
(

‖b‖N +
1
ω

(1 + ηu0(b − a) + ηϑr)
)

≤ r. (6.4)

As a domain for the operator B we will consider the ball Br(Eϕ(I)).
Let us remark that the above inequality is of the form a+(b+vr)cr ≤ r

with a, b, c, v > 0. Then, vc > 0 and if we assume that bc − 1 < 0 and
that the discriminant is positive, then Viète’s formulas imply that the qua-
dratic equation has two positive solutions r1 < r2 for sufficiently small λ.
By the definition of ρ it is clear that our assumptions guarantee the above
requirements, so there exists a positive number r satisfying this inequal-
ity.

Put C = (2 + (b − a)(1 + ϕ(1))). Let us note, in view of the above con-
siderations, that the assumption about the discriminant which implies that
the existence of solutions for the above problem is of the form:

[
‖b‖N +

1
ω

(1 + ηu0(b − a)) − 1
2|λ| · k1 · G0 · C · ‖K‖ϕ2◦M

]2

·|λ| · k1 · G0 · C · ‖K‖ϕ2◦M >
2‖g‖ϕηϑ

ω

i.e.

� =
[
‖b‖N +

1
ω

(1 + ηu0(b − a)) − 1
2|λ| · k1 · G0 · C · ‖K‖ϕ2◦M

]2

×|λ| · k1 · G0 · C · ω‖K‖ϕ2◦M

2ηϑ
.
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For x ∈ Br(Eϕ(I)) we have the following estimation:

‖B(x)‖ϕ ≤ ‖g‖ϕ + ‖Ux‖ϕ

= ‖g‖ϕ + ‖G(x) · A(x)‖ϕ

≤ ‖g‖ϕ + k1‖G(x)‖ϕ1 · ‖A(x)‖ϕ2

= ‖g‖ϕ + k1|λ|‖G(x)‖ϕ1 · ‖
∫ b

a

K(·, s)f(s, x(s))ds‖ϕ2

≤ ‖g‖ϕ + 2k1 · C · G0 · |λ| · ‖x‖ϕ‖K‖ϕ2◦M

·
[
‖b‖N +

1
ω

(1 + N(ωR(u0)) · (b − a)η
∫

I

|x(s)|ds)
]

≤ ‖g‖ϕ + 2k1 · C · G0 · |λ| · ‖x‖ϕ‖K‖ϕ2◦M

·
[
‖b‖N +

1
ω

(1 + N(ωR(u0)) · (b − a)η‖x‖1)
]

≤ ‖g‖ϕ + 2k1 · C · G0 · |λ| · ‖x‖ϕ‖K‖ϕ2◦M

·
[
‖b‖N +

1
ω

(1 + N(ωR(u0)) · (b − a)ηϑ‖x‖ϕ)
]

= ‖g‖ϕ + 2rk1 · C · G0 · |λ| · ‖K‖ϕ2◦M

·
[
‖b‖N +

1
ω

(1 + ηu0(b − a) + ηϑr)
]

≤ r.

Then B : Br(Eϕ(I)) → Br(Eϕ(I)).
Note, that the parts III. and IV. of the previous proof are similar to

those from the first theorem, so we omit the details.
V. We will prove that B is a contraction with respect to a measure of

noncompactness. Assume that X is a nonempty subset of Qr and let the fixed
constant ε > 0 be arbitrary. Then, for an arbitrary x ∈ X and for a set
D ⊂ I, measD ≤ ε we obtain

‖B(x) · χD‖ϕ ≤ ‖gχD‖ϕ + ‖U(x) · χD‖ϕ

= ‖gχD‖ϕ + ‖G(x) · A(x)χD‖ϕ

≤ ‖gχD‖ϕ + k1‖G(x)χD‖ϕ1 · ‖A(x) · χD‖ϕ2

= ‖gχD‖ϕ + k1 · |λ| · G0 · ‖xχD‖ϕ‖
∫

D

K(·, s)f(s, x(s))ds‖ϕ2

≤ ‖gχD‖ϕ + k1 · |λ| · G0 · ‖xχD‖ϕ

·‖
∫

D

|K(·, s)|(b(s) + R(|x(s)|))ds‖ϕ2

≤ ‖gχD‖ϕ + k1 · |λ| · G0 · ‖xχD‖ϕ

·
(∥∥∥∥

∫
D

|K(·, s)|b(s)ds

∥∥∥∥
ϕ2

+
∥∥∥∥
∫

D

|K(·, s)|R(|x(s)|))ds

∥∥∥∥
ϕ2

)

≤ ‖gχD‖ϕ + 2 · C · k1 · G0 · |λ| · ‖xχD‖ϕ · ϑ · ‖K‖ϕ2◦M‖bχD‖N

+2 · C · k1 · G0 · ‖xχD‖ϕ ·
∥∥∥∥
∫

D

|K(·, s)|R(|x(s)|)ds

∥∥∥∥
ϕ2
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≤ ‖gχD‖ϕ + 2Ck1G0|λ| · ‖xχD‖ϕ · ‖K‖ϕ2◦M [ ‖bχD‖N + R(r) ]
≤ ‖gχD‖ϕ + 2Ck1G0|λ| · ‖xχD‖ϕ · ‖K‖ϕ2◦M [ ‖bχD‖N + R(r0) ],

where

r0 =
1
ϑ

[
ω

2|λ| · k1 · G0 · (2 + (b − a)(1 + ϕ2)) · ‖K‖ϕ2◦M
− ‖b‖N

]
.

Let us note that r0 is an upper bound for solutions of (6.4).
Similarly as in the previous theorem we get

βH(B(X)) ≤ 2 · k1 · C · G0 · |λ|‖K‖ϕ2◦M · R(r0) · βH(X).

The inequality obtained above together with the properties of the operator
B and the set Qr established before and then the assumption (K4) allow us
to apply the Theorem 5.3, which completes the proof. �

We need to stress on some aspects of our results. First of all we can
observe that our solutions are not necessarily continuous as in previously
investigated cases. In particular, we need not to assume that the Hammer-
stein operator transforms the space C(I) into itself. For the examples and
conditions related to Hammerstein operators in Orlicz spaces we refer the
readers to [34, Chapter VI.6.1., Corollary 6 and Example 7].

We have two more information about the set of solutions: it is included
in Eϕ(I) and in view of Theorem 5.3 it can be proved that this set is compact
as a subset of Lϕ(I).

Let X,Y be ideal spaces. A superposition operator F : X → Y is called
improving if it takes bounded subsets of X into the subsets of Y with equiab-
solutely continuous norms. The applications of such operators are based on
the observation that large classes of linear integral operators

Hy(t) = λ

∫
D

k(t, s)y(s)ds,

although not being compact, map sets with equiabsolutely continuous norms
into precompact sets. In contrast to the classical (non-quadratic) case, for
quadratic integral equations even such a nice assumption is not sufficient for
using the Schauder fixed-point theorem.

Moreover, we assume in our main theorem that G maps sets with equiab-
solutely continuous norms into the same family, but we do not need to assume,
that it is an improving operator. Conversely, any improving operator G can
be considered in our results. Let us note that for operators from Lebesgue
spaces Lp(I) into Lr(I) (i.e. Orlicz spaces with p(x) = xp and r(x) = xr,
respectively), the characterization of improving operators is known [36]: a
superposition operator F : Lp(I) → Lr(I) is improving if and only if there
exists a continuous and even function M satisfying limu→∞

M(u)
u = ∞ and

such that G(x)(t) = M(f(t, x(t))) is also an operator from Lp(I) into Lr(I)
(for an appropriate growth condition of f see [36]).

The aspect of applicability of our results deals also with the technique of
Orlicz spaces for partial differential equations, so for an appropriate class of
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integral equations. In this context one can consider more singular equations
than in a classical case. Motivated by previously considered equations (see
[10,32,33,35] or [27,29]) we extend this method to the case of quadratic
integral equations.

It should be recalled that our method of the proof can be also adapted
to classical equations considered in [10,11,32,35]. For more information we
refer the readers to the Chapter IX “Nonlinear PDEs and Orlicz spaces”
in [37].

Finally, let us remark that our results can be applied also for Lebesgue
spaces Lp(I) (p ≥ 1) (cf. [38,39]). As mentioned above this class of spaces
is also included into the class of Orlicz spaces. But even in this case we
allow for f or K to be strongly nonlinear. The simplest case is that when
F : L1(I) → LN (I), H : LN (I) → Lp(I), G : L1(I) → Lq(I) ( 1

p +
1
q = 1). Thus, we will have integrable solutions (in L1(I)), but f or K

can be strongly nonlinear. Of course, strong nonlinearity of one of them
implies that we need to consider the weak one for another (cf. [11, Chapter
IV. 19]).

Let us present an example of such spaces. By N1, N2 we denote com-
plementary functions for M1,M2, respectively. Put M1(u) = exp |u| − |u| − 1
and M2(u) = u2

2 = N2(u). Note, that M1 satisfies the Δ3-condition. In this
case N1(u) = (1 + |u|) · ln (1 + |u|) − |u|. If we define an N -function either
as Ψ(u) = M2[N1(u)] or Ψ(u) = N1[M2(u)], then by choosing arbitrary ker-
nel K from the space LΨ(I) we are able to apply [11, Theorem 15.4]. Thus,
H : LM1(I) → LM2(I) is continuous and we may apply our result (Theorem
6.2) for operators G : L1(I) → Lq(I) and F : L1(I) → LM1(I) (with natural
growth conditions, see Lemma 3.3).

Let us also pay attention to the particular case of our problem with
G(x) = a(t)x(t):

x(t) = g(t) + λa(t) · x(t)
∫ 1

0

K(t, s)f(s, x(s))ds.

Since we are motivated by some study on quadratic integral equations, this
is of our particular interest. Note, that a full description for acting and
continuity conditions for G(x) = a(t)x(t) can be found in [11, Theorem
18.2].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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