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1. Introduction

Recently, there appeared a lot of papers [1,2,5,6,9–12,15,16] in which solv-
ability of various integral equations in the Banach space L1(R+) is considered
with help of measures of noncompactness introduced by Appell and De Pas-
cale in [3] and by Banaś and Knap in [8]. On the other hand, the technique
related to measures of noncompactness was not applied in the space L1

loc(R+)
consisting of all functions locally integrable on R+.

In this paper, fulfilling this gap, we define two topological structures
on the space L1

loc(R+): the Fréchet metric topology T F
loc given by a sequence

of seminorms and the topology T w
loc generated by the family of projections

πT : L1
loc(R+) → L1[0, T ], T ≥ 0, where the spaces L1[0, T ] are furnished

with weak topologies. Next, applying the weak measure of noncompactness
in L1[0, T ] introduced by Appell and De Pascale in [3], we define the family of
measures of noncompactness {μT }T≥0 in L1

loc(R+) with the topology T w
loc and

we investigate the basic properties of {μT }T≥0. As an example of applications
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of this method, we give a theorem on the existence of solutions in L1
loc(R+)

of the nonlinear Volterra integral equation of the form

x(t) = f

⎛
⎝t,

t∫

0

v(t, s, x(s))ds

⎞
⎠ .

The efficiency of the technique related to the family of measures of noncom-
pactness {μT }T≥0 manifests itself in this way that our result generalizes some
others on the solvability in L1(R+) obtained with help of other methods.

2. Notation and Auxiliary Facts

Let m(A) denote the Lebesgue measure of a Lebesgue measurable subset
A ⊂ R+ = [0,∞). For subset A ⊂ [0, T ] of a fixed interval [0, T ], we will
write

A′ := [0, T ]\A.

Further denote by L1[0, T ] the space of all real functions defined and Lebesgue
integrable on the set [0, T ].

If 0 ≤ S ≤ T then the symbol πT
S stands for the operator of restriction

πT
S : L1[0, T ] → L1[0, S], πT

S (x) := x|[0,S], (2.1)

i.e., πT
S (x) is the restriction of the function x ∈ L1[0, T ] to the interval [0, S].
Denote by L1

loc(R+) (shortly L1
loc) the space of all real measurable func-

tions x : R+ → R and locally Lebesgue integrable on R+, i.e., ||x||T < ∞ for
T ≥ 0, where

||x||T :=

T∫

0

|x(t)|dt for x ∈ L1
loc(R+). (2.2)

Further, we denote by πT the operator of restriction

πT : L1
loc → L1[0, T ], πT (x) := x|[0,T ], (2.3)

i.e., πT (x) is the restriction of the function x ∈ L1
loc to the interval [0, T ].

In the space L1
loc we will consider two topologies. The first of them is

the Fréchet metric topology T F
loc.

Definition 2.1. The metrizable topology induced in L1
loc by the family

of seminorms (2.2), i.e., the topology defined by the distance

d(x, y) :=
∞∑

n=1

1
2n

· ||x − y||n
1 + ||x − y||n

,

or equivalently

d1(x, y) := sup{2−T ||x − y||T : T ≥ 0},

will be called Fréchet metric topology in L1
loc and it will be denoted by T F

loc.

The convergence and compactness in the topology T F
loc are characterized

in the following proposition.
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Proposition 2.2. 1. A sequence (xn) ⊂ L1
loc is convergent to x ∈ L1

loc in
the topology T F

loc if and only if limn→∞ ||x − xn||T = 0 for T ≥ 0.
2. A set X ⊂ L1

loc is relatively compact in the topology T F
loc if and only if

πT (X) is relatively compact in the Banach space L1[0, T ] for T ≥ 0.

If X is a subset of L1
loc, we write X

F
and convX in order to denote the

closure of X in the topology T F
loc and the convex of X, respectively.

The second topology T w
loc in L1

loc, the so-called topology generated by
the family of mappings {πT }T≥0, will be introduced in Sect. 3. In order to
investigate the basic properties of the topology T w

loc, we recall some facts
concerned with limits of the inverse systems (see [13]).

Suppose that to every σ in a set Σ directed by the relation ≤ corresponds
a topological space Xσ, and that for any σ, ρ ∈ Σ satisfying ρ ≤ σ, a contin-
uous mapping π̂σ

ρ : Xσ → Xρ is defined; suppose further that π̂ρ
τ π̂σ

ρ = π̂σ
τ for

any σ, ρ, τ ∈ Σ satisfying τ ≤ ρ ≤ σ and that π̂σ
σ = idXσ

for every σ ∈ Σ. In
this situation, we say that the family S = {Xσ, π̂σ

ρ ,Σ} is an inverse system
of the spaces Xσ; the mappings π̂σ

ρ are called bonding mappings of the inverse
system S.

Let S = {Xσ, π̂σ
ρ ,Σ} be an inverse system; an element {xσ} of the

Cartesian product Πσ∈ΣXσ is called a thread of S if π̂σ
ρ (xσ) = xρ for any

σ, ρ ∈ Σ satisfying ρ ≤ σ, and the subspace of Πσ∈ΣXσ consisting of all
threads of S is called the limit of the inverse system S = {Xσ, π̂σ

ρ ,Σ} and is
denoted by lim←− S or by lim←−{Xσ, π̂σ

ρ ,Σ}.

Let S = {Xσ, π̂σ
ρ ,Σ} be an inverse system of topological spaces and

let X = lim←− S. For every σ ∈ Σ a continuous mapping π̂σ = pσ|X : X →
Xσ, where pσ : Πσ∈ΣXσ → Xσ is the projection, is defined; it is called the
projection of the limit of S to Xσ. Clearly, for any σ, ρ ∈ Σ such that ρ ≤ σ,
the projections π̂σ and π̂ρ satisfy the equality π̂ρ = π̂σ

ρ π̂σ.
For our further purposes, we need the following lemmas.

Lemma 2.3. [13] The limit of an inverse system S = {Xσ, π̂σ
ρ ,Σ} of non-

empty compact spaces is compact and non-empty.

Lemma 2.4. [13] For every subspace A of the limit lim←− S of an inverse system

S = {Xσ, π̂σ
ρ ,Σ}, the family SA = {Aσ, π̃σ

ρ ,Σ}, where Aσ = π̂σ(A) and
π̃σ

ρ := π̂σ
ρ |Aσ

, is an inverse system and A = lim←− SA.

Lemma 2.5. For all subspaces An, n = 1, 2, . . . of the limit lim←− S of an in-

verse system S = {Xσ, π̂σ
ρ ,Σ}, the family SA = {Aσ, π̃σ

ρ ,Σ}, where Aσ =⋂∞
n=1 π̂σ(An) and π̃σ

ρ = π̂σ
ρ |Aσ

, is an inverse system and
⋂∞

n=1 An = lim←− SA.

Proof. (Based on the proof of Proposition 2.5.6. [13]) At the beginning let
us observe that if f is a continuous mapping between two topological spaces
then

f

( ∞⋂
n=1

Bn

)
⊂
∞⋂

n=1

f(Bn) (2.4)
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for all subsets Bn, n = 1, 2, . . . contained in the domain of f .
Let us denote X := lim←−{Xσ, π̂σ

ρ ,Σ}. As π̂ρ(x) = π̂σ
ρ π̂σ(x) for x ∈ X and

ρ ≤ σ, we have from (2.4)

π̃σ
ρ (Aσ) = π̂σ

ρ (Aσ) = π̂σ
ρ

( ∞⋂
n=1

π̂σ(An)

)
⊂
∞⋂

n=1

π̂σ
ρ π̂σ(An) =

∞⋂
n=1

π̂ρ(An) = Aρ,

which proves that SA is an inverse system.
Now, using (2.4) we get

π̂σ

( ∞⋂
n=1

An

)
⊂
∞⋂

n=1

π̂σ(An) = Aσ.

Hence,
∞⋂

n=1

An ⊂ lim←− SA. (2.5)

Now let us take any point x = {xσ} ∈ lim←− SA.

By Proposition 2.5.5 [13], the family of all sets π̂−1
σ (Uσ), where Uσ is

a neighbourhood of xσ in the space Xσ, is a base for X at the point x. For
every member π̂−1

σ (Uσ) of that base we have

xσ ∈ Aσ ∩ Uσ =
∞⋂

n=1

(π̂σ(An) ∩ Uσ),

so that xσ ∈ π̂σ(An)∩Uσ for n = 1, 2, . . . . This implies that π̂σ(An)∩Uσ 	= ∅
for n = 1, 2, . . ., i.e., An∩π̂−1

σ (Uσ) 	= ∅ for n = 1, 2, . . . . Hence x = {xσ} ∈ An

for n = 1, 2, . . . and therefore x = {xσ} ∈
⋂∞

n=1 An, i.e.,
∞⋂

n=1

An ⊃ lim←− SA.

Linking this inclusion with (2.5), we finish proof. �

In further parts of this paper we will apply the weak measure of non-
compactness c(·) in L1[0, T ] which was introduced by Appell and De Pascale
in [3]. The measure c(·) is defined on bounded (in norm) subsets of L1[0, T ]
by the formula

c(X) := lim
ε→0+

⎧⎨
⎩sup

x∈X

⎧⎨
⎩sup

⎧⎨
⎩
∫

D

|x(t)|dt : D ⊂ [0, T ],m(D) ≤ ε

⎫⎬
⎭

⎫⎬
⎭

⎫⎬
⎭ . (2.6)

The fundamental properties of this measure are contained in the lemma given
below.

Lemma 2.6. The weak measure of noncompactness c(·) satisfies the following
conditions:
1. c(X) = 0 iff X is bounded weakly relatively compact in L1[0, T ].
2. X ⊂ Y ⇒ c(X) ≤ c(Y ).
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3. c(X) = c(X
w
) = c(convX), where X

w
is the weak closure of X and

convX is the closed convex hull (with respect to the norm topology) of a
set X.

4. c(λX) = |λ|c(X).
5. c(X + Y ) ≤ c(X) + c(Y ).
6. If {Xn} is a sequence of nonempty, bounded (in norm), closed (in weak

topology) subsets of L1[0, T ] and X1 ⊃ X2 ⊃ · · · with limn→∞ c(Xn) =
0, then the intersection set X∞ :=

⋂∞
n=1 Xn is nonempty and weakly

compact in L1[0, T ].

3. The Topology T w
loc and the Family of Measures

of Noncompactness

In this section, we will define the next topology T w
loc in L1

loc. Moreover, we will
introduce the family of measures of noncompactness {μT }T≥0 in L1

loc with
the topology T w

loc and we will investigate its properties.

Definition 3.1. The topology in the space in L1
loc generated by the family of

projections {πT }T≥0 with weak topologies in the spaces L1[0, T ] for T ≥ 0
will be denoted by T w

loc. In other words, T w
loc is the weakest topology in L1

loc in
which each of the mappings πT : L1

loc → L1[0, T ] [defined in (2.3)] for T ≥ 0
is continuous, where the space L1[0, T ] is equipped with the weak topology
for T ≥ 0.

It means that the base for T w
loc is the collection of all sets of the form

π−1
T (G), where T ≥ 0 and G is an arbitrary open subset of L1[0, T ] with weak

topology. In other words, T w
loc is the topology in L1

loc such that it induces weak
topology in the spaces L1[0, T ], T ≥ 0.

The closure of a subset X ⊂ L1
loc in the topology T w

loc will be denoted
by X

w
.

The space L1
loc with the topology T w

loc defined in this way is homeo-
morphic to the limit of the inverse system lim←−{L1[0, T ], πT

S , R+}, where we

assume that the spaces L1[0, T ] are equipped with the weak topologies. There
is the natural topological homeomorphism h : L1

loc → lim←−{L1[0, T ], πT
S , R+}

between these spaces, given by formula

h(x) := {πT (x)}T≥0 for x ∈ L1
loc.

Therefore,

πT (X) = π̂T (hX) for X ⊂ L1
loc, (3.1)

where π̂T is the projection of the limit lim←−{L1[0, T ], πT
S , R+} to L1[0, T ].

Now we are going to introduce a family of measures of noncompactness
in L1

loc with the topology T w
loc.

We will say that a subset X ⊂ L1
loc is bounded, if X is bounded for

every pseudonorm || · ||T , T ≥ 0. Moreover, we denote by ML1
loc

the family
of all nonempty and bounded subsets of L1

loc and by NL1
loc

its subfamily
consisting of all relatively compact sets in the topology T w

loc. It appears that
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it is more effective to operate with a family of measures of noncompactness
in L1

loc instead of one measure.

Definition 3.2. The family of mappings {μT }T≥0, μT : ML1
loc

→ R+, defined
by formula

μT (X) := lim
ε→0+

⎧⎨
⎩sup

x∈X

⎧⎨
⎩sup

⎧⎨
⎩
∫

D

|x(t)|dt : D⊂ [0, T ],m(D) ≤ ε

⎫⎬
⎭

⎫⎬
⎭

⎫⎬
⎭ (3.2)

is said to be the family of measures of noncompactness in L1
loc with topology

T w
loc.

In other words,

μT (X) = c(πT (X)), (3.3)

where c(·) is defined in (2.6).
The following theorem, being the main result of this section, describes

the fundamental properties of the family {μT }T≥0.

Theorem 3.3. The family of measures of noncompactness {μT }T≥0, μT :
ML1

loc
→ R+ defined by (3.2), fulfils conditions:

1. The family ker{μT } := {X ∈ ML1
loc

: μT (X) = 0 for T ≥ 0} is non-
empty and ker{μT } = NL1

loc
.

2. X ⊂ Y ⇒ μT (X) ≤ μT (Y ) for T ≥ 0.
3. μT (X) = μT (X

w
) = μT (convX

F
) for T ≥ 0, where X

w
denotes the

closure of a set X in the topology T w
loc and convX

F
is the closure of a

convex hull of the set X with respect to the topology T F
loc.

4. μT (λX) = |λ|μT (X) for T ≥ 0.
5. μT (X + Y ) ≤ μT (X) + μT (Y ) for T ≥ 0.
6. If {Xn} is a sequence of nonempty, bounded (in L1

loc), closed (in the
topology T w

loc) subsets of L1
loc and X1 ⊃ X2 ⊃ · · · with limn→∞ μT (Xn) =

0 for T ≥ 0, then the intersection set X∞ :=
⋂∞

n=1 Xn is nonempty and
compact in T w

loc.

Remark 3.4. In the proof given below, the symbol X stands for the closure
of a subset X ⊂ lim←−{L1[0, T ], πT

S , R+}, whilst X
w

denotes the closure of

X ⊂ L1[0, T ] or X ⊂ L1
loc in the weak topology of L1[0, T ] or in the topology

T w
loc, respectively.

Proof. (of Theorem 3.3.) To prove 1, we first assume that X ∈ ker{μT }. It
means that μT (X) = c(πT (X)) = 0 and therefore πT (X)

w
is weakly compact

in L1[0, T ] for T ≥ 0. Hence, in view of (3.1) we obtain that π̂T (h(X))
w

is
weakly compact in L1[0, T ] for T ≥ 0. Applying Lemma 2.4 we get

h(X) = lim←−

{
π̂T (h(X))

w
, πT

S , R+

}
.

Using Lemma 2.3 and above-established facts, we derive that lim←−{π̂T (h(X))
w
,

πT
S , R+} is compact and therefore h(X) = h(X

w
) is also compact. Since h is

a homeomorphism then X
w

is also compact in T w
loc and X ∈ NL1

loc
.
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Now let us assume that X ∈ NL1
loc

. Then X
w

is compact in T w
loc and

therefore πT (X
w
) is weakly compact in L1[0, T ], T ≥ 0. Hence, in virtue of

Lemma 2.6 we obtain:

μT (X) = c(πT (X)) ≤ c
(
πT (X

w
)
)

= 0, T ≥ 0,

i.e., X ∈ ker{μT }.
The properties 2, 4, 5 are easy consequence of analogous properties of

the measure c(·) given in Lemma 2.6.
Now we prove 3. Let us fix X ⊂ L1

loc. Using Lemma 2.6 3 and inclusion
πT (X

w
) ⊂ πT (X)

w
[see (2.4) for f = πT , Bn := X,n = 1, 2, . . .] we get

c(πT (X)) = c(πT (X)
w
) ≥ c(πT (X

w
)) ≥ c(πT (X)).

Hence, c(πT (X)) = c(πT (X
w
)) and by (3.3) we get

μT (X) = μT (X
w
).

Next, keeping in mind inclusion πT (Y
F

) ⊂ πT (Y ) for Y ∈ L1
loc, the equality

πT (conv(X)) = conv(πT (X)) for X ⊂ L1
loc and applying Lemma 2.6 3, we

derive that

c(πT (X)) ≤ c(πT (convX)) ≤ c(πT (convX
F

))

≤ c(πT (convX)) = c(conv(πT (X))) = c(πT (X)).

In view of (3.3), this means that μT (X) = μT (convX
F

) for T ≥ 0.
To prove 6, assume that Xn ∈ ML1

loc
,Xn = Xn

w
, Xn+1 ⊂ Xn for

n = 1, 2, . . . and limn→∞ μT (Xn) = 0 for T ≥ 0. Applying Lemma 2.5 we get

∞⋂
n=1

h(Xn) = lim←−

{ ∞⋂
n=1

π̂T (h(Xn))
w
, πT

S , R+

}
.

Using (3.1) we derive

∞⋂
n=1

h(Xn) = lim←−

{ ∞⋂
n=1

πT (Xn)
w
, πT

S , R+

}
. (3.4)

In view of Lemma 2.6 3, we have

lim
n→∞ c(πT (Xn)

w
) = lim

n→∞ c(πT (Xn)) = lim
n→∞μT (Xn) = 0.

Then, in virtue of Lemma 2.6 6, we obtain that
⋂∞

n=1 πT (Xn)
w

is nonempty
and weakly compact in L1[0, T ] for T ≥ 0. Keeping in mind Lemma 2.3 and
(3.4) we get that

⋂∞
n=1 h(Xn) is nonempty and compact. Hence and since h

is homeomorphic, we get
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∞⋂
n=1

h(Xn) =
∞⋂

n=1

h(Xn
w
) = h

( ∞⋂
n=1

Xn
w

)
,

i.e.,
⋂∞

n=1 Xn
w

=
⋂∞

n=1 Xn = X∞ is nonempty and compact in L1
loc. �

As an immediate consequence of Theorem 3.3 1, we have the following
corollary.

Corollary 3.5. A subset X ⊂ L1
loc is relatively compact in the topology T w

loc if
and only if πT (X) is relatively weakly compact in L1[0, T ] for T > 0.

Lemma 3.6. [14] A subset X of L1([0, T ]) is relatively compact if and only if X
is relatively weakly compact and every sequence in X has an a.e. convergent
subsequence.

We call a subset X ⊂ L1[0, T ] a.e. equicontinuous on [0, T ], if for each
ε > 0 there is a closed subset Dε ⊂ [0, T ] such that m(D′ε) ≤ ε and the
restriction of all functions from X to the set Dε form an equicontinuous
family of functions.

A subset X ⊂ L1[0, T ] is said to be countable a.e. equicontinuous on
[0, T ] if every sequence {xn} ⊂ X has a subsequence {xn}, which is a.e.
equicontinuous on [0, T ].

The following lemma is based on ideas from [5,6].

Lemma 3.7. Assume that a subset X ⊂ L1[0, T ] is bounded (in norm). Then
X is relatively compact if and only if X is relatively weakly compact and
countable a.e. equicontinuous on [0, T ].

Proof. We first suppose that X is a relatively compact subset of the Banach
space L1[0, T ]. Since the set X is also weakly relatively compact, then it suf-
fices to show that X is countable a.e. equicontinuous. Let us choose arbitrary
sequence {xn} ⊂ X and ε > 0. From Lemma 3.6, Egorov’s and Lusin’s theo-
rems it follows that there are a closed subset Dε ⊂ [0, T ] and a subsequence
{xn} of the sequence {xn} such that m(D′ε) < ε, xn are continuous on Dε for
n = 1, 2, . . . and the sequence {xn} is uniformly convergent on Dε. This fact,
together with Ascoli–Arzéla theorem, implies that {xn} is equicontinuous on
Dε, i.e., X is countable a.e. equicontinuous.

Now we assume that a subset X ⊂ L1[0, T ] is weakly relatively compact
and countable a.e. equicontinuous. Let us fix arbitrary sequence {xn} ⊂ X.
The countable a.e. equicontinuity of X, Ascoli–Arzéla theorem and the diag-
onal method yield that there is a subsequence {xn} of {xn} such that {xn}
is a.e. convergent in [0, T ]. Applying Lemma 3.6 we infer that X is relatively
compact in L1[0, T ]. �

As an immediate consequence of above lemma and Proposition 2.2,
we have the following lemma.

Lemma 3.8. Assume that a subset X ⊂ L1
loc is bounded. Then X is relatively

compact in the topology T F
loc if and only if X is relatively compact in the

topology T w
loc and X is countable a.e. equicontinuous on bounded subintervals

of R+.
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Lemma 3.9. [7] Assume that (S, d) is a complete metric space. Let X,Xn,
n = 1, 2, . . . be nonempty subsets of S such that Xn are relatively compact for
n = 1, 2, . . . and

lim
n→∞D(X,Xn) = 0

where D(·, ·) denotes the Hausdorff distance between sets. Then the set X
is also relatively compact.

4. Example of Applications of the Family of Measures of
Noncompactness {µT }T ≥0

To demonstrate the applicability of the family of measures of noncompactness
{μT }T≥0 in the space L1

loc with the topology T w
loc, we give in this section an

application to certain nonlinear Volterra integral equation of the form

x(t) = f

⎛
⎝t,

t∫

0

v(t, s, x(s))ds

⎞
⎠ , t ∈ R+, (4.1)

where we look for solutions of Eq. (4.1) in the space L1
loc.

For further purposes, we collect a few auxiliary facts.
Let us assume that J ⊂ R is a given measurable subset and S is a metric

space. We say that a function f(t, x) = f : J ×S → R satisfies Carathéodory
conditions if it is measurable in t for any x ∈ S and is continuous in x for
almost all t ∈ J . The theorem of Scorza Dragoni given bellow explains the
structure of functions satisfying Carathéodory conditions.

Theorem 4.1. Let f : J × S → R be a function satisfying Carathéodory
conditions. Then, for each ε > 0 there exists a closed subset Dε of the set J
such that m(J\Dε) ≤ ε and f |Dε×S is continuous.

Now, let us assume that I ⊂ R+ is a given interval, bounded or not. In
what follows we will always assume that a function f : I ×R+ → R+ satisfies
Carathéodory conditions. Then, to every real function x = x(t) which is
measurable on I, we may assign the function (Fx)(t) = f(t, x(t)), t ∈ I. It
is well known that the function Fx is also measurable on I. The operator F
defined in such a way is said to be the superposition (or Nemytskii) operator
generated by the function f . Using some facts from [4] we can prove the
following theorem.

Theorem 4.2. The operator F generated by the function f(t, x) maps con-
tinuously the space L1

loc with the Fréchet topology T F
loc into itself if and only

if |f(t, x)| ≤ a(t) + b(t)|x| for all t ∈ R+ and x ∈ R+, where a is nonneg-
ative function from L1

loc and b is measurable and locally essentially bounded
nonnegative function defined on R+.

Finally, we proceed by recalling some facts concerning the linear Volterra
integral operator in L1

loc.
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To begin denote by Δ the triangle Δ = {(t, s) : 0 ≤ s ≤ t} and assume
that k : Δ → R+ is a given function which is measurable with respect to
both variables. Next, for an arbitrary function x ∈ L1

loc let us put

(Kx)(t) :=

t∫

0

k(t, s)x(s)ds, t ∈ R+.

The operator K defined in such a way is the well-known linear Volterra
integral operator. The lemma given below contains a fundamental property
of the Volterra integral operator (see [17]).

Lemma 4.3. If the Volterra integral operator K transforms the space L1
loc into

itself, then it is continuous in the Fréchet metric topology T F
loc.

For such operator K, let us put KT := K|L1[0,T ], i.e., KT is the re-
striction of the operator K to the Banach space L1[0, T ]. The operator
KT : L1[0, T ] → L1[0, T ] is continuous (cf. [14,17]), and the norm of the
linear operator KT we denote by ||KT || for T ≥ 0.

Equation (4.1) will be investigated under the following assumptions:
(i) The function f : R+ × R → R satisfies Carathéodory conditions and

there exist functions: a measurable locally essentially bounded b : R+ →
R+ and a ∈ L1

loc such that

|f(t, x)| ≤ a(t) + b(t)|x|
for t ∈ R+ and x ∈ R.

(ii) The function v(t, s, x) = v : R+ × R+ × R → R satisfies Carathéodory
conditions, i.e., the function t → v(t, s, x) is measurable on R+ for all
(s, x) ∈ R+ × R and the function (s, x) → v(t, s, x) is continuous on the
set R+ × R for each a.e. t ∈ R+.

(iii)

|v(t, s, x)| ≤ k(t, s)(a1(s) + b1(s)|x|)
for (t, s, x) ∈ R+ × R+ × R, where b1 : R+ → R+ is locally essentially
bounded function and a1 ∈ L1

loc. Moreover, we assume that the function
k(t, s) = k : R+ × R+ → R+ satisfies Carathéodory conditions and
is such that the linear Volterra integral operator K generated by the
function k(t, s), that is,

(Kx)(t) :=

t∫

0

k(t, s)x(s)ds t ≥ 0,

transforms the space L1
loc into itself.

(iv)

b(T )b1(T )||KT || < 1

for T ≥ 0, where

b(T ) := ess sup
t∈[0,T ]

b(t), b1(T ) := ess sup
t∈[0,T ]

b1(t).
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The existence result is contained in the following theorem.

Theorem 4.4. Under assumptions (i)–(iv) Eq. (4.1) has at least one solution
x = x(t) which belongs to the space L1

loc. Moreover

|x(t)| ≤ ||a||t + b(t)||a1||t||Kt||
1 − b(t)b1(t)||Kt||

, for a.e. t ≥ 0. (4.2)

Proof. Consider the operator G : L1
loc → L1

loc defined by the right side of
Eq. (4.1). Observe that G can be written as the product

G = FV

where F is Nemytskii operator and the operator V : L1
loc → L1

loc is given by
formula

(V x)(t) :=

t∫

0

v(t, s, x(s))ds, t ≥ 0.

Let us fix arbitrary x ∈ L1
loc and t ∈ R+. Then, in view of (i)–(iii) we have

||Gx||t ≤
t∫

0

∣∣∣f
⎛
⎝s,

s∫

0

v(s, τ, x(τ))dτ

⎞
⎠
∣∣∣ds ≤ ||a||t + b(t)||a1||t||Kt||

+ b(t)b1(t)||Kt||||x||t.
This means that

||Gx||t ≤ A(t) + B(t)||x||t, (4.3)

where

A(t) := ||a||t + b(t)||a1||t||Kt||, B(t) := b(t)b1(t)||Kt||.
Now we define the nonnegative, nondecreasing function r : R+ → [0,∞) and
the subset B of L1

loc as follows:

r(t) :=
A(t)

1 − B(t)
, (4.4)

B := {x ∈ L1
loc : ||x||t ≤ r(t) for t ≥ 0}.

The set B is convex and bounded in L1
loc. Condition (4.3) ensures that G

transforms B into itself, i.e.,

G : B → B. (4.5)

Moreover, the set

πT (B) = {x ∈ L1[0, T ] : ||x||t ≤ r(t) for t ∈ [0, T ]}
is convex and closed in the Banach space L1[0, T ], so it is weakly closed in
L1[0, T ] for T ≥ 0. Since

B =
⋂

T≥0

π−1
T (πT (B)),
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then B is closed in the topology T w
loc, i.e.,

B
w

= B. (4.6)

Next, keeping in mind the inequality from assumption (iii) and apply-
ing the so-called majorant principle (cf. [14,17]), we infer that the operator
V |L1[0,T ] : L1[0, T ] → L1[0, T ] is continuous. This fact together with Propo-
sition 2.2 1, implies that (we omit details of this reasoning)

V : L1
loc → L1

loc is continuous in the topology T F
loc. (4.7)

Further, let us take a nonempty subset X of the set B and an arbitrary
number T ≥ 0. Fix a number ε > 0 and a nonempty subset D of [0, T ] such
that D is measurable and m(D) ≤ ε. Then, for arbitrarily fixed x ∈ X we
obtain:
∫

D

|(Gx)(t)|dt ≤
∫

D

a(t)dt + b(T )
∫

D

∣∣∣
t∫

0

v(t, s, x(s))ds
∣∣∣dt

≤
∫

D

a(t)dt + b(T )
∫

D

(Ka1)(t)dt + b(T )b1(T )||KT ||
∫

D

|x(t)|dt.

Keeping in mind absolute continuity of integrals of functions a and Ka1 and
letting ε → 0+ we have

μT (GX) ≤ b(T )b1(T )||KT ||μT (X). (4.8)

In the sequel let us put B0 = B,Bn = convG(Bn−1)
w
, n = 1, 2, . . .,

where convG(Bn−1) denotes the convex hull of the G(Bn−1). Notice that in
view of (4.5) and (4.6) we have Bn ⊂ Bn−1 for all n ∈ N. Moreover, all sets
belonging to this sequence are convex and closed in T w

loc. Apart from this we
have

μT (Bn) ≤ (b(T )b1(T )||KT ||)nμT (B), T ≥ 0,

which, together with (iv) and μT (B) < ∞, yields that limn→∞ μT (Bn) = 0
for T ≥ 0. Hence, taking into account 6, in Theorem 3.3 we deduce that the
set B∞ :=

⋂∞
n=1 Bn is nonempty, convex, and compact in T w

loc. This means
that

lim
ε→0+

⎧⎨
⎩ sup

x∈B∞

⎧⎨
⎩sup

⎧⎨
⎩
∫

D

|x(t)|dt : D ⊂ [0, T ],m(D) ≤ ε

⎫⎬
⎭

⎫⎬
⎭

⎫⎬
⎭ = 0, T ≥ 0.

(4.9)

Further, we consider the sequence of the operators Pn : B → B,
n = 1, 2, . . . defined by formula

(Pnx)(t) :=
{

x(t) when |x(t)| ≤ n,
n · sgn(x(t)) when |x(t)| > n.

We show that V B∞ is relatively compact in the space L1
loc with the

topology T F
loc. To this end we apply Lemma 3.9. In order to prove that
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limn→∞D(V B∞, V PnB∞) = 0 let us fix a number T > 0 and let us put

Ax,n := {t ∈ [0, T ] : x(t) 	= (Pnx)(t)} for x ∈ B∞, n ∈ N.

Since all functions of the set B∞ are uniformly bounded in || · ||T then

lim
n→∞ sup{m(Ax,n) : x ∈ B∞} = 0. (4.10)

Let us fix x ∈ B∞. Keeping in mind that |(Pnx)(s)| ≤ |x(s)| we get

||V x − V Pnx||T ≤
T∫

0

∫

Ax,n

k(t, s)(a1(s) + b1(s)|x(s)|)dsdt

+

T∫

0

∫

Ax,n

k(t, s)(a1(s) + b1(s)|(Pnx)(s)|)dsdt

≤ 2||KT ||
∫

Ax,n

(a1(s) + b1(s)|x(s)|)ds.

Linking (4.10), absolute continuity of integrals of function a1 and (4.9) we
derive that

lim
n→∞ sup

x∈B∞
||V x − V Pnx||T = 0 for T ≥ 0.

This equality together with inclusion V PnB∞ ⊂ V B∞ imply that

lim
n→∞D(V B∞, V PnB∞) = 0, (4.11)

where D(·, ·) denotes the Hausdorff distance in the Fréchet metric space
(L1

loc, d). Now we show that V PnB∞ is relatively compact in the topology
T F

loc. In order to do this we apply Lemma 3.8. Essentially the same reasoning
as in (4.8) guarantees that μT (V PnB∞) = 0 for T ≥ 0. This, together with
Corollary 3.5 implies that V PnB∞ is relatively compact in the topology T w

loc.
This set is also bounded. So, it suffices to show that the set V PnB∞ is count-
ably a.e. equicontinuous on bounded subsets. Let us fix a numbers T > 0
and ε > 0. In view of Luzin theorem, we can find a closed subset Dε of the
interval [0, T ] such that m(D

′
ε) ≤ ε, the functions v|Dε×R+×R and k|Dε×R+

are continuous. Now let us take arbitrarily t1, t2 ∈ Dε, t1 ≤ t2. Then, for
x ∈ B∞ we have

|(V Pnx)(t2) − (V Pnx)(t1)|

≤ TωT (v, |t2 − t1|) + k

t2∫

t1

a1(s)ds + k b1(T )

t2∫

t1

|x(s)|ds,

where ωT (v, ·) denotes the modulus of continuity of the function v on the set
Dε × [0, T ] × [−n, n] and k := max{k(t, s) : (t, s) ∈ Dε × [0, T ]}.

Keeping in mind uniform continuity of the function v on the compact set Dε×
[0, T ]×[−n, n], absolute continuity of the integral of the function a1 and (4.9),
we obtain that |(V Pnx)(t2) − (V Pnx)(t1)| is arbitrarily small provided the
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number t2 −t1 is small enough. This proves that the set V PnB∞ is countably
a.e. equicontinuous on bounded intervals. Linking all established facts and
applying Lemma 3.8, we conclude that V PnB∞ is relatively compact in T F

loc.
Using these facts, (4.11) and Lemma 3.9 we derive that V B∞ is also relatively
compact in T F

loc. Taking into account the continuity of F : L1
loc → L1

loc (see
Theorem 4.2), we get that GB∞ = FV B∞ is also relatively compact in T F

loc.

In the last step of the proof let us consider the set Y = convGB∞
F

.
Obviously Y is convex and compact subset of the space L1

loc with the topol-
ogy T F

loc and in view of (4.7) and Theorem 4.2, the operator G = FV trans-
forms continuously the set Y into itself. Thus, applying the classical Tichonov
fixed point principle we conclude that there is a solution x ∈ B∞ ⊂ L1

loc of
Eq. (4.1). Moreover, linking the definition of the set B and (4.4) we obtain
estimation (4.2). This completes the proof of our theorem. �

Remark 4.5. Let us observe that our Theorem 4.4 generalizes Theorems 4.1
from [5,6] on existence of solutions in L1(R+). Indeed, Eq. (4.1) is more gen-
eral than those considered in [5,6]. Moreover, the assumptions of Theorems
in [5,6] imply our assumptions (i)–(iv). Then, in virtue of Theorem 4.4 there
is a solution x ∈ L1

loc satisfying (4.2). Since those assumptions in [5,6] yield
that the right side of (4.2) belongs to L1(R+) then x ∈ L1(R+).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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[5] Banaś, J., Chlebowicz, A.: On existence of integrable solutions of a functional
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[6] Banaś, J., Chlebowicz, A.: On integrable solutions of a nonlinear Volterra
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