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1. Introduction

The study of multipliers for various Laguerre systems began with the paper of
D�lugosz [3]. In [17] Stempak and Trebels studied multipliers for Laguerre ex-
pansions of convolution type. Recent papers dealing with Laplace transform
type multipliers for the same Laguerre system are the articles by Drelich-
man, Durán, de Nápoli [4], and Szarek [18]. These types of multipliers, again
for Laguerre expansions of convolution type, were also studied by Nowak
and Szarek in [12]. In [13] Sasso treated the topic in the Laguerre polyno-
mials setting. Laplace transform type multipliers have been also considered
for continuous orthogonal systems, see for instance Betancor, Mart́ınez and
Rodŕıguez-Mesa [1].

In this article we study Laplace transform type and Laplace-Stieltjes
type multipliers associated with Laguerre function expansions of Hermite
type (see Section 2 for the definitions). Laplace transform type multipliers are
given by mκ(x) = x

∫∞
0

e−xtκ(t) dt and have their roots in Stein’s monograph
[14, p. 58, 121]. Laplace-Stieltjes type multipliers, mμ(x) =

∫∞
0

e−xt dμ(t),
are defined according to [4] (this definition has been also used in [12] and
[18]). To treat Laplace transform type multipliers we use methods developed
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in [10], supported by an adaptation of the technicalities from [21]. In this con-
text the paper is a generalization of the results obtained by the author in [20].
Note that the (unweighted) Lp-boundedness, 1 < p < ∞, of the multiplier
operator mκ(Lα) follows from the refinement of Stein’s general Littlewood-
Paley theory for semigroups (see [14, Corollary 3, p. 121]) due to Coifman,
Rochberg and Weiss [2]. The assumption needed here is the Lp contractivity
of e−tLα , which is true precisely for α ∈ ({−1/2} ∪ [1/2,∞))d, see [9]. To
treat Laplace-Stieltjes type multipliers we use some pointwise estimates for
the heat-semigroup kernel, see Lemma 2.4.

The main result of our paper is Theorem 2.5. We prove it assuming
α ∈ ({−1/2} ∪ [1/2,∞))d. However, with the sole exception of the smooth-
ness conditions, all the partial results of our paper are valid under the weaker
assumption α ∈ [−1/2,∞)d. Since the techniques we use break down if
αk ∈ (−1/2, 1/2), for some k = 1, . . . , d, we do not know if the smoothness es-
timates (or even its weaker variants) hold in this case. This is in contrast with
analogous smoothness estimates in the case of Laguerre function expansions
of convolution type, which are true for all α ∈ (−1,∞)d, see [12, Theorem
3.1]. The difference between these two cases of orthogonal expansions, as en-
lightened in [9], is the fact that the heat semigroup for Laguerre function ex-
pansions of convolution type is Lp contractive for all α ∈ (−1,∞)d, whereas,
in our case we have Lp contractivity only for α ∈ ({−1/2}∪ [1/2,∞))d. Note
that the lack of Lp contractivity if some αk ∈ (−1/2, 1/2), k = 1, . . . , d,
prevents us from using the general theory for the multiplier mκ in this case.
Therefore, if αk ∈ (−1/2, 1/2), for some, k = 1, . . . , d, we do not know not
only if the operators mκ(Lα) are Calderón-Zygmund operators, but also if
they are bounded on Lp, p ∈ (1,∞) \ {2}. Having Theorem 2.5 and Proposi-
tion 2.6, we are able to use the general Calderón-Zygmund theory. Thus, in
Corollary 2.7, we obtain that both mκ(Lα) and mμ(Lα), are bounded from
L1(w) to L1,∞(w), and on all Lp(w), 1 < p < ∞, spaces (with weights w
from the Ap Muckenhoupt class).

The paper is organized as follows. Section 2 contains the setup, the defi-
nitions of both Laplace transform type and Laplace-Stieltjes type multipliers,
basic lemmata and the statement of the main theorem. In particular we give
the definitions of the Calderón-Zygmund kernels Kα

κ (x, y) and Kα
μ (x, y) asso-

ciated in the sense of the Calderón-Zygmund theory to mκ(Lα) and mμ(Lα),
respectively, see Proposition 2.6. Section 3 is devoted to the proof of the main
theorem. In subsection 3.1 we justify the growth and smoothness conditions
for the kernel Kα

κ (x, y), by referring to analogous proofs from [21]. Therefore
we omit most of details. In subsection 3.2 we show the growth and smooth-
ness estimates for the kernel Kα

μ (x, y).
Throughout the paper we use a fairly standard notation with all symbols

referring to R
d
+ = (0,∞)d. Thus Ap = Ap(Rd

+) stands for the Muckenhoupt
class of Ap weights, Lp(w) = Lp(Rd

+, w(x)dx) denotes the weighted Lp space
(w being a non-negative weight on R

d
+); we simply write Lp if w ≡ 1. By

〈f, g〉 we mean the canonical inner product in L2. The symbol ∇x represents
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the gradient operator with respect to the x variable. The notation X � Y
will be used to indicate that X ≤ CY with a positive constant C independent
of significant quantities. We write X ≈ Y when X � Y and Y � X. We shall
also make a frequent use, often without mentioning it in relevant places, of
the fact that for any A > 0 and a ≥ 0,

sup
t>0

tae−At = Ca,A <∞.

2. Preliminaries

Since the setting and majority of the notation we use are the same as in [20]
and [21] we shall be brief. Let ϕα

k (x) = ϕα1

k1
(x1) · . . . · ϕαd

kd
(xd) be the system

of d-dimensional Laguerre functions of Hermite type (as in [19, 6.4.12]), with
k = (k1, . . . , kd) ∈ N

d and α = (α1, . . . , αd) ∈ (−1,∞)d. Each ϕα
k is an

eigenfunction of the operator

Lα = −Δ + |x|2 +
d∑

i=1

1
x2
i

(
α2
i −

1
4

)

corresponding to the eigenvalue λα
|k| = 4|k|+ 2|α|+ 2d; here Δ is the Lapla-

cian restricted to R
d
+, |α| = α1 + . . .+αd and |k| = k1 + . . .+kd is the length

of k. Moreover, {ϕα
k : k ∈ N

d} is an orthonormal basis in L2.
Let Lα be the self–adjoint extension of Lα for which the spectral de-

composition is given by ϕα
k and let {Tα

t } denote the heat-diffusion semigroup
Tα
t = e−tLα . Then for f ∈ L2

Tα
t f(x) =

∫
Rd

+

Gα
t (x, y)f(y) dy, x ∈ R

d
+,

with

Gα
t (x, y) =

∞∑
n=0

e−tλα
n

∑
|k|=n

ϕα
k (x)ϕα

k (y) (2.1)

= (sinh 2t)−d exp
(
−1

2
coth 2t

(|x|2 + |y|2)) d∏
i=1

√
xiyiIαi

( xiyi
sinh 2t

)
,

where Iν , ν > −1, is the modified Bessel function of the first kind and order
ν. It is known, that Iν(z), as a function of z > 0, is real, positive, smooth
and satisfies

d

dz
Iν(z) =

ν

z
Iν(z) + Iν+1(z). (2.2)

We shall use the standard asymptotics,

Iν(z) ≈ zν , z → 0+, Iν(z) ≈ z−
1
2 ez, z →∞, (2.3)

and the following lemmata.
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Lemma 2.1. (See [7]). Let ν ≥ −1/2. Then

0 < Iν(z)− Iν+1(z) <
2 (ν + 1)

z
Iν+1(z), z > 0.

Lemma 2.2. (See [21]). Let ν ≥ −1/2, then

z [2Iν+1(z)− Iν+2(z)− Iν(z)]− Iν+1(z) = O(z−3/2ez), z →∞.

Lemma 2.3. (See [15].) Given a > 1, we have∫ 1

0

u−a exp
(
−C|x− y|2

u

)
du � |x− y|−2a+2, x, y ∈ R

d
+.

The following Lemma shows that the heat kernel Gα
t (x, y) is dominated

up to a multiplicative constant by the heat kernel

Gt(x, y) = (2π)−d/2(sinh 2t)−d/2 exp
(
− 1

4 tanh t
|x− y|2 − tanh t

4
|x + y|2

)
corresponding to the harmonic oscillator.

Lemma 2.4. Given α ∈ [−1/2,∞)d, there exists a constant Cα such that

Gα
t (x, y) ≤ Cα Gt(x, y), t > 0, x, y ∈ R

d
+.

Proof. It is perhaps noteworthy that, for α ∈ [1/2,∞)d we can take Cα = 1,
while for α = α0 = (−1/2, · · · ,−1/2) we can take Cα = 2d. The proof of this
statement makes use of the monotonicity of the function [1/2,∞) � ν → Iν(z)
(here z ∈ (0,∞) is fixed), see [10, Proposition 2.1]. Since we are not interested
in the precise value of Cα we use the standard asymptotics for the Bessel
function (2.3), obtaining the inequalities

Iαi

( xiyi
sinh 2t

)
� (xiyi)−1/2(sinh 2t)1/2 exp

( xiyi
sinh 2t

)
, i = 1, . . . , d.

The above in turn implies Gα
t (x, y) � (sinh 2t)−d/2e−T , where we set T =

1
2 coth 2t(|x|2 + |y|2) −∑d

i=1
xiyi

sinh 2t . Now, an elementary computation shows
that T = 1

4 tanh t |x− y|2 + tanh t
4 |x + y|2, hence the lemma follows. �

According to [14] we call a function m : (0,∞) → C a Laplace transform
type multiplier if it is of the form

m(x) = mκ(x) = x

∫ ∞

0

e−xtκ(t) dt, (2.4)

with κ being a bounded measurable function on (0,∞). It should be noted,
that m defined as above, satisfies Mihlin’s conditions of any order, that is,
|xjm(j)(x)| ≤ Cj , j = 0, 1, 2, . . . (in particular m is bounded). Remarkable
special cases of Laplace transform type multipliers include the imaginary
powers and functions of the form mλ(x) = x

x+λ , for Re(λ) > 0. The imag-
inary powers, mγ(x) = x−iγ , γ ∈ R, γ �= 0, are Laplace transform type
multipliers corresponding to κ(t) = 1

Γ(1+iγ) t
iγ . Lp boundedness properties of

the imaginary power operators in the context of our paper have been studied
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by the author in [20]. Thus the present paper includes results of [20] as spe-
cial cases. The other example, mλ(x), is a Laplace transform type multiplier
corresponding to κλ(t) = e−λt. Since mλ(x) = 1− λ

x+λ , the resulting operator
is the sum I + λ(−λ − Lα)−1, of the identity operator I and a constant λ
times the resolvent operator (−λ− Lα)−1.

Assume now that α ∈ [−1/2,∞)d. We call a function m : (0,∞) → C a
Laplace-Stieltjes type multiplier if it is of the form

m(x) = mμ(x) =
∫ ∞

0

e−xt dμ(t), (2.5)

where μ is a complex Borel measure on (0,∞) with total variation |μ| satisfy-
ing the condtition

∫∞
0

e−tdd|μ|(t) <∞. The latter assumption is a technical
one, well suited for our setting. It implies in particular that m(x) is bounded
on the halfline [d,∞) (hence, in view of α ∈ [−1/2,∞)d, also on the spectrum
σ(Lα) = {λα

n : n ∈ N}). Here, remarkable special cases of Laplace-Stieltjes
type multiplier operators include the Laguerre fractional integral operators
Iσ, σ > 0, and the resolvent operators Rλ = (−λ − Lα)−1, for Re(λ) > −d.
The operators Iσ = (Lα)−σ, correspond to the choice of mσ(x) = x−σ, and
dμσ(t) = 1

Γ(σ) t
σ−1 dt. Lp−Lq boundedness properties of these operators have

been studied by Nowak and Stempak in [11]. Thus Theorem 2.5 of this paper
contains an enhancement of [11, Theorem 3.1] in the case p = q. The resolvent
operators correspond to the choice of mλ(x) = − 1

x+λ and dμλ(t) = −e−λt dt.
It should be noted that in many cases the two definitions are comparable

up to a constant. Namely, if we assume for example that κ is bounded and
continuously differentiable, limt→0+ κ(t) = κ(0) exists, and κ′ is integrable
then

x

∫ ∞

0

e−xtκ(t) dt = κ(0) +
∫ ∞

0

e−xtκ′(t) dt.

The left hand side of the above equation is a Laplace transform type multiplier
mκ of the function κ, while the right hand side is a constant plus a Laplace-
Stieltjes type multiplier mμ of the measure μ with the density κ′(t). On
the level of multiplier operators the above equation says that, mκ(Lα) −
mμ(Lα) = κ(0)I, where I is the identity operator. From now on, whenever we
refer to both Laplace transform type and Laplace-Stieltjes type multipliers,
for short we use the phrase ’Laplace type multiplier’.

For a Laplace type multiplier m by the spectral theorem we have

m(Lα)f =
∑
k∈Nd

m
(
4|k|+ 2|α|+ 2d

) 〈f, ϕα
k 〉ϕα

k , f ∈ L2. (2.6)

Since in both definitions (2.4) and (2.5) the function m is bounded on the
spectrum of Lα, m(Lα) is a bounded operator on L2. Motivated by the fact
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that (at least formally) we have

mκ(Lα)f(x) = Lα

∫ ∞

0

e−tLαf(x)κ(t) dt =
∫ ∞

0

− d

dt
Tα
t f(x)κ(t) dt

=
∫
Rd

+

(
−
∫ ∞

0

d

dt
Gα
t (x, y)κ(t) dt

)
f(y) dy,

we define the kernel of the Laplace transform type multiplier mκ as

Kα(x, y) = Kα
κ (x, y) = −

∫ ∞

0

d

dt
Gα
t (x, y)κ(t) dt. (2.7)

Analogously, the formal computations

mμ(Lα)f(x) =
∫ ∞

0

e−tLαf(x) dμ(t) =
∫
Rd

+

(∫ ∞

0

Gα
t (x, y)dμ(t)

)
f(y) dy,

lead us to define the kernel of the Laplace-Stieltjes type multiplier mμ as

Kα(x, y) = Kα
μ (x, y) =

∫ ∞

0

Gα
t (x, y)dμ(t). (2.8)

From the estimates that follow it can be deduced that the definitions (2.7),
(2.8) are valid for x �= y. The main result of our paper is the following.

Theorem 2.5. Let α ∈ ({−1/2}∪[1/2,∞))d and m be a Laplace type multiplier
given either by (2.4) or by (2.5). Then the kernel Kα(x, y) given either by
(2.7) or by (2.8), respectively, satisfies the growth condition

|Kα(x, y)| � |x− y|−d
, x, y ∈ R

d
+, (2.9)

and the smoothness condition

|∇xKα(x, y)|+ |∇yKα(x, y)| � |x− y|−d−1
, x, y ∈ R

d
+. (2.10)

The restriction α ∈ [−1/2,∞)d is to some extent natural, see [10, p. 407]
for additional comments. For some comments on the further restriction α ∈
({−1/2} ∪ [1/2,∞))d see the third paragraph of Section 1 of the present
paper. Methods from [16] can be easily adapted to prove the following.

Proposition 2.6. Let α ∈ [−1/2,∞)d and m be a Laplace type multiplier
given either by (2.4) or by (2.5). Then the multiplier operator defined by
(2.6), is associated with the kernel Kα(x, y) given either by (2.7) or by (2.8),
respectively, in the sense that for any two functions f, g ∈ C∞c

(
R

d
+

)
with

disjoint supports we have

〈m(Lα)f, g〉 =
∫
Rd

+

∫
Rd

+

Kα(x, y)f(y)g(x) dy dx.

Proof. In the case of the multiplier mκ we need to slightly modify the rea-
soning from [20]. It is enough to observe that the relevant proof in [20] is also
valid if we replace therein t−iγ by the bounded function κ(t). In the case of
the multiplier mμ, looking in detail at the argument used in the proof of [16,
Proposition 4.2], together with some pointwise estimates for the Laugerre
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functions ϕα
k , see for instance [8, Section 5], shows that in order to repeat

that argument in the present situation it is enough to verify that∫
Rd

+

∫
Rd

+

∫ ∞

0

∣∣∣Gα
t (x, y)f(y)g(x)

∣∣∣ d|μ|(t) dy dx <∞.

The above follows from the proof of the growth condition for the kernel
Kα

μ (x, y), see Section 3.2. �

By the general Calderón-Zygmund theory, see for instance [5], combining
Theorem 2.5, Proposition 2.6 and the fact that m(Lα) is bounded on L2, we
also get the following.

Corollary 2.7. Let α ∈ ({−1/2} ∪ [1/2,∞))d and m be a Laplace type multi-
plier given either by (2.4) or by (2.5). Then the multiplier operator m(Lα),
defined initially on L2 by (2.6), extends uniquely to a bounded operator on
Lp(w), 1 < p < ∞, w ∈ Ap, and to a bounded operator from L1(w) to
L1,∞(w), w ∈ A1.

3. Proof of Theorem 2.5

3.1. The case of Kα
κ (x, y)

Since the structure of the proofs and the proofs themselves are similar to
those from [21], we shall be brief. We use the change of variable

t = t(u) =
1
2

log
1 + u

1− u
. (3.1)

It seems that the proof would be less complicated without using the above,
however since in [21] we relied deeply on (3.1) and here we concentrate on
adapting the reasoning from the latter paper, for the sake of readers conve-
nience, we maintain using (3.1). Till the end of this subsection, the following
notation from [21] will be used:

A = A(u) =
1 + u2

4u
, B = B(u) =

1− u2

2u
, Zi = Zi(u, xi, yi) = Bxiyi,

√
xy =

d∏
i=1

√
xiyi, Iα(Z) =

d∏
i=1

Iαi
(Zi),

Dν = Dν(x1, y1, u) = −2Ax1Iν(Z1) + By1Iν+1(Z1) +
ν + 1/2

x1
Iν(Z1),

W =
d∑

i=1

Zi −A(|x|2 + |y|2), Wk = W − Zk, Uk = x2
k + y2k +

∑
i �=k

(xi − yi)2.

Further, in several places we will need to split Dν ; as it can be easily seen

Dν = Mν
1 + Mν

2 + Mν
3 +

ν + 1/2
x1

Iν(Z1),
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where

Mν
1 = (−x1 + y1)

1
2u

Iν(Z1), Mν
2 = −(x1 + y1)

u

2
Iν(Z1),

Mν
3 = By1(Iν+1(Z1)− Iν(Z1)). (3.2)

In the proof of the standard estimates for the kernel Kα(x, y) the following
lemma justified in [21] will be used.

Lemma 3.1. Let u ∈ (0, 1), α ∈ [−1/2,∞)d, i = 1, . . . , d. We have

(A) log( 1+u
1−u ) ≈ u for u ∈ (0, 1/2), log( 1+u

1−u ) � (1 − u)−1/2 for u ∈ (1/2, 1);
consequently, log 1+u

1−u � u (1− u)−1/2.

(B) A � u−1, B � u−1; moreover, if u ∈ (1/2, 1), then B ≤ 3/4 and
−A ≤ −1/2.

(C) Zi ≈ (1− u)u−1xiyi; in particular for u ∈ (0, 1/2), Zi ≈ xiyi

u , while for
u ∈ (1/2, 1), Zi ≈ (1− u)xiyi.

(D) W = − 1
4u |x− y|2 − u

4 |x + y|2 ≤ − 1
4u |x− y|2.

(E) If u ∈ (1/2, 1), then W ≤ − 1
8 |x + y|2 − 1

4 |x− y|2.
(F) Wk ≤ − 1

4uUk ≤ − 1
4u |x− y|2.

(G) If Z1 < 1, then Iα1
(Z1) � ( 1−u

u )α1(x1y1)α1 � u1/2(1−u)−1/2(x1y1)−1/2.

(H) Iαi
(Zi) � (xiyi)−1/2u1/2(1− u)−1/2eZi .

(I) |Iαi+1(Zi)− Iαi(Zi)| � (xiyi)−1u(1− u)−1Iαi+1(Zi) � (xiyi)−3/2

×u3/2(1− u)−3/2eZi .

We will first justify the growth estimate (2.9), under the assumption
α ∈ [−1/2,∞)d. We follow the outline of the proof of the growth condition
for the kernel K(x, y) from [21, pp. 56–58]. Using (3.1) we see that it suffices
to show that

∫ 1

0
|Ku(x, y)| du � |x− y|−d, where

Ku(x, y) = (1− u2)−1κ(t)
d

dt
Gα
t (x, y)

∣∣∣∣
t= 1

2 log 1+u
1−u

,

so that Kα(x, y) =
∫ 1

0
Ku(x, y) du. Differentiating (2.1), with the aid of (2.2),

we see that d
dtGα

t (x, y) equals

− 2d cosh 2t(sinh 2t)−d−1e−
1
2 coth 2t(|x|2+|y|2)

d∏
i=1

√
xiyiIαi

( xiyi
sinh 2t

)

+
(|x|2 + |y|2) (sinh 2t)−d−2e−

1
2 coth 2t(|x|2+|y|2)

d∏
i=1

√
xiyiIαi

( xiyi
sinh 2t

)

− 2 cosh 2t(sinh 2t)−d−2e−
1
2 coth 2t(|x|2+|y|2)Sα

t (x, y)
d∏

i=1

√
xiyi,
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with

Sα
t (x, y)

=
d∑

j=1

[
αj sinh 2t Iαj

( xjyj
sinh 2t

)
+ xjyjIαj+1

( xjyj
sinh 2t

)]∏
i �=j

Iαi

( xiyi
sinh 2t

)
.

After some rearrangement of terms we write cosh 2t Sα
t (x, y) as

|α| cosh 2t sinh 2t
d∏

i=1

Iαi

( xiyi
sinh 2t

)
+ 〈x, y〉

d∏
i=1

Iαi

( xiyi
sinh 2t

)

+
d∑

j=1

xjyj

[
Iαj+1

( xjyj
sinh 2t

)
− Iαj

( xjyj
sinh 2t

)]∏
i �=j

Iαi

( xiyi
sinh 2t

)

+ (cosh 2t− 1)
d∑

j=1

xjyjIαj+1

( xjyj
sinh 2t

)∏
i �=j

Iαi

( xiyi
sinh 2t

)
.

Using the above expression for cosh 2t Sα
t (x, y), together with the fact that

the change of variables (3.1) transforms sinh 2t into 2u
1−u2 and cosh 2t into

1−u2

1+u2 , we decompose Ku(x, y) =
∑4

i=1 Ki, where

K1 = −2(d + |α|)κ̃(u)(2u)−d−1(1− u2)d−1(1 + u2)
√
xy e−A(|x|2+|y|2) Iα(Z),

K2 = |x− y|2κ̃(u)(2u)−d−2(1− u2)d+1√xy e−A(|x|2+|y|2) Iα(Z),

K3 = 2κ̃(u)(2u)−d−2(1− u2)d+1√xy e−A(|x|2+|y|2) (3.3)

×
d∑

j=1

xjyj
[
Iαj (Zj)− Iαj+1(Zj)

]∏
i �=j

Iαi(Zi),

K4 = −κ̃(u)(2u)−d(1− u2)d
√
xy e−A(|x|2+|y|2)

d∑
j=1

xjyjIα+ej (Z),

with κ̃(u) = κ(tanh t). Therefore, to prove the growth condition for the kernel
Kα(x, y) it suffices to show that∫ 1

0

|Ki| du � |x− y|−d, i = 1, . . . , 4. (3.4)

Now, to avoid collision of symbols, we denote the expressions Ki, i = 1, . . . , 4,
appearing in the proof of the growth condition for the kernel K(x, y) in
[21, p. 57] by Ki, i = 1, . . . , 4. Then obviously, Ki = κ̃(u)(1 − u2)−1/2Ki.

Since κ̃ is bounded we may focus on showing that
∫ 1

0
|Ki|(1 − u2)−1/2 du �

|x − y|−d, i = 1, . . . , 4. This may be accomplished by following the proof of
the growth condition for the kernel K(x, y) from [21], with the aid of Lemma
3.1. Details and appropriate modifications are left to the reader.

Now we pass to the justification of the smoothness condition (2.10) for
the kernel Kα(x, y). From the symmetry in x and y of the kernel and the fact
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that none of the variables x1, . . . , xd is distinguished we see that in order to
prove (2.10) it suffices to show that∣∣∣∣

∫ 1

0

∂x1
Ku(x, y) du

∣∣∣∣ � |x− y|−d−1,

(differentiation under the integral sign is implicitly justified by the esti-
mates that follow). Using (2.2) we see that ∂x1

(
Iν(Z1)e−A(|x|2+|y|2)√x1y1

)
=

Dνe
−A(|x|2+|y|2)√x1y1. Hence, ∂x1Ku(x, y) =

∑9
k=1 J

α
k =

∑9
k=1 J

α
k (x, y, u),

where

Jα
1 =− 2(d + |α|)κ̃(u)(2u)−d−1(1− u2)d−1(1 + u2)

√
xye−A(|x|2+|y|2)Dα1

×
d∏

i=2

Iαi(Zi),

comes from differentiating K1,

Jα
2 = 2(x1 − y1)κ̃(u)(2u)−d−2(1− u2)d+1√xye−A(|x|2+|y|2)Iα(Z),

Jα
3 = |x− y|2κ̃(u)(2u)−d−2(1− u2)d+1√xye−A(|x|2+|y|2)Dα1

d∏
i=2

Iαi(Zi),

come from differentiating K2,

Jα
4 = 2κ̃(u)(2u)−d−2(1− u2)d+1√xye−A(|x|2+|y|2)

× (Dα1 −Dα1+1)x1y1

d∏
i=2

Iαi(Zi),

Jα
5 = 2κ̃(u)(2u)−d−2(1− u2)d+1y1

√
xye−A(|x|2+|y|2)

× (Iα1
(Z1)− Iα1+1(Z1))

d∏
i=2

Iαi
(Zi),

Jα
6 = 2κ̃(u)(2u)−d−2(1− u2)d+1√xye−A(|x|2+|y|2)

×Dα1

d∑
j=2

xjyj(Iαj (Zj)− Iαj+1(Zj))
∏
i �=1,j

Iαi(Zi),

come from differentiating K3, and finally

Jα
7 = −κ̃(u)(2u)−d(1− u2)dy1

√
xye−A(|x|2+|y|2)Iα+e1(Z),

Jα
8 = −κ̃(u)(2u)−d(1− u2)dx1y1

√
xye−A(|x|2+|y|2)Dα1+1

d∏
i=2

Iαi
(Zi),

Jα
9 = −κ̃(u)(2u)−d(1− u2)d

√
xye−A(|x|2+|y|2)

×Dα1+1

d∑
j=2

xjyjIαj+1(Zj)
d∏

i �=j,1

Iαi
(Zi),
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come from differentiating K4. Therefore, the proof of the smoothness condi-
tion for the kernel Kα(x, y) will follow, if we show that, for k = 1, . . . , 9,∫ 1

0

∣∣Jα
k (x, y, u)

∣∣ du � |x− y|−d−1. (3.5)

As previously, to avoid collision of symbols, we denote the expressions Jα
k ,

k = 1, . . . , 9, appearing in the proof of the smoothness condition for the
kernel K(x, y) in [21, pp. 58–59] by Jα

k , k = 1, . . . , 9. Then, clearly Jα
k =

κ(u)(1−u2)−1/2 Jα
k and since κ is bounded our task reduces to showing that∫ 1

0

(
1−u2)−1/2|Jα

k (x, y, u)
∣∣ du � |x− y|−d−1. This may be obtained by using

Lemma 3.1 and following (step by step) the scheme of the analogous proof
from [21, pp. 58–66]. As in the latter paper, when Z1 > 1, we also need to use
the splitting (3.2). In the present paper the whole task is a bit simpler (at
least in notation) than in [21], since the kernel Kα(x, y) is not vector–valued,
therefore we can use the gradient condition and do not need to use the mean
value theorem. The most subtle part is for k = 4, when we also need to use
Lemma 2.2. We omit the details, however for the sake of completeness, we
state the analogues of [21, Lemmata 4.2, 4.3, 4.4] in our context.

Lemma 3.2. Let ν = −1/2 or ν ∈ [1/2,∞), and b ≥ 0. Then

Eν,b = (|x|+ |y|)b
∫ 1

1/2

(1− u)d/2−1/2
∣∣Dν

√
x1y1e

W1
∣∣ du � |x− y|−d−1.

Lemma 3.3. Let ν = −1/2 or ν ∈ [1/2,∞), and a ≥ 0, b ≥ 0. Then,

R = Rν,a,b = (x1 + y1)b
∫ 1/2

0

u−d/2−a
∣∣Dν

√
x1y1e

W1
∣∣ du � |x− y|−d−2a+2−b.

Lemma 3.4. Let a ≥ 0, b ≥ 0. Then,

X =Xa,b = Xa,b(x, y) =
∫
(0,1/2)∩{Z1>1}

1
(x1)b

u−d/2−ae−
C
u |x−y|2 du

� |x− y|−d−2a+2−b.

The proofs of the above, are all similar to the proofs of [21, Lemmata 4.2,
4.3, 4.4], therefore we omit them.

3.2. The case of Kα
μ (x, y)

This time we will not use the change of the variable (3.1). As previously, we
start with justifying the growth estimate (2.9). By assumptions made on the
measure μ, in order to justify (2.9) it is enough to check that

Gα
t (x, y) � e−td|x− y|−d, t > 0, x, y ∈ R

d
+. (3.6)

This is easy since by Lemma 2.4 we have

Gα
t (x, y) � |x− y|−d

(
tanh t

sinh 2t

)d/2( |x− y|2
tanh t

)d/2

exp
(
−|x− y|2

4 tanh t

)
and then (3.6) follows.

Proving the smoothness estimate (2.10) for the kernel Kα
μ (x, y) note
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that once again the symmetry reasons and the fact that none of the variables
x1, . . . , xd is distinguished, reduce our task to showing that∣∣∣∣

∫ ∞

0

∂x1
Gα
t (x, y) dμ(t)

∣∣∣∣ � |x− y|−d−1

(differentiation under the integral sign is implicitly justified by the estimates
that follow). Again, it is enough to check the pointwise estimate

|∂x1
Gα
t (x, y)| � e−td|x− y|−d−1, t > 0, x, y ∈ R

d
+. (3.7)

With an aid of (2.2) a computation shows that

∂x1Gα
t =

(
−x1 coth 2t +

α1 + 1/2
x1

)
Gα
t +

y1
sinh 2t

Gα+e1
t (3.8)

= −1
2

(
(x1 − y1) coth t + (x1 + y1) tanh t− α1 + 1/2

x1

)
Gα
t

+
y1

sinh 2t
(Gα+e1

t − Gα
t

)
.

The use of the first identity above and the fact that Gα+e1
t ≤ Gα

t (which
follows from Lemma 2.1) allow to write

|∂x1
Gα
t (x, y)| �

(
(x1 + y1) coth 2t +

α1 + 1/2
x1

)
Gα
t (x, y). (3.9)

In the proof of (3.7) we shall consider the cases t ∈ (0, 1) and t ∈ [1,∞)
separately.

Assume first that t ≥ 1. The inequality
1
x1
Gα
t (x, y) � y1Gt(x, y), t ≥ 1, x, y ∈ R

d
+, (3.10)

valid when α1 ≥ 1/2 and which will be proved momentarily, together with
Lemma 2.4, gives from (3.9)

|∂x1
Gα
t (x, y)| � (x1 + y1)Gt(x, y), t ≥ 1, x, y ∈ R

d
+,

if either α1 = −1/2 or α1 ≥ 1/2. Verifying (3.7) for t ≥ 1 we now simply
write (using the explicit form of Gt(x, y))

|∂x1Gα
t (x, y)| � e−td(x1 + y1) exp

(
− tanh 1

4
|x + y|2

)
exp

(
−1

4
|x− y|2

)
� e−td|x− y|−d−1.

Coming back to (3.10) note that it is a consequence of

Iα1
(z) � zI−1/2(z) � sinh 2t zI−1/2(z), t ≥ 1, z > 0,

which follows from the asymptotics (2.3).
Assume now that t < 1. We will split the reasoning according to the

subcases x1y1

sinh 2t < 1 and x1y1

sinh 2t ≥ 1. In the first subcase it will be justified
momentarily that, for α1 ≥ 1/2, if 0 < t < 1,

1
x1
Gα
t (x, y) � y1

sinh 2t
Gt

(
x√
2
,
y√
2

)
exp

(
−1

4
coth(2t)(x2

1 + y21)
)
, (3.11)
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and this together with

Gα
t (x, y) � Gt

(
x√
2
,
y√
2

)
exp

(
−1

4
coth(2t)(x2

1 + y21)
)

will give from (3.9)

|∂x1
Gα
t (x, y)| � x1 + y1

t
Gt

(
x√
2
,
y√
2

)
exp

(
−1

4
coth(2t)(x2

1 + y21)
)
.

Verifying (3.7) for 0 < t < 1 and under the assumption x1y1

sinh 2t < 1 we write

|∂x1Gα
t (x, y)|

� x1 + y1√
t

exp
(
−1

4
coth(2t)(x2

1 + y21)
)

t−(d+1)/2 exp
(
−|x− y|2

8 tanh t

)
� |x− y|−d−1.

Proving (3.11) we note that by the asymptotics (2.3) the assumption α1 ≥ 1/2
implies

Iα1

(
x1y1

sinh 2t

)
�

(
x1y1

sinh 2t

)1/2

,
x1y1

sinh 2t
< 1.

Then we use the product structure of Gα
t (x, y), applying Lemma 2.4 to its

d − 1 dimensional factor G(α2,...,αd)
t (x1, y1) (notation: for x = (x1, . . . , xd),

x1 = (x2, . . . , xd), x̂ = (0, x2, . . . , xd)), which together with some properties
of Gt(x, y) allows us to bound Gα

t (x, y) by

√
x1y1

(
x1y1

sinh 2t

)1/2

exp
(
− 1

2
coth(2t)(x2

1 + y21)
)

(sinh 2t)−1/2Gt(x̂, ŷ)

� x1y1
sinh 2t

Gt

(
x̂√
2
,
ŷ√
2

)
exp

(
− 1

2
coth(2t)(x2

1 + y21)
)

� x1y1
sinh 2t

Gt

(
x√
2
,
y√
2

)
exp

(
− 1

4
coth(2t)(x2

1 + y21)
)
.

In the second subcase, x1y1

sinh 2t ≥ 1, first we use Lemma 2.1 and the fact that
Gα+e1
t ≤ Gα

t to get | y1

sinh 2t

(Gα+e1
t − Gα

t

) | � 1
x1
Gα
t (x, y). Then, if x, y ∈ R

d
+,

0 < t < 1, the inequality
1
x1
Gα
t (x, y) � t−1/2Gα

t (x, y) + |x1 − y1|t−1Gα
t (x, y), (3.12)

which will be shown in a moment to hold for x1y1

sinh 2t ≥ 1, together with
Lemma 2.4, will give by the second identity in the splitting (3.8) (remember
that 0 < t < 1)

|∂x1Gα
t (x, y)| � (|x1 − y1| t−1 + t−1/2 + (x1 + y1)t

)
Gt(x, y)

�
( |x− y|√

t
exp

(
− |x− y|2

8 tanh t

)
+ 1 + (x1 + y1)

√
t exp

(
− tanh t |x + y|2

4

))

× t−(d+1)/2 exp
(
− |x− y|2

8 tanh t

)
� |x− y|−d−1.
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Justifying (3.12), we consider two possibilities; x1 comparable with y1, i.e.
x1/2 ≤ y1 ≤ 2x1, and x1 non–comparable with y1, i.e. x1 > 2y1 or x1 < y1/2.
If x1 is comparable with y1, then since x1y1

sinh 2t ≥ 1 and 0 < t < 1, it follows
from the splitting 1

x1
= ( y1

x1
)1/2(x1y1)−1/2 that 1

x1
Gα
t (x, y) � t−1/2Gα

t (x, y).
On the other hand, if x1 and y1 are not comparable, then (x1+y1) ≈ |x1−y1|,
and since x1y1

sinh 2t ≥ 1, we get 1
x1
≤ (x1 + y1)(x1y1)−1 � |x1 − y1|(sinh 2t)−1,

so that 1
x1
Gα
t (x, y) � |x1 − y1|t−1Gα

t (x, y). This finishes proving (3.7) for
0 < t < 1 in the case when x1y1

sinh 2t ≥ 1 and thus completes the proof of (3.7).
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[20] B. Wróbel, Imaginary powers of a Laguerre differential operator. Acta Math.
Hungar. 124 (2009), 333-351.
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