Erratum to "Frames for Weighted Shift-Invariant Spaces", Mediterr. J. Math., DOI:10.1007/s00009-011-0155-3

Stevan Pilipović and Suzana Simić

Lemma 5.1 b), Theorem 5.2 and Theorem 5.4 b) as stated in [1] are not true. However, they hold only in some special cases included in the next theorem.

Theorem 0.1. a) Let $\theta \in C_0^{\infty}(\mathbb{R})$ be a positive function such that $\theta(x) > 0$, $x \in A$, $A \subset [-\pi, \pi]$, and supp $\theta \subseteq [-\pi, \pi]$. Moreover, let

$$\widehat{\phi}_k(\xi) = \theta(\xi + k\pi), \quad k \in \mathbb{Z},$$

and $\Phi = (\phi_i, \phi_{i+1}, \dots, \phi_{i+r})^T$, $i \in \mathbb{Z}$, $r \in \mathbb{N}$.

Then the rank of the matrix $[\widehat{\Phi}(\xi+2j\pi)]_{j\in\mathbb{Z}}$ is not a constant function on \mathbb{R} and it depends on $\xi\in\mathbb{R}$.

b) Let $\theta \in C_0^{\infty}(\mathbb{R})$ be a positive function such that

$$\theta(x) > 0, \quad x \in (-\pi - \varepsilon, \pi + \varepsilon),$$

and supported by $[-\pi - \varepsilon, \pi + \varepsilon]$ where $0 < \varepsilon < 1/4$. Moreover, let

$$\widehat{\phi}_i(\xi) = \theta(\xi + k_i \pi), \quad k_i \in \mathbb{Z}, \ i = 1, 2, ..., r, \ r \in \mathbb{N},$$

and $\Phi = (\phi_1, \phi_2, \dots, \phi_r)^T$.

- 1) If $|k_2 k_1| = 2$ and $|k_i k_j| \ge 2$ for different $i, j \le r$, then the rank of the matrix $[\widehat{\Phi}(\xi + 2j\pi)]_{j \in \mathbb{Z}}$ is a constant function on \mathbb{R} and equals r.
- 2) If $|k_2-k_1|=2$ and, at least for k_{i_1} and k_{i_2} , it holds that $|k_{i_1}-k_{i_2}|=1$, where $1 \leq i_1, i_2 \leq r$, then the rank of the matrix $[\widehat{\Phi}(\xi+2j\pi)]_{j\in\mathbb{Z}}$ is a non-constant function on \mathbb{R} .

The proof of the theorem, together with other additional results, will appear in a forthcoming paper, a preliminary version of which appears in ArXiv (2011) arXiv:1109.3285.

The online version of the original article can be found under doi:10.1007/s00009-011-0155-3.

Reference

[1] S. Pilipović and S. Simić, Frames for weighted shift-invariant spaces, to appear in Mediterr. J. Math., DOI:10.1007/s00009-011-0155-3.

Stevan Pilipović

Department of Mathematics and Informatics, Faculty of Science

University of Novi Sad

Trg Dositeja Obradovica 4, 21000 Novi Sad

Serbia

e-mail: stevan.pilipovic@dmi.uns.ac.rs

Suzana Simić

Department of Mathematics and Informatics, Faculty of Science

University of Kragujevac

Radoja Domanovića 12, 34000 Kragujevac

Serbia

e-mail: suzanasimic@kg.ac.rs