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Abstract. In this paper, we review the notion of generalized partial-slice
monogenic functions that was introduced by the authors in Xu and Saba-
dini (Generalized partial-slice monogenic functions, arXiv:2309.03698,
2023). The class of these functions includes both the theory of mono-
genic functions and of slice monogenic functions over Clifford algebras
and it is obtained via a synthesis operator which combines a generalized
Cauchy–Riemann operator with an operator acting on slices. Besides
recalling the fundamental features, we provide a notion of ∗-product
based on the CK-extension and discuss the smoothness of generalized
partial-slice functions.
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1. Introduction

Classical Clifford analysis serves as a function theory that investigates null
solutions of generalized Cauchy–Riemann systems and that generalizes holo-
morphic functions of one complex variable to a higher dimensional case. These
systems include nullsolutions of the Weyl or Dirac systems, referred to as
monogenic functions, defined on domains of Euclidean space R

n+1 or Rn and
with values in the real Clifford algebra Rn. The interest in functions in the
kernel of a generalized Cauchy–Riemann operator, extending beyond complex
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holomorphic functions, emerged around the late nineteenth century. Various
references can be found e.g. in the book by Colombo, Sabadini, and Struppa
[5]. Quaternions correspond to the particular case n = 2 and the exploration
of quaternionic-valued functions in the kernel of the so-called Cauchy–Fueter
operator (called Cauchy–Fueter regular or regular, for short) dates back to
the thirties, with foundational works by Fueter [7] and Moisil [11].

Monogenic functions, studied extensively in the literature (see e.g. [1,
2,6,10]), present a challenge compared to complex analysis: polynomials, se-
ries, and even powers of the paravector variable are not monogenic in Clifford
analysis. Although series expansions using homogeneous monogenic polyno-
mials are attainable, certain features, like defining an exponential function
with standard properties or applications to operator theory, may be hindered.
To address this, different approaches have been explored.

The theory of slice regular functions of a quaternionic variable emerged
in 2006, initiated by Gentili and Struppa [8]. This theory encompasses power
series of the form f(q) =

∑∞
n=0 qnan, where q and an are quaternions. In

2009, Colombo, Sabadini, and Struppa generalized this idea to functions de-
fined on domains of Euclidean space R

n+1, identified with paravectors, and
with values in Clifford algebras Rn, naming them slice monogenic functions
[3]. Despite being introduced relatively recently, slice monogenic functions
have become a well-developed theory, especially due to their applications in
operator theory. Indeed, with this class of functions one may define functions
of N -tuples of operators, not necessarily commuting among themselves. This
fact alone makes this function theory meaningful. The literature on this topic
is extensive, and we refer the interested reader to [4] for more information.

In the paper [14] we introduced a new class of functions that encom-
passes classical monogenic functions and slice monogenic functions as special
cases. In comparison to slice regular and to slice monogenic functions, this
new theory exhibits all the expected properties such as the identity theo-
rem, the Representation Formula, Cauchy integral formula with a generalized
partial-slice monogenic Cauchy kernel, maximum modulus principle, Tay-
lor series, and Laurent series expansion formulas. In [15] we proved, among
other results, a version of the Fueter–Sce theorem for generalized partial-slice
monogenic functions, providing a method to construct monogenic functions
in higher dimensions from monogenic functions in lower dimensions.

The celebrated Fueter theorem for quaternionic valued-functions was
generalized by Sce to functions defined on open sets in the Euclidean space
R

n+1 for odd n ∈ N and with values in a Clifford algebra [12] (see [5] for the
English translation). Sce’s result asserts in particular that, given a holomor-
phic function f0(z) = u(a, b) + iv(a, b), a, b ∈ R, z = a + ib ∈ {a + ib ∈ C :
b > 0}, the so-called induced function

−→
f0(x) = u(x0, |x|) +

x

|x|v(x0, |x|)

satisfies

DΔ
n−1
2

−→
f0(x) = 0,
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namely Δ
n−1
2

−→
f0 is monogenic. Here x = x0 + x =

∑n
m=0 xmem ∈ R

n+1,
{e1, e2, . . . , en} are generators of Rn, Δ is the Laplacian in R

n+1, and D =
∂

∂x0
+

∑n
m=1 em

∂
∂xm

. The crucial fact is that the pair (u, v) satisfies the
Cauchy–Riemann system and if one considers functions u, v having values
in the Clifford algebra Rn, we obtain that the induced function

−→
f0(x) is, in

modern terms, slice monogenic. In a similar way, we introduce generalized
partial-slice monogenic functions in an alternative way, by imposing that the
pair (u, v) satisfies a suitable system of differential equations, see Definition
4.2. A crucial fact in this approach is the slice (or axial) nature of which we
study in more detail in this article.

We now detail the organization of this paper and highlight the main
results in each section. In Sect. 2 we review some basic materials on monogenic
functions and on generalized partial-slice monogenic functions taken from [14,
15]. In Sect. 3 we recall the homogeneous polynomials which are generalized
partial-slice monogenic and introduce the ∗-product discussing first the case
of functions which can be expanded in Taylor series on balls. In Sect. 4 we
discuss the smoothness and plane waves for generalized partial-slice functions.

2. Preliminaries

2.1. Clifford Algebras

Denote by B = {e1, e2, . . . , en} a standard orthonormal basis for the n-
dimensional real Euclidean space R

n. The real Clifford algebra Rn, is gener-
ated by the basis B assuming the relations

eiej + ejei = −2δij , 1 ≤ i, j ≤ n,

where δij is the Kronecker symbol. An element in the Clifford algebra Rn is
of the form

a =
∑

A

aAeA, aA ∈ R,

where

eA = ej1ej2 · · · ejr ,

and A = {j1, j2, . . . , jr} ⊆ {1, 2, . . . , n} with 1 ≤ j1 < j2 < · · · < jr ≤ n,
e∅ = e0 = 1.

The Euclidean space R
n+1 is identified with the subset of the Clifford

algebra Rn consisting of the so-called paravectors via the map

(x0, x1, . . . , xn) �−→ x = x0 + x =
n∑

i=0

eixi.

For a paravector x �= 0, its norm is given by |x| = (xx)1/2, its conjugate by
x̄ = x0 − ∑n

i=1 eixi and so its inverse is given by x−1 = x|x|−2.
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2.2. Monogenic and Slice Monogenic Functions

As we mentioned in the introduction two widely studied classes of functions
are those of monogenic and of slice monogenic functions which we recall
below.

Definition 2.1. (Monogenic function) Let Ω be a domain (i.e., an open and
connected set) in R

n+1 and let f : Ω → Rn be a function with continuous
partial derivatives. The function f =

∑
A eAfA is called (left) monogenic in

Ω if it satisfies the generalized Cauchy–Riemann equation

Df(x) =
n∑

i=0

ei
∂f

∂xi
(x) =

n∑

i=0

∑

A

eieA
∂fA

∂xi
(x) = 0, x ∈ Ω.

The operator D is called Weyl operator or generalized Cauchy–Riemann op-
erator.

Similarly, the function f is called right monogenic in Ω if

f(x)D =
n∑

i=0

∂f

∂xi
(x)ei =

n∑

i=0

∑

A

eAei
∂fA

∂xi
(x) = 0, x ∈ Ω.

Note that all monogenic functions are real analytic and harmonic in
(n + 1) variables, since D factorizes the Laplacian.

In R
n+1 one can define a so-called book structure, namely the Euclidean

space can be seen as union of complex spaces. This structure is based on
the fact that every non-real paravector in R

n+1 can be written in the form
x = x0 + rω with r = |x| =

( ∑n
i=1 x2

i

) 1
2 , where the element ω is uniquely

determined and behaves as a classical imaginary unit, that is

ω ∈ Sn−1 =
{
x ∈ R

n+1 : x2 = −1
}
.

When x is real, then r = 0 and for every ω ∈ Sn−1 one can write x = x+ω ·0.
For any fixed ω ∈ Sn−1, we can form the complex plane Cω = R ⊕ ωR.

With these notations we can now introduce the definition of slice mono-
genic function, see [3,4].

Definition 2.2. (Slice monogenic function) Let Ω be a domain in R
n+1. A

function f : Ω → Rn is called (left) slice monogenic if, for all ω ∈ Sn−1,
its restriction fω to Ωω = Ω ∩ (R ⊕ ωR) ⊆ R

2 is holomorphic, i.e., it has
continuous partial derivatives and satisfies

(∂x0 + ω∂r)fω(x0 + rω) = 0

for all x0 + rω ∈ Ωω.

2.3. Generalized Partial-Slice Monogenic Functions

In the paper [14], we introduced a new class of functions which contains both
monogenic and slice monogenic functions as particular cases. We recall here
the basics on these functions. Let p and q be a nonnegative and a positive
integer, respectively, and consider f : Ω −→ Rp+q where Ω ⊂ R

p+q+1 is a
domain.

As customary, an element x in the Euclidean space R
p+q+1 will be

identified with a paravector in Rp+q, and in addition we shall consider the
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(fixed) splitting of Rp+q+1 as R
p+1 ⊕ R

q so that we write a paravector x ∈
R

p+q+1 as

x = xp + xq ∈ R
p+1 ⊕ R

q, xp =
p∑

i=0

xiei, xq =
p+q∑

i=p+1

xiei.

Similarly, the generalized Cauchy–Riemann operator is split as

Dx = Dxp + Dxq
, Dxp =

p∑

i=0

ei∂xi
, Dxq

=
p+q∑

i=p+1

ei∂xi
. (1)

Denote by S the sphere of unit 1-vectors in R
q, whose elements

(xp+1, . . . , xp+q) are identified with xq =
∑p+q

i=p+1 xiei, i.e.

S =
{
xq : x2

q = −1
}

=
{
xq =

p+q∑

i=p+1

xiei :
p+q∑

i=p+1

x2
i = 1

}
.

Note that, for xq �= 0, there exists a uniquely r ∈ R
+ = {x ∈ R : x > 0} and

ω ∈ S, such that xq = rω, i.e.

r = |xq|, ω =
xq

|xq|
.

When xq = 0 (or r = 0), ω is not uniquely defined, in fact for every ω ∈ S

we have x = xp + ω · 0.
The upper half-space Hω in R

p+2 associated with ω ∈ S is defined by

Hω = {xp + rω : xp ∈ R
p+1, r ≥ 0},

so that in this case, the analog of the book structures is given by higher
dimensional slices. In fact, it holds that

R
p+q+1 =

⋃

ω∈S

Hω,

and

R
p+1 =

⋂

ω∈S

Hω.

Recalling the notation in formula (1), we now introduce the definition
of generalized partial-slice monogenic functions as follows.

Definition 2.3. Let Ω be a domain in R
p+q+1. A function f : Ω → Rp+q

is called (left) generalized partial-slice monogenic of type (p, q) if, for all
ω ∈ S, its restriction fω to Ωω ⊆ R

p+2 has continuous partial derivatives and
satisfies

Dωfω(x) := (Dxp
+ ω∂r)fω(xp + rω) = 0,

for all x = xp + rω ∈ Ωω := Ω ∩ (Rp+1 ⊕ ωR) ⊆ R
p+2. Similarly, f is called

right generalized partial-slice monogenic of type (p, q) if, under the hypothesis
above, f satisfies

fω(x)Dω := fω(xp + rω)Dxp
+ ∂rfω(xp + rω)ω = 0,

for all x = xp + rω ∈ Ωω.
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We denote by GSML(Ω) (resp. GSMR(Ω)) the right (resp. left) Rp+q-
module of all left (resp. right) generalized partial-slice monogenic functions of
type (p, q) in Ω. For short, we shall denote by GSM(Ω) the Clifford module
GSML(Ω) when there is no confusion.
Assumption. To ease the notation, in the sequel we shall omit to specify the
type (p, q) since we assume to fix the splitting.

The following remark is very important and explains in which sense this
new function theory is a synthesis of the two aforementioned theories.

Remark 2.4. When (p, q) = (n − 1, 1), the notion of generalized partial-slice
monogenic functions in Definition 2.3 coincides with the notion of classical
monogenic functions defined in Ω ⊆ R

n+1 with values in the Clifford algebra
Rn; see Definition 2.1.

When (p, q) = (0, n), Definition 2.3 coincides with the notion of slice
monogenic functions in Definition 2.2 defined in Ω ⊆ R

n+1 and with values
in the Clifford algebra Rn.

In [14] we present various examples, here we recall just one that is crucial
to obtain a Cauchy formula.

Example 2.5. Let Ω = R
p+q+1\{0} and set

E(x) :=
1

σp+1

x

|x|p+2
, x ∈ Ω,

where σp+1 = 2Γp+2( 1
2 )

Γ( p+2
2 )

is the surface area of the unit ball in R
p+2.

Then E(x) ∈ GSML(Ω) ∩ GSMR(Ω).

Remark 2.6. Recall that the Cauchy kernel for monogenic functions defined
on paravectors R

p+1 is the function

E(x) =
1
σp

x

|x|p+1
, x =

p∑

i=0

xiei ∈ R
p+1\{0}.

Compared with the classical monogenic Cauchy kernel, the function in Exam-
ple 2.5 has freedom in the dimension q. The new function class of generalized
partial-slice monogenic functions not only includes the two classes of classical
monogenic and of slice monogenic functions, but it is much larger than their
synthesis.

We recall some useful results which are typical for slice monogenic func-
tions and that can be extended, with suitable changes, to generalized partial-
slice monogenic functions.

Lemma 2.7. (Splitting lemma) Let Ω ⊂ R
p+q+1 be a domain and f : Ω →

Rp+q be a generalized partial-slice monogenic function. For every arbitrary,
but fixed ω ∈ S, also denoted by Ip+1, let I1, I2, . . . , Ip, Ip+2, . . . , Ip+q be a
completion to a basis of Rp+q such that IrIs+IsIr = −2δrs, r, s = 1, . . . , p+q,
Ir ∈ R

p, r = 1, . . . , p, Ir ∈ R
q, r = p + 2, . . . , p + q. Then there exist 2q−1

monogenic functions FA : Ωω → Rp+1 = Alg{I1, . . . , Ip, Ip+1 = ω} such that

fω(xp + rω) =
∑

A={i1,...,is}⊂{p+2,...,p+q}
FA(xp + rω)IA, xp + rω ∈ Ωω,
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where IA = Ii1 · · · Iis , A = {i1, . . . , is} ⊂ {p+2, . . . , p+ q} with i1 < · · · < is,
and I∅ = 1 when A = ∅.

To proceed and state the Representation Formula, we need the following.

Definition 2.8. Let Ω be a domain in R
p+q+1.

1. Ω is called slice domain if Ω ∩R
p+1 �= ∅ and Ωω is a domain in R

p+2

for every ω ∈ S.
2. Ω is called partially symmetric with respect to R

p+1 (p-symmetric
for short) if, for xp ∈ R

p+1, r ∈ R
+, and ω ∈ S,

x = xp + rω ∈ Ω =⇒ [x] := xp + rS = {xp + rω, ω ∈ S} ⊆ Ω.

Theorem 2.9. (Representation Formula) Let Ω ⊂ R
p+q+1 be a p-symmetric

slice domain and f : Ω → Rp+q be a generalized partial-slice monogenic
function. Then, for any ω ∈ S and for xp + rω ∈ Ω,

f(xp + rω) =
1

2
(f(xp + rη) + f(xp − rη)) +

1

2
ωη(f(xp − rη) − f(xp + rη)),

(2)

for any η ∈ S.
Moreover, the following two functions do not depend on η:

F1(xp, r) =
1
2
(f(xp + rη) + f(xp − rη)),

F2(xp, r) =
1
2
η(f(xp − rη) − f(xp + rη)).

As a corollary of the Representation Formula, we state the following
extension theorem.

Theorem 2.10. (Extension theorem) Let Ω ⊂ R
p+q+1 be a p-symmetric slice

domain. Let fη : Ωη → Rp+q be a function with continuous partial derivatives
and satisfying

(Dxp + η∂r)fη(xp + rη) = 0, xp + rη ∈ Ωη,

for a given η ∈ S. Then, for any xp +xq = xp + rω ∈ Ω, the function defined
by

ext(fη)(xp + rω) :=
1

2
(f(xp + rη) + f(xp − rη))

+
1

2
ωη(f(xp − rη) − f(xp + rη)) (3)

is the unique generalized partial-slice monogenic extension of fη to the whole
Ω.

Note that there is another extension theorem [15, Theorem 4.2], which
is based on the idea of the CK-extension, thus more similar to the extension
for monogenic functions.

Let Ω0 be a domain in R
p+1. The set Ω∗

0 is defined by

Ω∗
0 = {xp + xq : xp ∈ Ω0,xq ∈ R

q}.
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Theorem 2.11. Let Ω0 be a domain in R
p+1 and f0 : Ω0 → Rp+q be a real

analytic function. Then the function given by

CK[f0](x) = exp(xqDxp
)f0(xp) =

+∞∑

k=0

1
k!

(xqDxp
)kf0(xp), x = xp + xq,

is a generalized partial-slice monogenic function f∗ defined in Ω ⊆ Ω∗
0 with

Ω0 ⊂ Ω and f∗(xp) = f0(xp).

The function f∗ is the so-called (left) slice Cauchy–Kovalevskaya exten-
sion f0 to the p-symmetric slice domain Ω ⊆ Ω∗

0 with Ω0 ⊂ Ω.
In the next section we shall discuss more properties which are more

typical of the standard monogenic case.

3. Generalized Partial-Slice Monogenic Polynomials and
∗-Product

Let k = (k0, k1, . . . , kp) ∈ N
p+1 be a multi-index and set k = |k| = k0 + k1 +

· · ·+kp, k! = k0!k1! · · · kp!. Consider x′ = (x0, x1, . . . , xp, r) = (xp, r) ∈ R
p+2,

xk
p = xk0

0 xk1
1 . . . x

kp
p . Let η be an element in in S. The so-called left Fueter

variables were defined in [14] as

z� = x� + rηe�, � = 0, 1, . . . , p,

while the right Fueter variables are defined as

zR
� = x� + re�η, � = 0, 1, . . . , p.

An easy calculation shows that
(

p∑

i=0

ei∂xi
+ η∂r

)

z� = zR
�

(
p∑

i=0

ei∂xi
+ η∂r

)

= 0. (4)

Definition 3.1. Let (j1, j2, . . . , jk) to be an alignment of integers with 0 ≤
j� ≤ p for any � = 0, . . . , k and assume that the number of 0 in the alignment
is k0, the number of 1 is k1 and the number of p is kp, where k0+k1+. . .+kp =
k. Define

Pη,k(x′) =
1
k!

∑

(σ(j1),σ(j2),...,σ(jk))∈P(j1,j2,...,jk)

zσ(j1)zσ(j2) · · · zσ(jk),

where the sum is computed over the
k!
k!

different permutations σ of k� ele-

ments equal to � = 0, 1, . . . , p. When k = (0, . . . , 0) = 0 we set Pη,0(x′) = 1.
Similarly, define

PR
η,k(x

′) =
1
k!

∑

(σ(j1),σ(j2),...,σ(jk))∈P(j1,j2,...,jk)

zR
σ(j1)

zR
σ(j2)

· · · zR
σ(jk).

Using the Representation Formula we can define the homogeneous poly-
nomials

Pk(x) = Pk(xp + rω) =
1
2
(
(1 − ωη)Pη,k(x′) + (1 + ωη)Pη,k(x′

�)
)
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where x′
� = (xp,−r). Analogously, one can define PR

k (x) using the version
of the Representation Formula for functions in GSMR(Rp+q+1):

PR
k (x) = PR

k (xp + rω) =
1
2
(PR

η,k(x
′)(1 − ηω) + PR

η,k(x
′
�)(1 + ηω)

)
.

In the particular case when k is such that ki = 0 for i �= � and k� = 1
for some fixed � ∈ {0, . . . , p}, the polynomial Pk (here denoted by Z�) is the
extension of z� in (4) and

Z�(x) = Z�(xp + rω) = x� + rωe�.

Unlike what happens in classical Clifford analysis where the counterparts of
the polynomials Pk are both left and right monogenic, the polynomials Pk

(resp. PR
k ) belong only to GSML(Rp+q+1) (resp. GSMR(Rp+q+1)). This is a

crucial difference with the classical monogenic case. As we know, this differ-
ence emerges even more while writing the Laurent expansion for generalized
partial-slice monogenic functions [14]. These polynomials are used to express
the Taylor series of a left (resp. right) generalized partial-slice monogenic
functions.

Denote by B(0, ρ) = {x ∈ R
p+q+1 : |x| < ρ} the ball centered in 0 with

radius ρ > 0.

Theorem 3.2. (Taylor series) Let f : B(0, ρ) → Rp+q be a generalized partial-
slice monogenic function. For any x ∈ B(0, ρ), we have

f(x) =
+∞∑

k=0

⎛

⎝
∑

|k|=k

Pk(x)ak

⎞

⎠ , ak = ∂kf(0),

where the series converges uniformly on compact subsets of B(0, ρ).

Remark 3.3. Reasoning in an analogous way, in case f is a right generalized
partial-slice monogenic function on B(0, ρ) then we have

f(x) =
+∞∑

k=0

⎛

⎝
∑

|k|=k

akPR
k (x)

⎞

⎠ , ak = ∂kf(0).

Remark 3.4. When ρ = +∞ the function f is generalized partial-slice mono-
genic function on the whole R

p+q+1 and so it is entire.

As we suggested in [14] it is natural to define the ∗-product between two
functions f, g ∈ GSML(Rp+q+1), making a suitable use of the CK-extension.
This idea can be used to define a ∗-product in GSML(Rp+q+1) using results
from [15]. Before to follow a general approach, we consider two functions
which are generalized partial-slice monogenic on balls in R

p+q+1.
Given two multi-indices s = (s0, . . . , sp), m = (m0, . . . ,mp) ∈ N

p+1, let
us define s + m := (s0 + m0, . . . , sp + mp).

Definition 3.5. Let f and g be two left generalized partial-slice monogenic
functions on B(0, ρ) given by

f(x) =
+∞∑

k=0

( ∑

|k|=k

Pk(x)ak

)
, and g(x) =

+∞∑

k=0

( ∑

|k|=k

Pk(x)bk

)
.
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Define

(f ∗ g)(x) :=
+∞∑

k=0

( ∑

|k|=k

(s + m)!
s!m!

Pk(x)ck

)
, ck =

∑

s+m=k

asbm.

The operation just defined acts on GSML(B(0, ρ)) and so it should
have been more precise to denote it by ∗L. An analogous operation ∗R can be
defined on GSMR(B(0, ρ)) by taking the Cauchy product of the coefficients,
written on the left. More precisely,

(f ∗R g)(x) :=
+∞∑

k=0

( ∑

|k|=k

(s + m)!
s!m!

ckPR
k (x)

)
, ck =

∑

s+m=k

asbm.

Remark 3.6. In particular, we immediately deduce:

1. 1 ∗ f = f ∗ 1;
2. if a ∈ Rp+q, then f ∗ a = fa;
3. (Ps ∗ Pm)(x) = (s+m)!

s!m! Ps+m(x).

To define the ∗-product in general, not necessarily on balls centered at
the origin, we make use of Theorem 2.11 and proceed as follows.

Definition 3.7. Let Ω ⊆ R
p+q+1 be a p-symmetric slice domain and let f, g ∈

GSML(Ω). Set Ω0 = Ω ∩ R
p+1 and denote by f0 and g0 the real analytic

functions defined by f0 = f|Ω0 , g0 = g|Ω0 . Define, on a suitable p-symmetric
slice domain Ω̃ ⊆ Ω:

(f ∗ g)(x) = CK[(f0 · g0)(xp)], (5)

where the product f0 · g0 is meant as product of real analytic functions.

Remark 3.8. 1. The product defined in Definition 3.5 is a particular case
of the product in Definition 3.7. Indeed, since s!Ps(x) = CK[xs

p], so
that we have (s + m)!Ps+m(x) = CK[xs+m

p ], we deduce

(s + m)!Ps+m(x) = CK[xs+m
p ] = CK[xs

p] ∗ CK[xm
p ] = s!Pk(x) ∗ m!Pm(x),

that yields

Ps(x) ∗ Pm(x) =
(s + m)!

s!m!
Ps+m(x),

which is consistent with point 3, in Remark 3.6.
2. If f0 · g0 = g0 · f0 then (5) yields that f ∗ g = g ∗ f .
3. From the formula (5) and the fact that a Clifford algebra is associative,

we deduce that the ∗-product is associative.
4. The set GSML(Ω) equipped with the sum and the ∗-product is an

algebra over R.
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4. Generalized Partial-Slice Functions and Their Smoothness

Let D ⊆ R
p+2 be a domain, which is invariant under the reflection of the

(p + 2)-th variable, i.e.

x′ := (xp, r) ∈ D =⇒ x′
� := (xp,−r) ∈ D.

We define the p-symmetric completion ΩD ⊆ R
p+q+1 of D as

ΩD =
⋃

ω∈S

{
xp + rω ∃ xp ∈ R

p+1, ∃ r ≥ 0, s.t. (xp, r) ∈ D
}
.

Note that a domain Ω ⊆ R
p+q+1 is p-symmetric if and only if Ω = ΩD

for some domain D ⊆ R
p+2.

Definition 4.1. Let D ⊆ R
p+2 be a domain, invariant under the reflection

with respect to the (p + 2)-th variable. A function f : ΩD −→ Rp+q of the
form

f(x) = F1(x′) + ωF2(x′), x = xp + rω ∈ ΩD, ω ∈ S, (6)

where the Rp+q-valued components F1, F2 of f are an even-odd pair in the
(p + 2)-th variable, i.e. satisfy

F1(x′
�) = F1(x′), F2(x′

�) = −F2(x′), x′ ∈ D, (7)

is called a (left) generalized partial-slice function.

We denote by GS(ΩD) the set of all generalized partial-slice functions
f on ΩD. When the components F1, F2 are of class Ck(D), we denote the
set of all such functions by GSk(ΩD).

Definition 4.2. Let f(x) = F1(x′) + ωF2(x′) ∈ GS1(ΩD). The function f is
called generalized partial-slice monogenic of type (p, q) if F1, F2 satisfy the
generalized Cauchy–Riemann equations

{
Dxp

F1(x′) − ∂rF2(x′) = 0,
DxpF2(x′) + ∂rF1(x′) = 0,

(8)

for all x′ ∈ D.

We denote by GSR(ΩD) the set of all generalized partial-slice monogenic
functions on ΩD, omitting to specify the type (p, q) if no confusion arises.

Now we give a example to explain that the assumption that a func-
tion f ∈ GS1(ΩD) does not necessarily imply that the function f is of class
C1(ΩD).

Example 4.3. Let α ∈ (2, 3). Consider the odd function g ∈ C1(R) given by

g(x) =
{ |x|α sin 1

x , if x �= 0,
0, if x = 0.

Set f(x) = ωg(r), where x = xp + rω with xp ∈ R
p+1, r ≥ 0 and ω ∈ S.

Then one can get immediately f ∈ GS1(Rp+q+1), while f /∈ C1(Rp+q+1).

Inspired by [9, Proposition 7], in the next result we prove conditions
that guarantee that a function belongs to a certain class.
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Proposition 4.4. Let k ∈ N\{0} and f(x) = F1(x′) + ωF2(x′) ∈ GS(ΩD).
(i) If F1, F2 ∈ C(D), then f ∈ C(ΩD).
(ii) If F1, F2 ∈ C2k+1(D), then f ∈ Ck(ΩD).
(iii) If F1, F2 ∈ C∞(D), then f ∈ C∞(ΩD).

Proof. Let f(x) = F1(x′) + ωF2(x′) ∈ GS(ΩD). It is immediate that the
generalized partial-slice function f on ΩD\Rp+1 has the same smoothness as
the pair (F1, F2) on D\Rp+1. To obtain the conclusion, it remains to consider
the case ΩD ∩ R

p+1, where the fact that (F1, F2) is an even-odd pair.
(i) Assume F1, F2 ∈ C(D). The continuity of f at ΩD ∩ R

p+1 follows from
the fact that F2 is odd in the (p + 2)-th variable.

(ii) Assume F1, F2 ∈ C2k+1(D). Since (F1, F2) is an even-odd pair in the
(p + 2)-th variable, from [13, Theorem 1] and [13, Theorem 2], there
exist G1, G2 ∈ Ck(D) such that

F1(xp, r) = G1(xp, r
2), F2(xp, r) = rG2(xp, r

2), (xp, r) ∈ D.

which gives

f(x) = f(xp + xq) = G1(xp, r
2) + xqG2(xp, r

2), r = |xq|.
Hence, f ∈ Ck(ΩD).

(iii) The conclusion can be obtained by the same strategy used to prove in
(ii). �

The approach via generalized partial-slice monogenic functions to intro-
duce monogenic functions of plane waves is obtained as follows: given η ∈ S

and f(x) = F1(x′)+ωF2(x′) ∈ GSR(ΩD), we substitute the variable r = |xq|
by 〈η,xq〉, namely consider

g(x) = g(xp + xq) = F1(xp, 〈η,xq〉) + ηF2(xp, 〈η,xq〉). (9)

We have the following result:

Theorem 4.5. Let η ∈ S and f(x) = F1(x′) + ωF2(x′) ∈ GSR(ΩD). Then
the function of plane wave given by (9) is monogenic in Ω(η) := {xp + xq :
(xp, 〈η,xq〉) ∈ D}.
Proof. Let f(x) = f(xp + rω) = F1(x′) + ωF2(x′) ∈ GSR(ΩD), where x′ =
(xp, r) ∈ D. Set r = 〈η,xq〉. From the identities

Dxq
F1(x′) =

p+q∑

i=p+1

ei∂rF1(x′)(∂xi
r) =

p+q∑

i=p+1

eiηi∂rF1(x′) = η∂rF1(x′),

and

Dxq
(ηF2(x′)) =

p+q∑

i=p+1

eiη∂rF2(x′)(∂xi
r)

=
p+q∑

i=p+1

eiηiη∂rF2(x′) = η2∂rF2(x′) = −∂rF2(x′),
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we obtain

Dxg(x) = (Dxp
+ Dxq

)(F1(x′) + ηF2(x′))

= Dxp
F1(x′) + Dxp

(ηF2(x′)) + η∂rF2(x′) − ∂rF2(x′)

= Dxp
F1(x′) − ∂rF2(x′) + η(Dxp

F2(x′) + ∂rF1(x′)).

Hence, (8) implies that Dxg(x) = 0 for x ∈ Ω(η). The proof is complete. �
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Mathematics, vol. 289. Birkhäuser/Springer, Basel (2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   10 Page 14 of 14 Z. Xu, I. Sabadini Adv. Appl. Clifford Algebras

[5] Colombo, F., Sabadini, I., Struppa, D.C.: Michele Sce’s Works in Hypercomplex
Analysis. A Translation with Commentaries. Birkhäuser, Basel (2020)
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