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1. Introduction

Hom-Lie algebras and quasi-hom-Lie algebras were introduced first in 2003
in [44] devoted to a general method for construction of deformations and dis-
cretizations of Lie algebras of vector fields and deformations of Witt and Vira-
soro type algebras based on general twisted derivations (σ-derivations) obey-
ing twisted Leibniz rule, and motivated also by the examples of q-deformed
Jacobi identities in q-deformations of Witt and Visaroro algebras and in re-
lated q-deformed algebras discovered in 1990th in string theory, vertex mod-
els of conformal field theory, quantum field theory and quantum mechan-
ics, and q-deformed differential calculi and q-deformed homological algebra
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[6,34–37,40,45,46,56–58]. In 2005, Larsson and Silvestrov introduced quasi-
Lie and quasi-Leibniz algebras in [52] and graded color quasi-Lie and graded
color quasi-Leibniz algebras in [53] incorporating within the same framework
the hom-Lie algebras and quasi-hom-Lie algebras, the color hom-Lie algebras
and hom-Lie superalgebras, quasi-hom-Lie color algebras, quasi-hom-Lie su-
peralgebras, quasi-Leibniz algebras and graded color quasi-Leibniz algebras.
The central extensions and cocycle conditions have been first considered for
quasi-hom-Lie algebras and hom-Lie algebras in [44,51] and for graded color
quasi-hom-Lie algebras in [70]. Graded q-differential algebra including q-
generalization of graded differential algebra to nilpotent derivations has been
studied in [3], and Matrix 3-Lie superalgebras and BRST supersymmetry has
been investigated in [4]. Deformations, cohomology and representations of
hom-algebras and n-ary hom-algebras, and generalized N -complexes coming
from twisted derivations have been considered in [9–11,30,54,55,63,68,74].

In quasi-Lie algebras, the skew-symmetry and the Jacobi identity are
twisted by deforming twisting linear maps, with the Jacobi identity in quasi-
Lie and quasi-hom-Lie algebras in general containing six twisted triple bracket
terms. In hom-Lie algebras, the bilinear product satisfies the non-twisted
skew-symmetry property as in Lie algebras, and the hom-Lie algebras Ja-
cobi identity has three terms twisted by a single linear map. Lie algebras
are a special case of hom-Lie algebras when the twisting linear map is the
identity map. For other twisting linear maps however the hom-Lie algebras
are different and in many ways richer algebraic structures with classifications,
deformations, representations, morphisms, derivations and homological struc-
tures in the fundamental ways dependent on joint properties of the twisting
map and bilinear product which are in the intricate way interlinked by hom-
Jacobi identity. Hom-Lie admissible algebras have been considered first in
[62], where the hom-associative algebras and more general G-hom-associative
algebras including the Hom-Vinberg algebras (hom-left symmetric algebras),
hom-pre-Lie algebras (hom-right symmetric algebras), and some other new
Hom-algebra structures have been introduced and shown to be Hom-Lie ad-
missible, in the sense that the operation of commutator as new product in
these hom-algebras structures yields hom-Lie algebras. Furthermore, in [62],
flexible hom-algebras have been introduced and connections to hom-algebra
generalizations of derivations and of adjoint derivations maps have been con-
sidered, investigations of the classification problems for hom-Lie algebras have
been initiated with construction of families of the low-dimensional hom-Lie
algebras.

The Hom-Lie superalgebras and the more general color quasi-Lie alge-
bras provide new general parametric families of non-associative structures,
extending and interpolating on the fundamental level of defining identities
between the Lie algebras, Lie superalgebras, color Lie algebras and some
other important related non-associative structures, their deformations and
discretizations, in the special interesting ways which may be useful for unifi-
cation of models of classical and quantum physics, geometry and symmetry
analysis, and also in algebraic analysis of computational methods and al-
gorithms involving linear and non-linear discretizations of differential and



Vol. 33 (2023) Simply Complete Hom-Lie Superalgebras Page 3 of 21 17

integral calculi. Investigation of color hom-Lie algebras and hom-Lie super-
algebras and n-ary generalizations have been further expanded recently in
[1,2,7,8,11–29,33,42,43,48–50,60,61,64,65,69–73,75].

In [39], the complete Lie superalgebras were introduced and studied. In
[15], the notion of complete hom-Lie superalgebra was introduced and the au-
thors presented some conditions for a hom-Lie superalgebra to be a complete
hom-Lie superalgebra. Also by these conditions, they introduced the gener-
alizable methods to construct the classes of complete hom-Lie superalgebras.
Moreover in [15], one can reach the classes of complete hom-Lie superalgebras
by extending the complex semi-simple hom-Lie algebra by meta-Heisenberg
hom-superalgebras under special conditions. In addition the notion of com-
plete Bihom-Lie superalgebras was introduced in [41]. In this article, complete
hom-Lie superalgebras are considered and equivalent conditions for a hom-
Lie superalgebra to be a complete hom-Lie superalgebra are established. In
particular, the relation between decomposition and completeness for a hom-
Lie superalgebra is described. Moreover, some conditions for the set of αs-
derivations of a hom-Lie superalgebra to be complete and simply complete
are obtained. In Sect. 2, some necessary notations and useful definitions and
properties of hom-Lie superalgebras are reviewed. In Sect. 3, the notion of
a complete hom-Lie superalgebra is presented, and the equivalent conditions
for the completeness of g0 and g are studied. Then conditions for a hom-Lie
superalgebra to be complete are considered by using the notion of holomorph
hom-Lie superalgebras and hom-ideals. After that simply complete hom-Lie
superalgebras are defined and equivalence of a hom-Lie superalgebra being
simply complete or indecomposable is investigated. Finally we discuss the
conditions for the Derαs+1(g) to be complete and simply complete.

2. Preliminaries on Hom-Lie Superalgebras and Their
Representation and Derivations

Throughout this article, all linear spaces are assumed to be over a field K of
characteristic different from 2. A linear space V is said to be a G-graded by an
abelian group G if, there exists a family {Vg}g∈G of linear subspaces of V such
that V =

⊕
g∈G Vg. The elements of Vg are said to be homogeneous of degree

g ∈ G. The set of all homogeneous elements of V is denoted H(V ) =
⋃

g∈G Vg.

A linear mapping f : V → V ′ of two G-graded linear spaces V =
⊕

g∈G Vg

and V ′ =
⊕

g∈G V ′
g is called homogeneous of degree d if f(Vg) ⊆ V ′

g+d, for all
g ∈ G. Homogeneous linear maps of degree zero, f(Vg) ⊆ V ′

g for any g ∈ G,
are also called even. An algebra (A, ∗) is said to be G-graded if its underlying
linear space is G-graded, A =

⊕
g∈G Ag, and moreover Ag ∗ Ah ⊆ Ag+h, for

all g, h ∈ G. A homomorphism f : A → A′ of G-graded algebras A and A′ is
an algebra morphism which is even (degree 0G). In Z2-graded linear spaces
A = A0 ⊕ A1, the elements of Aj are homogeneous of degree (parity) j ∈ Z2,
and the set of all homogeneous elements is H(A) = A0 ∪ A1. The parity of a
homogeneous element x ∈ H(A) is denoted |x|.
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Hom-superalgebras are triples (A,μ, α) where A = A0 ⊕ A1 is a Z2-
graded linear space, μ : A × A → A is an even bilinear map, and α : A → A
is an even linear map. An even linear map f : A → A′ is said to be a weak
morphism of hom-superalgebras if it is algebra structures homomorphism
(f ◦ μ = μ′ ◦ (f ⊗ f)), and a morphism of hom-superalgebras if moreover
f ◦ α = α′ ◦ f.

In any Hom-superalgebra (A = A0 ⊕ A1, μ, α),

μ(A0, A0) ⊆ A0, μ(A1, A0) ⊆ A1,

μ(A0, A1) ⊆ A1, μ(A1, A1) ⊆ A0.

Hom-subalgebras (graded hom-subalgebras) of hom-superalgebra (A,μ, α)
are defined as Z2-graded linear subspaces I = (I ∩ A0) ⊕ (I ∩ A1) of A
closed under both α and μ, that is α(I) ⊆ I and μ(I, I) ⊆ I.

Hom-subalgebra I is called a left hom-ideal of the hom-superalgebra
A, if μ(A, I) ⊆ I, and the right hom-ideal of A if μ(I,A) ⊆ I. If I in A is
both left and right hom-ideal, then it is called hom-ideal or two-sided hom-
ideal, and notation I � A is used to indicate that. Hom-ideals I � A of a
hom-superalgebra (A = A0 ⊕ A1, μ, α), as Z2-graded hom-subalgebras with
homogeneous components I0 = (I ∩ A0) and (I ∩ A1), satisfy

μ(I0, A0) ∪ μ(A0, I0) ∈ I0,

μ(I0, A1) ∪ μ(A1, I0) ∈ I1

μ(I1, A0) ∪ μ(A0, I1) ∈ I1

μ(I1, A1) ∪ μ(A1, I1) ∈ I0.

If I � A and moreover α(I0) ⊆ I0, then (I0, μ, α0) is a hom-subalgebra of the
hom-algebra (A0, μ, α0), where αj : Aj → Aj are the restrictions of the even
linear map α : A → A to homogeneous subspaces Aj for j ∈ Z2. However,
(I1, μ, α1) is a hom-Lie subalgebra of the hom-algebra (A1, μ, α1) if and only
if α(I1) ⊆ I1 and μ(I1, I1) = {0}, since μ(I1, I1) ⊆ A0 ∩ I1 ⊆ A0 ∩ A1 =
{0}. Hom-supersubspace of the hom-Lie superalgebra is a subspace of hom-
superalgebra which is not necessarily a hom-ideal.

In any hom-superalgebra (A = A0 ⊕ A1, μ, α), hom-associator of A is
the even trilinear map given by asα,μ = μ ◦ (μ⊗α−α⊗μ) : A×A×A → A,
acting on elements as asα,μ(x, y, z) = μ(μ(x, y), α(z)) − μ(α(x), μ(y, z)), or
asα,μ(x, y, z) = (xy)α(z) − α(x)(yz) in juxtaposition notation xy = μ(x, y).
Since |asα,μ(x, y, z))| = |x| + |y| + |z| for x, y, z ∈ H(A) = A0 ∪ A1 in any
hom-superalgebra (A = A0 ⊕ A1, μ, α),

asα,μ(A0, A0, A0) ⊆ A0, asα,μ(A1, A1, A0) ⊆ A0,

asα,μ(A1, A0, A1) ⊆ A0, asα,μ(A0, A1, A1) ⊆ A0,

asα,μ(A1, A0, A0) ⊆ A1, asα,μ(A0, A1, A0) ⊆ A1,

asα,μ(A0, A0, A1) ⊆ A1, asα,μ(A1, A1, A1) ⊆ A1.

Hom-ideals I � A of a hom-superalgebra (A = A0 ⊕ A1, μ, α), as Z2-graded
hom-subalgebras with homogeneous components I0 = (I ∩ A0) and I1 =
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(I ∩ A1), satisfy

asα,μ(Aj , I0, Aj) ⊆ I0, j ∈ Z2,

asα,μ(A0, I1, A1) ∪ asα,μ(A1, I1, A0) ⊆ I0,

asα,μ(A1, I1, A1) ⊆ I1.

In particular, for each j ∈ {0, 1} = Z2, if α(Ij) ⊆ Ij , then Ij is closed under
ternary trilinear product defined by the hom-associator asα,μ which together
with αj define then the structure of ternary hom-algebra on Ij . In particular,
when α(I0) ⊆ I0 and α(I1) ⊆ I1, both (I0, asα,μ, α0) and (I1, asα,μ, α1)
become ternary hom-algebras at the same time.

Definition 2.1. [44,62] Hom-Lie algebras are triples (g, [·, ·], α), where g is a
linear space, [·, ·] : g × g → g is a bilinear map and α : g → g is a linear map
satisfying for all x, y, z ∈ g,

[x, y] = −[y, x] Skew-symmetry

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0, Hom-Lie Jacobi identity

(i) Hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an
algebra morphism, α([·, ·]) = ([α(·), α(·)]), meaning that α([x, y]) =
[α(x), α(y)] for any x, y ∈ g.

(ii) Multiplicative hom-Lie algebra is called regular, if α is an automor-
phism.

From the point of view of Hom-algebras, Lie algebras are a special sub-
class of Hom-Lie algebras obtained when α = id in Definition 2.1.

Now, we recall the notion of hom-Lie superalgebras as generalization of
Lie superalgebras that were considered in [66,67].

Definition 2.2. [7,53] Hom-Lie superalgebras are triples (g, [·, ·], α) which con-
sist of Z2-graded linear space g = g0⊕g1, an even bilinear map [·, ·] : g×g → g
and an even linear map α : g → g satisfying the super skew-symmetry and
hom-Lie super Jacobi identities for homogeneous elements x, y, z ∈ H(g),

[x, y] = −(−1)|x||y|[y, x], Super skew-symmetry (2.1)

(−1)|x||z|[α(x), [y, z]] + (−1)|y||x|[α(y), [z, x]]
+(−1)|z||y|[α(z), [x, y]] = 0.

Super Hom-Jacobi
identity (2.2)

(i) Hom-Lie superalgebra is called multiplicative Hom-Lie superalgebra, if
α is an algebra morphism, α([x, y]) = [α(x), α(y)] for any x, y ∈ g.

(ii) Multiplicative hom-Lie superalgebra is called regular, if α is an algebra
automorphism.

In hom-Lie superalgebras, using super skew-symmetry (2.1), the super
hom-Jacobi identity can be presented in the equivalent form of super hom-
Leibniz rule for adx = [x, ·] : g → g,

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x||y|[α(y), [x, z]]
Super Hom-Leibniz

identity
(2.3)
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since, by super skew-symmetry (2.1), the following equalities are equivalent:

[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x||y|[α(y), [x, z]],

[α(x), [y, z]] − [[x, y], α(z)] − (−1)|x||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x|+|y|)[α(z), [x, y]] − (−1)|x||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x|+|y|)[α(z), [x, y]] − (−1)|x||y|[α(y), [x, z]] = 0,

[α(x), [y, z]] + (−1)|z|(|x|+|y|)[α(z), [x, y]]

+ (−1)|x||y|(−1)|z||x|[α(y), [z, x]] = 0,

(−1)|z||x|[α(x), [y, z]] + (−1)|z||x|(−1)|z|(|x|+|y|)[α(z), [x, y]]

+ (−1)|x||y|[α(y), [z, x]] = 0,

(−1)|x||z|[α(x), [y, z]] + (−1)|z||y|[α(z), [x, y]] + (−1)|y||x|[α(y), [z, x]] = 0,

(−1)|x||z|[α(x), [y, z]] + (−1)|z||y|[α(z), [x, y]] + (−1)|y||x|[α(y), [z, x]] = 0.

Hom-superalgebras, in which the super skew-symmetry (2.1) is not satisfied
for some homogeneous elements, are not Hom-Lie superalgebras, the steps
that are relying on the super skew-symmetry (2.1) in the above general com-
putations can not be assured for those homogeneous elements for which (2.1)
does not hold, the super Hom-Jacobi identity (2.2) and super Hom-Leibniz
identity (2.3) are not necessarily equivalent and lead to somewhat different
classes of Hom-superalgebras among those Hom-superalgebras that are not
Hom-Lie superalgebras (as for the Lie algebras and the Leibniz (Leibniz–
Loday) algebras). It should be also mentioned in this context, that Hom-
Leibniz (Hom-Loday-Leibniz) superalgebras, defined by super Hom-Leibniz
identity (2.3) on homogeneous elements, are actually a special case of the
general color quasi-Leibniz algebras (called also Γ-graded quasi-Leibniz al-
gebras) which were first introduced, along with the color quasi-Lie algebras
(called also Γ-graded quasi-Leibniz algebras), in [52,53].

Remark 2.3. In any hom-Lie superalgebra, (g0, [·, ·], α) is a hom-Lie algebra
since [g0, g0] ∈ g0 and α(g0) ∈ g0 and (−1)|a||b| = (−1)0 = 1 for a, b ∈ g0.
Thus, hom-Lie algebras can be also seen as special class of hom-Lie superal-
gebras when g1 = {0}.

Remark 2.4. From the point of view of Hom-superalgebras, Lie superalgebras
is an important subclass of Hom-Lie superalgebras obtained when α = id in
Definition 2.2. Namely, when α = Id, Definition 2.2 becomes the definition
of Lie superalgebras [31,32,47] as Z2-graded linear spaces g = g0 ⊕ g1, with
a graded Lie bracket [·, ·] : g × g → g of degree zero, that is [·, ·] is a bilinear
map obeying [gi, gj ] ⊆ gi+j(mod2), and for homogeneous x, y, z ∈ H(g),

[x, y] = −(−1)|x||y|[y, x], Super skew-symmetry

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.
Super Jacobi

identity

However, For general linear maps α, the Hom-Lie superalgebras are substan-
tially different from Lie superalgebras, as all algebraic structure properties,
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morphisms, classifications and deformations become dependent fundamen-
tally on the joint simultaneous structure and properties of both operations,
the linear map α and the bilinear product [·, ·] linked in an intricate way via
the α-twisted super-Jacobi identity (2.2).

As for all hom-superalgebras, an even homomorphism φ : g → g′ of
the hom-Lie superalgebras (or hom-Leibniz superalgebras) (g, [·, ·], α) and
(g′, [·, ·]′, β) is said to be a homomorphism of hom-Lie superalgebras (or hom-
Leibniz superalgebras), if φ[u, v] = [φ(u), φ(v))]′ and φ ◦α = β ◦φ. The hom-
Lie superalgebras (or hom-Leibniz superalgebras) (g, [·, ·], α) and (g′, [·, ·]′, β)
are isomorphic, if there is a hom-Lie superalgebra (or hom-Leibniz super-
algebras) homomorphism φ : g → g′ such that φ be bijective [61]. Hom-
subalgebras of hom-Lie superalgebra (g, [·, ·], α) are defined as Z2-graded lin-
ear subspaces I = (I ∩ g0) ⊕ (I ∩ g1) ⊆ g closed under both α and [·, ·],
that is α(I) ⊆ I and [I, I] ⊆ I. Hom-subalgebra I is called a hom-ideal of
the hom-Lie superalgebra g, if [I, g] ⊆ I, and notation I � g is used in this
case. In super skew-symmetric hom-superalgebras, and in particular in hom-
Lie superalgebras, by super skew-symmetry (2.1), [I, g] ⊆ I is equivalent to
[g, I] ⊆ I, since

∀ y = y0 + y1 ∈ I, x = x0 + x1 ∈ g = g0 ⊕ g1, y0 ∈ I0, y1 ∈ I1,

x0 ∈ g0, x1 ∈ g1 :

[x, y] =
∑

j,k∈Z2

[xj , yk]
(2.1)
=

∑

j,k∈Z2

(−(−1)|j||k|)[yk, xj ]

= −[y0, x0] − [y0, x1] + [y1, x1] − [y1, x0]

= [−y0, x0 + x1] + [y1, x1 − x0]

∈ [I, g] + [I, g] ⊆ I + I = I, when [I, g] ⊆ I,

[y, x] =
∑

j,k∈Z2

[yk, xj ]
(2.1)
=

∑

j,k∈Z2

(−(−1)|k||j|)[xj , yk]

− [x0, y0] − [x1, y0] + [x1, y1] − [x0, y1]

= [x0 + x1,−y0] + [x1 − x0, y1]

∈ [g, I] + [g, I] ⊆ I + I = I, when [g, I] ⊆ I.

Thus, in hom-Lie superalgebras, all right or left hom-ideals are two-sided
hom-ideals.

Hom-Lie subalgebra I of a hom-Lie superalgebra is called commutative
if [I, I] = 0. If I is not abelian, then [x, y] �= 0 for some non-zero elements
x, y ∈ I.

Definition 2.5. [59] The center of a hom-Lie superalgebra g is defined as

C(g) = {x ∈ g : [x, g] = 0}.

The centralizer of a hom-ideal I in a hom-Lie superalgebra g is defined as

Cg(I) = {x ∈ g : [x, I] = 0}.
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In a hom-Lie superalgebra (g = g0 ⊕ g1, [·, ·], α), the center is the cen-
traliser of hom-ideal g in (g, [·, ·], α), that is C(g) = Cg(g). The centralizer
Cg(I) of a hom-ideal I is a supersubspace Cg(I) = (Cg(I)∩g0)⊕(Cg(I)∩g1):

∀ y ∈ I, x = x0 + x1 ∈ g = g0 ⊕ g1, x0 ∈ g0, x1 ∈ g1 :

[x, y] = [x0 + x1, y] = [x0, y] + [x1, y] = 0 ⇔
[x0, y] = −[x1, y] = [−x1, y] ∈ g0 ∩ g1 ∩ I = {0} ⇔
[x0, y] = [x1, y] = 0 ⇔ xj ∈ Cg(I) ∩ gj , j ∈ Z2.

In general, [Cg(I), C(g)(I)] ⊆ Cg(I) and α(Cg(I)) ⊆ Cg(I) are not assured,
since the equality [[x1, x2], y] = 0 is not necessarily implied by [x1, y] = 0
and [x2, y] = 0, and [x, y] = 0 does not necessarily imply [α(x), y] = 0 for
x1, x2, x ∈ g and y ∈ I.

Lemma 2.6. Let (g, [·, ·], α) be a hom-Lie superalgebra. If (g, [·, ·], α) is a mul-
tiplicative hom-Lie superalgebra with surjective α, that is α([·, ·]) = [α(·), α(·)]
and α(g) = g, then the center C(g) is a commutative hom-ideal in (g, [·, ·], α).

Proof. The hom-supersubspace C(g) = (C(g)∩g0)⊕(C(g)∩g1) of the hom-Lie
superalgebra (g, [·, ·], α) is closed under [·, ·] and α. Indeed, α(C(g)) ⊆ C(g),
since the preimage set α−1(y) �= ∅ of any y ∈ g is non-empty by surjectivity
of α, and

∀ x ∈ C(g), y ∈ g : [α(x), y] = [α(x), α(α−1(y))] = α([x, α−1(y)])
= α({0}) = {0}.

Moreover, [C(g), C(g)] = [C(g), g] = {0} ⊆ C(g) by definition of the center.
Hence, C(g) is commutative hom-ideal. �

Lemma 2.7. Let (g, [·, ·], α) be a multiplicative hom-Lie superalgebra, that is
(α([·, ·]) = [α(·), α(·)]). If I is a hom-ideal I in (g, [·, ·], α) such that α is
surjective on I, that is α(I) = I, then

(i) Cg(I) is a hom-ideal in hom-Lie superalgebra (g, [·, ·], α).
(ii) C(I) = CI(I) is a commutative hom-ideal in the hom-Lie superalgebra

(I, [·, ·]I , αI), where [·, ·]I and αI are restrictions of [·, ·] and α to I.
(iii) If (g, [·, ·], α) is a multiplicative hom-Lie superalgebra with surjective α,

that is α([·, ·]) = [α(·), α(·)] and α(g) = g, then the center C(g) is a
commutative hom-ideal in (g, [·, ·], α).

Proof. For any hom-ideal I, the hom-supersubspace Cg(I) = (Cg(I)) ∩ g0) ⊕
(Cg(I)) ∩ g1) of the hom-Lie superalgebra (g, [·, ·], α) is closed under [·, ·] if
α(I) = I, since by super hom-Jacobi identity (2.3), definition of the central-
izer, and the condition I = α(I) of surjectivity of the restriction of α on
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I,

∀ x ∈ I ∩ H(g), y, z ∈ Cg(I) ∩ H(g) :

[x, y] = 0, [α(y), [x, z]] = [α(y), 0] = 0,⇒
[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x||y|[α(y), [x, z]] = 0,⇒
[I, [Cg(I), Cg(I)]]

α(I)=I
= [α(I), [Cg(I), Cg(I)]] = {0} ⇒

[Cg(I), Cg(I)] ⊆ Cg(I).

The hom-supersubspace Cg(I) = (Cg(I))∩g0)⊕ (Cg(I))∩g1) is closed under
α, since definition of the centraliser, surjectivity α(I) = I of α on I and
multiplicativity of α yield

[α(Cg(I)), I] = [α(Cg(I)), α(I)] = α([Cg(I), I]) ∈ α({0}) = {0}
⇒ α(Cg(I)) ∈ Cg(I).

Thus, Cg(I) is a hom-supersubalgebra in the hom-superalgebra (g, [·, ·], α).
Moreover,

∀ x ∈ I ∩ H(g), y ∈ g ∩ H(g), z ∈ Cg(I) ∩ H(g) :

[x, y] ∈ I, [α(y), [x, z]] = [α(y), 0] = 0,⇒
[α(x), [y, z]] = [[x, y], α(z)] + (−1)|x||y|[α(y), [x, z]] ∈ I,⇒
[I, [g, Cg(I)]]

α(I)=I
= [α(I), [g, Cg(I)]] ∈ I ⇒ [g, Cg(I)] ⊆ Cg(I).

Hence, Cg(I) is a hom-ideal. �

Lemma 2.8. Let g be a multiplicative hom-Lie superalgebras with surjective
α, that is α([·, ·]) = [α(·), α(·)] and α(g) = g, then the quotient g/[g, g] is
commutative. Moreover, [g, g] is the smallest hom-ideal with this property: if
g/I is commutative for some hom-ideal I ⊆ g, then [g, g] ⊆ I.

Proof. It is obvious that [[g, g], [g, g]] ⊆ [g, g]. Since g is multiplicative hom-
Lie superalgebra with surjective α, we have α([g, g]) = [α(g), α(g)] ⊆ [g, g].
Since [g, g] ⊆ g, then [[g, g], g] ⊆ [g, g]. Hence [g, g] is a hom-ideal. Let x̄ =
x + [g, g] ∈ g/[g, g], ȳ = y + [g, g] ∈ g/[g, g], where x, y ∈ g. So,

[x̄, ȳ] = [x + [g, g], y + [g, g]] = [x, y] + [g, g] = [x, y] = 0̄ ∈ g/[g, g].

Thus g/[g, g] is commutative. If g/I is commutative, then x̄ = x + I ∈ g/I,
ȳ = y + I ∈ g/I commute, for all x, y ∈ g,

[x̄, ȳ] = [x + I, y + I] = [x, y] + I = 0̄ ∈ g/I,

⇒ [x, y] + I = I ⇒ [x, y] ∈ I.

This is true for all x, y ∈ g, thus, [g, g] ⊆ I. �

We are going to need the following definition throughout the rest of the
article.

Definition 2.9. [11,53] Let (g, [·, ·], α) be a hom-Lie superalgebra. A represen-
tation of (g, [·, ·], α) on a Z2-graded linear space V = V0̄ ⊕ V1̄ with respect to
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β ∈ gl(V )0̄ is an even linear map ρ : g → gl(V ), such that for all homogeneous
x, y ∈ H(g),

ρ(α(x)) ◦ β = β ◦ ρ(x),

ρ([x, y]) ◦ β = ρ(α(x)) ◦ ρ(y) − (−1)|x||y|ρ(α(y)) ◦ ρ(x).

A representation ρ of g is called irreducible or simple, if it has no nontrivial
subrepresentations. Otherwise ρ is called reducible.

For any linear transformation T : X �→ X of a linear space X, and any
nonnegative integer s, the s-times composition is T s = T ◦ · · · ◦ T︸ ︷︷ ︸

s times

, T 0 = Id,

T 1 = T, and if T then T−s = T−1 ◦ · · · ◦ T−1
︸ ︷︷ ︸

s times

, where T−1 is inverse of T.

Next, we recall the notion of αs-derivations.

Definition 2.10. [11] Let (g, [·, ·]g, α) be a hom-Lie superalgebra. For any non-
negative integer s, we call D ∈ (End(g))i, where i ∈ Z2, an αs-derivation of
the multiplicative hom-Lie superalgebra (g, [·, ·]g, α), if for all homogeneous
x, y ∈ H(g),

D ◦ α = α ◦ D,

D([x, y]g) = [D(x), αs(y)]g + (−1)|D||x|[αs(x),D(y)]g.

Denote by Derαs(g) = (Derαs(g))0 ⊕ (Derαs(g))1 the set of all αs-
derivations of the hom-Lie superalgebra (g, [·, ·], α), and

Der(g) =
⊕

s≥−1

Derαs(g).

For any D ∈ Der(g) and D′ ∈ Der(g), define their commutator [D,D′] as

[D,D′]D = D ◦ D′ − (−1)|D||D′|D′ ◦ D. (2.4)

Lemma 2.11. [11] Let (g, [·, ·]g, α) be a multiplicative hom-Lie superalgebra
and consider on Der(g) the endomorphism α̃ defined by α̃(D) = α ◦ D, then
(Der(g), [·, ·]D, α̃) is a hom-Lie superalgebra where [·, ·]D is given by (2.4).

For any x ∈ g satisfying α(x) = x, the mapping ads(x) : g → g defined
for all y ∈ g by ads(x)(y) = [x, αs(y)]g, is a αs+1-derivation, called an inner
αs+1-derivation [11], and the set Innαs+1(g) = {[x, αs(·)]g | x ∈ g, α(x) = x}
is a linear space in Derαs+1(g).

3. Complete Hom-Lie Superalgebras

In [15], the authors introduced the notion of a complete hom-Lie superalgebra
and in this section we state some results about it.

Definition 3.1. [15] Hom-Lie superalgebra g is called a complete hom-Lie su-
peralgebra if g satisfies the following two conditions:

C(g) = 0,

Derαs+1(g) = ads(g).
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Remark 3.2. Let g0 be a complete hom-Lie algebra, then it is not necessary
that g be a complete hom-Lie superalgebra.

Let (g0, 〈·, ·〉 , α) be a semisimple hom-Lie algebra, g1 be a finite-dimen-
sional linear space and α̃ : g = g0⊕g1 → g = g0⊕g1 be an even endomorphism
such that α̃|g0 = α. Then by [7], (g, [·, ·], α̃) is a hom-Lie superalgebra such
that [x, y] = 0 for all x ∈ g1, y ∈ g and [x, y] = 〈x, y〉 for all x, y ∈ g0 where
〈·, ·〉 is bracket operation of the hom-Lie algebra g0. Since C(g) �= 0, g is not
complete hom-Lie superalgebra but g0 is complete, that is C(g0) = 0 and
Derαs+1(g0) = ads(g0).

Definition 3.3. A hom-Lie superalgebra (g, [·, ·], α) is called solvable if gn = 0
for some n ∈ N, where gn, the members of the derived series of g, are defined
inductively,

g1 = g, gn = [gn−1, gn−1], n > 1.

Note that any commutative hom-Lie superalgebra is solvable and for a
multiplicative hom-Lie superalgebra g, we have α(gn) ⊆ gn for any n.

The hom-Lie superalgebra (g, [·, ·], α) is called semisimple if it does not
contain any non-trivial solvable hom-ideal.

Let g be a hom-Lie superalgebra and let Φ be a bilinear form on g.
Recall that Φ is called invariant if Φ([x, y], z) = Φ(x, [y, z]) for all x, y, z ∈ g.
The invariant bilinear form associated to the adjoint representation of g is
called the Killing form on g.

Now, we check conditions under which the completeness of g0 and g are
equivalent.

Theorem 3.4. Let g = g0 ⊕ g1 be a multiplicative hom-Lie superalgebra with
surjective α on g and g0. If g has the non-degenerate Killing form, then g0

is a complete hom-Lie algebra and g is a complete hom-Lie superalgebra.

Proof. We know g has non-degenerate Killing form, thus Derαs+1(g) = ads(g)
by [14]. Since α is surjective, C(g) is commutative hom-ideal, and so C(g) is
solvable. Hence C(g) = 0. Thus g is complete. Let Φ be a non-degenerate
Killing form of g. Then the restriction of Φ to g0 is the non-degenerate
Killing form of g0. Hence g0 is semisimple hom-Lie algebra and Derαs+1(g0) =
ads(g0). Since α is surjective, C(g0) is commutative and solvable, So C(g0) =
0. Therefore g0 is complete hom-Lie algebra. �
Proposition 3.5. Let g be a multiplicative hom-Lie superalgebra and I be a
complete hom-ideal of g with surjective α on both g and I. There exists a
hom-ideal J such that g = I ⊕ J.

Proof. Let J = Cg(I). Then Cg(I) is a hom-ideal of g by Lemma 2.7. Since
I is hom-ideal, ads(x) ∈ Derαs+1(I), for all x ∈ g. Since I is complete,
Derαs+1(I) = ads(I), so there exists a αs+1-derivation D in Derαs+1(I) such
that ads(x) = D. Hence there exists r ∈ I such that

D(t) = ads(x)(t) = [x, αs(t)] = [r, αs(t)],

for any t ∈ I. Then [x − r, αs(t)] = 0 and x − r ∈ Cg(I) = J. Thus x = r + l,
for some l ∈ J. On the other hand, since I is complete, I ∩ J = I ∩ Cg(I) =
C(I) = 0. Therefore g = I ⊕ J. �
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Definition 3.6. Let g be a hom-Lie superalgebra and h(g) = g⊕ Der(g). The
even bilinear map [·, ·]h : h(g) × h(g) → h(g) and a linear map αh : h(g) →
h(g) are defined in h(g) by

[x + D, y + E]h = [x, y]g + D(y) − (−1)|x||E|E(x) + [D,E]D,

αh(x + D) = α(x) + α ◦ D,

where x, y ∈ g, D,E ∈ Der(g) and [·, ·]D is bracket in Der(g) given by (2.4).
With the above notation, h(g) is a hom-Lie superalgebra. We call h(g) a
holomorph hom-Lie superalgebra.

We know that (Der(g), [·, ·]D, α̃) is hom-Lie superalgebra by Lemma 2.11.
So we have the following results.

Lemma 3.7. Let (h(g), [·, ·]h, αh) be holomorph hom-Lie superalgebra, where
g is a multiplicative hom-Lie superalgebra.

(i) If C(g) = 0, then C(Der(g)) = {D ∈ Der(g)|[D,Der(g)]D = 0} = 0.
(ii) g is hom-ideal of h(g) and h(g)/g � Der(g).
(iii) g ∩ Ch(g)(g) = C(g),
where Ch(g)(g) denotes a centraliser of g in h(g).

Proof. If D ∈ (Derαs(g))i, i ∈ Z2, D ∈ C(Der(g)), then [D,Der(g)]D = 0.
So, [D, ads(x)]D = 0. Hence, [D, ads(x)]D(y) = 0, for all x, y ∈ g. Thus

D(ads(x)(y)) − (−1)|D||x|ads(x)(D(y)) = 0,⇒
D([x, αs(y)]) − (−1)|D||x|[x, αs(D(y))] = 0,⇒
D([x, αs(y)]) = (−1)|D||x|[x, αs(D(y))],⇒
[D(x), α2s(y)] + (−1)|D||x|[x, αs(D(y))] = (−1)|D||x|[x, αs(D(y))],⇒
[D(x), α2s(y)] = 0

C(g)=0⇒ D(x) = 0 ⇒ D = 0.

Therefore C(Der(g)) = 0. Next, g�g, so g is a hom-ideal of h(g) and h(g)/g �
Der(g). Now, let x ∈ g. Then

x ∈ C(g) ⇐⇒ [x, g]g = 0 ⇐⇒ [x, g]h = 0 ⇐⇒ x ∈ g ∩ Ch(g)(g).

Hence, g ∩ Ch(g)(g) = C(g). �

Now, we state some equivalence conditions for a hom-Lie superalgebra
to be complete, by using the notion of holomorph hom-Lie superalgebras.

Definition 3.8. Let g, h be two hom-Lie superalgebras. We call e an extension
of the hom-Lie superalgebra g by h, if there exists a short exact sequence

0 → h → e → g → 0

of hom-Lie superalgebras and their morphisms.

(i) An extension 0 → h
i→ e

p→ g → 0 is called trivial extension if there
exists a hom-ideal I ⊆ e such that e = Ker(p) ⊕ I.

(ii) An extension 0 → h
i→ e

p→ g → 0 is called splitting extension if there
exists an hom-supersubspace S ⊆ e such that e = Ker(p) ⊕ S.
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Theorem 3.9. For a multiplicative hom-Lie superalgebra (g, [·, ·], α) with sur-
jective α, the following conditions are equivalent:

(i) g is a complete hom-Lie superalgebra;
(ii) any splitting extension e by g is a trivial extension and e = g ⊕ Ce(g);
(iii) h(g) = g ⊕ Ch(g)(g).

Proof. Let e be a splitting extension by g and assume (i) holds. Hence g � e
and Ce(g) � e. By (i), C(g) = 0, so g ∩ Ce(g) = 0. Since g � e, ads(e)(g) ⊆ g,
for any e ∈ e. Then the restriction ads(e)|g is a derivation of g. Since g is
complete, thus ads(e)|g is a αs+1-derivation of g. We set π(e) = ads(e)|g,
for all e ∈ e. Since Derαs+1(g) = ads(g) � g, the map π is a homomorphism
from e onto Derαs+1(g) and Ker(π) = Ce(g). Thus e = g⊕Ker(π). Therefore
e = g ⊕ Ce(g). Suppose (ii) holds, then (iii) is obvious by setting e = h(g).
Next, suppose (iii) holds. By Lemma 3.7, C(g) = g ∩ Ch(g)(g). From (iii),
Ch(g)(g) � h(g)/g. By Lemma 3.7, h(g)/g � Derαs+1(g) � Ch(g)(g) � g.
Since C(g) = 0, then g � ads(g). Thus, Derαs+1(g) = ads(g). Therefore, g is
a complete hom-Lie superalgebra. �

In the following theorem, we check the condition under which the com-
pleteness of g and its ideals are equivalent.

Theorem 3.10. Let (g, [·, ·], α) be a multiplicative hom-Lie superalgebra and
g = I ⊕ J, where I and J are hom-ideals and α is surjective on g, I and J.
Then

(i) C(g) = C(I) ⊕ C(J);
(ii) if C(g) = 0, then

ads(g) = ads(I) ⊕ ads(J),
Derαs+1(g) = Derαs+1(I) ⊕ Derαs+1(J);

(iii) g is complete if and only if I and J are complete.

Proof. (i) By Lemma 2.7, C(I) and C(J) are hom-ideals of g. Furthermore,
I ∩ J = 0, and so C(I) ∩ C(J) = 0. Let a + b ∈ C(I) ⊕ C(J), where a ∈ C(I)
and b ∈ C(J). Thus [a, I] = 0 and [b, J ] = 0. Let m + n ∈ I ⊕ J = g, where
m ∈ I and n ∈ J. Then

[a + b,m + n] = [a + b,m] + [a + b, n] = [a,m] + [b,m] + [a, n] + [b, n] = 0,

since a,m ∈ I, b, n ∈ J and [b,m], [a, n] ∈ I ∩ J = 0. Therefore a + b ∈ C(g)
and C(I)⊕C(J) ⊆ C(g). Let x = m+n ∈ C(g), where m ∈ I and n ∈ J. Then
[x, g] = [m+n, g] = [m+n, I +J ] = 0. Since x ∈ C(g) and [n, I] ⊆ [J, I] = 0,
then

[m, I] = [x − n, I] = [x, I] − [n, I] = 0.

Hence m ∈ C(I). In the same way, n ∈ C(J). Thus C(g) ⊆ C(I) ⊕ C(J).
(ii) For D ∈ Derαs+1(I), we define an extended linear transformation on

g by the equality D(m+n) = D(m), for m ∈ I and n ∈ J. So D ∈ Derαs+1(g),
Derαs+1(I) ⊆ Derαs+1(g) and Derαs+1(J) ⊆ Derαs+1(g). Let m ∈ Ii, n ∈ J
and D ∈ (Derαs+1(g))j , where i, j ∈ Z2. Since I, J are hom-ideals,

[D(m), n] = D([m,n]) = [D(m), αs+1(n)] + (−1)ij [αs+1(m),D(n)] ∈ I ∩ J.
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The equality I ∩ J = 0 yields [D(m), αs+1(n)] = [αs+1(m),D(n)] = 0. Let
D(m) = m′ + n′, where m′ ∈ I and n′ ∈ C(J). Then

[D(m), αs+1(n)] = [m′ + n′, αs+1(n)] = [m′, αs+1(n)] + [n′, αs+1(n)] = 0.

By (i), n′ = 0. Hence D(m) = m′ ∈ I. Thus D(I) ⊆ I. In the same
way, D(J) ⊆ J. Let D ∈ Derαs+1(g) and m + n ∈ I + J, where m ∈ I
and n ∈ J. We define αs+1-derivations E and F by setting E(m + n) =
D(m), F (m + n) = D(n). Clearly, E ∈ Derαs+1(I) and F ∈ Derαs+1(J).
Then D = E + F ∈ Derαs+1(I) + Derαs+1(J). Therefore Derαs+1(g) =
Derαs+1(I)⊕Derαs+1(J) as a linear space, since Derαs+1(I)∩Derαs+1(J) = 0.
Now we prove that Derαs+1(I) and Derαs+1(J) are hom-ideals of hom-Lie
superalgebra Derαs+1(g). Let E ∈ (Derαs+1(I))i, F ∈ (Derαs+1(g))j and
n ∈ J. Using the commutator of αs+1-derivations, which is defined in [11],
we have

[F,E](n) = (F ◦ E)(n) − (−1)ij(E ◦ F )(n) = 0.

Thus Derαs+1(I) is hom-ideal of Derαs+1(g). Similarly Derαs+1(J) is hom-
ideal of Derαs+1(g).

(iii) Let g be complete. Then C(g) = 0 and C(I) = C(J) = 0 by (i).
Using ads(g) = Derαs+1(g) and statements (i) and (ii), we have

ads(I) ⊕ ads(J) = Derαs+1(I) ⊕ Derαs+1(J),

and ads(I) ⊆ Derαs+1(I) and ads(J) ⊆ Derαs+1(J) yield

ads(I) = Derαs+1(I) and ads(J) = Derαs+1(J).

Therefore I and J are complete hom-Lie superalgebras. Conversely, let I and
J are complete, then C(g) = C(I) ⊕ C(J) = 0, by (i), and Derαs+1(g) =
Derαs+1(I) ⊕ Derαs+1(J) = ads(I) ⊕ ads(J) = ads(g), by (ii). �

Definition 3.11. Let g be a complete hom-Lie superalgebra. If any non-trivial
hom-ideal of g is not complete, then g is called a simply complete hom-Lie
superalgebra.

A simple and complete hom-Lie superalgebra is a simply complete hom-
Lie superalgebra. The classification of multiplicative non-graded simple hom-
Lie algebras are discussed in [38]. There exists also some interesting results
in [5]. Now, we want to state the relation between simply complete hom-Lie
superalgebras and indecomposable complete hom-Lie superalgebras.

Theorem 3.12. Let (g, [·, ·], α) be a complete multiplicative hom-Lie superal-
gebra with surjective α on g.

(i) g can be decomposed into the direct sum of simply complete hom-ideals.
(ii) g is simply complete if and only if it is indecomposable.

Proof. (i) If g is simply complete, then (i) holds. If g is not simply complete,
then by Proposition 3.5, there exists a nonzero minimal complete hom-ideal
I of g such that g = I ⊕Cg(I). Since a hom-ideal of Cg(I) is also a hom-ideal
of g, by continuing this method for Cg(I), we reach to the decomposition of
g into the simply complete hom-ideals.
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(ii) If g is simply complete, then it is indecomposable by (i). Conversely,
if g is indecomposable, then it has no non-trivial hom-ideals. Hence, g is
simply complete according to Definition 3.11. �

Definition 3.13. A subspace I of a hom-Lie superalgebra g is called a char-
acteristic hom-ideal of g, if D(I) ⊆ I for all D ∈ Der(g).

Lemma 3.14. Let (g, [·, ·], α) be a multiplicative hom-Lie superalgebra, I be
a characteristic hom-ideal of g and α is surjective on g and I. Then I is
hom-ideal of g.

Proof. Let x, y ∈ I, since α is surjective on I and ads(g) is a αs+1-derivation,

then [x, y]
α(I)=I

= [x, αs(t)] = ads(x)(t) ∈ I, where t ∈ I and αs(t) = y. Thus
[I, I] ⊆ I. Next, α(I) ⊆ I, since α is surjective on I. Let y ∈ I and a ∈ g.

Then [a, y]
α(I)=I

= [a, αs(t)] = ads(a)(t) ∈ I, where t ∈ I and αs(t) = y. Thus
[g, I] ⊆ I. Therefore I is a hom-ideal of g. �

Theorem 3.15. Let (g, [·, ·], α) be a multiplicative hom-Lie superalgebra with
surjective α, C(g) = 0 and ads(g) be a characteristic hom-ideal of Der(g).
Then Der(g) is complete. Furthermore, if g is indecomposable and [g, g] = g,
then Der(g) is simply complete.

Proof. The Hom-Lie superalgebra g has trivial center, so g � ads(g). Let
p = Der(g), then g�p. Let q be a splitting extension by p, that is p�q. Hence
for all q ∈ q, we have ads(q) ∈ Derαs+1(p). g is a characteristic hom-ideal of
p, so there exists p ∈ p such that ads(p)|g = ads(q)|g. Then ads(p − q)|g = 0
and p − q ∈ Cq(g). Hence we have q = p + Cq(g). On the other hand,
p∩Cq(g) = Cp(g) = 0 and p�q, thus q = p⊕Cq(g). Hence Cq(g) ⊆ Cq(p) and
we have q = p⊕ Cq(p). Therefore by Theorem 3.9, p = Der(g) is a complete
hom-Lie superalgebra. Now, assume that Der(g) is not simply complete.
So there exists a simply complete hom-ideal I. By Proposition 3.5, there
exists a hom-ideal J such that p = I ⊕ J. For any x, y ∈ g, there exists
x1, y1 ∈ I and x2, y2 ∈ J such that x = x1 + x2 and y = y1 + y2. Thus
[x, y] = [x1+x2, y] = [x1, y]+[x2, y] such that [x1, y] ∈ I∩g and [x2, y] ∈ J∩g.
Hence g = [g, g] = (I ∩ g) ⊕ (J ∩ g). g is indecomposable, then I ∩ g = 0 or
J ∩ g = 0. Hence g ⊆ J and I ⊆ Cp(g) = 0. Therefore by Theorem 3.12,
p = Der(g) is simply complete. �
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