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Abstract. In this paper we investigate factorizations of polynomials over
the ring of dual quaternions into linear factors. While earlier results
assume that the norm polynomial is real (“motion polynomials”), we
only require the absence of real polynomial factors in the primal part
and factorizability of the norm polynomial over the dual numbers into
monic quadratic factors. This obviously necessary condition is also suffi-
cient for existence of factorizations. We present an algorithm to compute
factorizations of these polynomials and use it for new constructions of
mechanisms which cannot be obtained by existing factorization algo-
rithms for motion polynomials. While they produce mechanisms with
rotational or translational joints, our approach yields mechanisms con-
sisting of “vertical Darboux joints”. They exhibit mechanical deficien-
cies so that we explore ways to replace them by cylindrical joints while
keeping the overall mechanism sufficiently constrained.
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1. Introduction

Factorization of dual quaternion polynomials is a powerful tool for the sys-
tematic construction of mechanisms which can perform a given rational mo-
tion [3,4]. In [5] it has been shown that rational motions can be parametrized
by motion polynomials, which are defined as polynomials over the ring of dual
quaternions with real norm polynomial (Study’s condition). Factorization al-
gorithms for motion polynomials are presented in [3,7]. They decompose a
given polynomial into products of linear motion polynomials. The obtained

∗Corresponding author.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-021-01123-w&domain=pdf
http://orcid.org/0000-0002-8790-0081


   22 Page 2 of 17 J. Siegele et al. Adv. Appl. Clifford Algebras

factors parametrize rotations or translations. Factorizations are generically
non-unique. This allows for the construction of mechanisms with multiple
“legs”, each corresponding to one factorization. One leg consists of revolute
or prismatic joints, obtained from linear factors in one factorization.

In this paper, we will generalize the factorization results and the algo-
rithm of [3] from motion polynomials to dual quaternion polynomials which
no longer have to fulfill Study’s condition (Sects. 3.1–3.3). An obvious neces-
sary condition for a factorization to exist is factorizability of the norm poly-
nomial over the dual numbers. Moreover, we adopt the genericity assumption
of [3] and generally require that the primal part has no real polynomial factor
of positive degree.

The factorization results in [3] are proven for generic rational motions
in this sense and it is known that their trajectories (orbits of points) are
“entirely circular”, i.e. all intersection points with the plane at infinity have
norm zero [6]. We will show that this no longer needs to be true for non-motion
polynomials. Nonetheless, we prove a necessary factorizability condition that
is related to the intersection points of trajectories with the plane at infinity
and their norms (Sect. 3.4).

It is well-known that also non-motion polynomials can be used to param-
etrize rational motions (cf. for example [9–11]). In this more general setting,
linear polynomials no longer parametrize just rotations or translations, they
parametrize “vertical Darboux motions”, cf. [[1], p. 321] and [11]. These are
rotations around a fixed axis coupled with a harmonic oscillation along this
axis. Rotations and translations are special cases and correspond to ampli-
tude zero or infinity, respectively, of the harmonic oscillation. This allows
us to construct mechanisms consisting of revolute, prismatic and “vertical
Darboux joints”, which we show in Sect. 4.

The caveat of this approach is that no convenient mechanical realiza-
tions are known for vertical Darboux joints. One way to circumvent this
problem is to use cylindrical joints that allow for an independent rotation
around and translation along a fixed axis. They can replace vertical Dar-
boux joints provided the mechanism still remains sufficiently constrained. In
Sects. 4.1 and 4.2, we illustrate this at hand of quadratic polynomials where
the mechanism construction via factorization into motion polynomials fails.
Our results yield mechanisms consisting of two revolute and two cylindri-
cal joints. We extend this construction to certain quadratic dual quaternion
polynomials that do not satisfy Study’s condition.

2. Preliminaries

Let us define the commutative, unital ring D = R[ε]/〈ε2〉 of dual numbers.
Elements of D can be written as a + εb with a, b ∈ R. If a �= 0, the dual
number is invertible and its inverse is given by (a − εb)a−2. The D-algebra
generated by the base elements 1, i, j and k is called the algebra of dual
quaternions. The non-commutative multiplication of dual quaternions abides
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by the rules

i2 = j2 = k2 = ijk = −1, iε = εi, jε = εj, kε = εk.

The dual quaternion conjugate of q = q0 + q1i + q2j + q3k is given by q∗ =
q0 −q1i−q2j−q3k. Further we will call the dual number ‖q‖ = qq∗ = q∗q the
dual quaternion norm of q (despite the fact that this is not a norm in the usual
sense). A dual quaternion can always be written as q = p+εd, where p and d
are elements of the real associative algebra H of (Hamiltionian) quaternions
generated by (1, i, j,k). We will call p the primal part and d the dual part of
q. The set of invertible elements of DH will be denoted by DH

×. Its elements
are all of the form q = p + εd with ‖p‖ �= 0. In this case ‖q‖ is invertible as
well and we have q−1 = q∗‖q‖−1.

It is well known, that the set of dual quaternions with real norm mod-
ulo real scalars is isomorphic to the group SE(3) of rigid body displace-
ments in three-space [12]. A dual quaternion q = p + εd has the norm
‖q‖ = ‖p‖ + ε(pd∗ + dp∗) which is real precisely if pd∗ + dp∗ = 0. This is
called Study’s condition. We can think of this condition in the following way:
the map (p, d) �→ 1/2(pd∗+dp∗) is a symmetric bilinear form on H

2. The dual
quaternion q = p + εd fulfills Study’s condition if and only if the quaternions
p and d are orthogonal with respect to this bilinear form.

Dual quaternions q = p + εd with p �= 0 fulfilling Study’s condition act
on a point (x1, x2, x3) ∈ R

3 by dual quaternion multiplication via

x �→ 1
‖p‖ (p − εd)x(p∗ + εd∗) =

1
‖p‖ (pxp∗ + ε(pd∗ − dp∗)), (1)

where x = 1 + ε(x1i + x2j + x3k). The first part of this map, namely x �→
pxp∗/‖p‖ is a rotation given by the quaternion p while the second part adds
the translation vector (pd∗ −dp∗)/‖p‖. For fixed p, the map d �→ pd∗ −dp∗ is
surjective onto the three-space spanned by i, j and k and its kernel is spanned
by p. Restricting the domain of this map to the orthogonal complement of p,
i.e. to all d such that p+εd fulfills Study’s condition, we obtain a vector-space
isomorphism. This shows that the group of dual quaternions which fulfill
Study’s condition modulo the real multiplicative group R

× is isomorphic to
SE(3).

The map in (1) however is well defined for all invertible dual quater-
nions, thus it can be extended to a surjective homomorphism between DH

×

and SE(3). Two dual quaternions q and h represent the same rigid body dis-
placement if and only if there exists a dual number a+εb with a �= 0 such that
q = (a+ εb)h [9–11]. In fact, for every dual quaternion q = p+ εd with p �= 0,
there exists a unique (up to real scalars) dual quaternion, which represents
the same displacement and fulfills Study’s condition. It can be computed by
multiplying the polynomial with the inverse of its norm polynomial (cf. [8]):(

‖p‖ − ε

2
(pd∗ + dp∗)

)
(p + εd) = ‖p‖p +

ε

2
(dp∗ − pd∗)p. (2)

2.1. Rational Motions and Dual Quaternion Polynomials

One-parametric rigid body motions are maps U → SE(3) from an interval
U ⊆ R into the group of rigid body displacements SE(3). We may think of
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them as curves in SE(3). A motion is called rational, if all trajectories are
rational curves in R

3. Rational motions can be represented by polynomials
with dual quaternion coefficients fulfilling Study’s condition [5].

We consider polynomials
∑n

i=0 mit
i with dual quaternion coefficients

m0, m1, . . ., mn ∈ DH. The non-commutative multiplication of polynomials
of this type is defined by the convention that the indeterminate t commutes
with all coefficients. This turns the set of polynomials over the dual quater-
nions into a ring which we denote by DH[t].

Similar to the notions above we can define the conjugate of a dual
quaternion polynomial M =

∑n
i=0 mit

i as M∗ =
∑n

i=0 mi
∗ti and the norm

polynomial as ‖M‖ = MM∗ = M∗M . It is a polynomial with coefficients in
the dual numbers D. Since dual quaternion multiplication is non-commutati-
ve, polynomials in DH[t] do not come with a canonical evaluation. We will
use the so called right evaluation M(h) of the polynomial M at h ∈ DH.
It is obtained by writing the powers of the indeterminate on the right side
of the coefficients before substituting h for t, i.e. M(h) :=

∑n
i=0 mih

i. Dual
quaternions for which the right evaluation of a polynomial M equals zero are
called right zeros of M . The notions of left evaluation and left zeros can be
defined by writing the indeterminate at the left side of the coefficients before
substituting. We will occasionally refer to right zeros of M simply as “zeros”.
A polynomial M ∈ DH[t] can always be written as P + εD where P and D
are both polynomials with (Hamiltonian) quaternion coefficients. Again we
call P the primal part and D the dual part of M .

All dual quaternion polynomials with the property that their norm poly-
nomial does not lie in εR[t] parameterize rational motions [9–11] via (1):

x �→ 1
‖P (t)‖ (P (t) − εD(t))x(P (t)∗ + εD(t)∗), t ∈ R.

If dual quaternion polynomials are the same up to a real polynomial fac-
tor, they represent the same motions (this is even true for dual polynomial
factors). Dual quaternion polynomials without a real polynomial factor are
called reduced, the maximal real polynomial factor of M ∈ DH[t] will be
denoted by mrpf(M).

Dual quaternion polynomials with invertible leading coefficient and no-
rm polynomial in R[t] are called motion polynomials [3,7].

2.2. The Vertical Darboux Motion

The simplest rational motions are rotations around a fixed axis and trans-
lations in a fixed direction. Both can be represented by linear motion poly-
nomials, i.e. dual quaternion polynomials of degree one which fulfill Study’s
condition. Given a point (v1, v2, v3) ∈ R

3, the polynomial t + v ∈ DH[t] with
v = v1i + v2j + v3k parametrizes a rotation around the axis with direction
v. Provided ‖(v1, v2, v3)‖ = 1, the rotation angle is given by 2 cot−1(t). The
polynomial t + εv parametrizes a translation by −2v/t. The rotation around
an axis parallel to (v1, v2, v3) and through the point (x1, x2, x3) is given by

(1 − εx/2)(t + v)(1 + εx/2) = t + v + ε/2(vx − xv), (3)

where v = v1i + v2j + v3k and x = x1i + x2j + x3k.
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Figure 1. Vertical Darboux motion

But not all linear polynomials in DH[t] describe rotations or transla-
tions: In general, linear non-motion polynomials describe vertical Darboux
motions which consist of a rotation around a fixed axis coupled with a har-
monic oscillation along the same axis such that one period of oscillation
corresponds to one full rotation (cf. [[1], p. 321] for general information on
vertical Darboux motions; the statement about their relation to linear poly-
nomials can be found for example in [11]). We may view rotations and trans-
lations as special cases of vertical Darboux motions: They correspond to zero
and infinite oscillation amplitude, respectively. General (not necessarily ver-
tical) Darboux motions have the property that all trajectories are ellipses (or
line segments). For vertical Darboux motions, these ellipses lie on cylinders
around a fixed axis, the axis of the motion (Fig. 1), hence they are called
vertical (German “aufrecht”).

A linear (non-motion) polynomial representing a vertical Darboux mo-
tion is for example t + k + ε. Using (2) we can find the motion polynomial
(t2 +1)(t+k)+ε(1−tk) which represents the same vertical Darboux motion.
This polynomial however is of degree three. Thus, by not restricting ourselves
to motion polynomials, we can represent certain motions by polynomials with
lower degree. In this view, neglecting Study’s condition introduces a new class
of elementary motions, namely vertical Darboux motions, as they can be rep-
resented by linear non-motion polynomials.

3. Factorization of Generic Dual Quaternion Polynomials

Factorization of dual quaternion polynomials into linear factors was the topic
of [3,7]. One of their intentions was to use factorization for the construction
of mechanisms, where a linear factor corresponds to a revolute or prismatic
(translational) joint [4]. The used factorization algorithms fundamentally rely
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on the fact that the dual quaternion polynomial M = P + εD is a motion
polynomial, that is, it satisfies the Study condition PD∗ + DP ∗ = 0.

In this article, we study the factorization theory of general dual quater-
nion polynomials which is interesting in its own right and provides us with
additional possibilities for the construction of mechanisms. The factorization
into linear factors corresponds to a decomposition of the motion into the
product of vertical Darboux motions, coupled by the common parameter t,
and with rotations and translations as special cases. Our aim is the general-
ization of the results from [3] to generic polynomials M ∈ DH[t].

3.1. Fundamental Results

In this section we recall known results of [3] and also present slightly more
general versions of Lemma 3 and Theorem 1 from [3]. They are generalized to
dual quaternion polynomials which no longer have to fulfill Study’s condition.
We give proofs for all new results, even if they are sometimes very similar to
the proofs given in [3].

The first lemma concerns polynomial division in a dual quaternion set-
ting. (We will only use this type of polynomial division in this paper and
hence refrain from using the more explicit term “polynomial right division”.)

Lemma 3.1. ([[3], Lemma 3.1]) Let A and B ∈ DH[t] such that B is monic,
i.e. its leading coefficient is 1. Then there exist unique Q, R ∈ DH[t] such
that A = QB + R and deg(R) < deg(B). Further, if h ∈ DH is a root of B,
then A(h) = R(h).

Note that this statement can be generalized to a divisor B with invert-
ible leading coefficient.

The next lemma states a well-known relation between right zeros and
linear right factors which is also valid for polynomials over more general rings.

Lemma 3.2. ([[3], Lemma 3.2]) Let M ∈ DH[t]. A dual quaternion h ∈ DH is
a zero of M if and only if t − h ∈ DH[t] is a right factor of M .

If a polynomial M = P + εD satisfies Study’s condition, its norm poly-
nomial ‖M‖ is real. Linear factors of M are closely related to quadratic real
factors of ‖M‖. In our setting, the norm polynomial ‖M‖ has dual numbers
as coefficients. Its quadratic factors over the dual numbers are also important
for computing linear factors of M . This manifests in the following lemma. Its
proof follows the proof of [[3], Lemma 3.3] but the more general assumptions
require to consider a few more details.

Lemma 3.3. Let M = P +εD ∈ DH[t] be a monic polynomial and N ∈ D[t] a
monic polynomial of degree two which is a factor of ‖M‖ whose primal part
does not divide P . Then there exists a unique h ∈ DH such that t−h ∈ DH[t]
is a right factor of M and ‖t − h‖ = N .
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Proof. By Lemma 3.1 there exist Q, R = r1t + r0 ∈ DH[t] such that M =
QN + R. Using this we can see that the norm of M is of the following form:

‖M‖ = (N‖Q‖ + RQ∗ + QR∗)N + ‖R‖.

The primal part of N does not divide P , therefore the primal part of R cannot
be zero. Further, N must be a factor of ‖R‖ since it is a factor of ‖M‖. Thus
there exists λ ∈ D such that ‖R‖ = λN . The scalar λ is even invertible
as otherwise the primal part of R would vanish. The leading coefficient of
‖R‖ is ‖r1‖, which has a non-zero primal part due to the facts that N is
monic and λ is invertible. This shows that r1 is invertible and consequently
h := r−1

1 r0 is the unique zero of R. By Lemma 3.2, there exists r̃ ∈ DH

such that R = r̃(t − h) and further λN = ‖R‖ = (t − h∗)‖r̃‖(t − h). Since
λ is a dual number, t − h is also a right factor of N and consequently of M .
Monicity of N implies N = ‖t − h‖. This shows existence.

To prove uniqueness let us assume there exists h̃ such that M(h̃) =
N(h̃) = 0. Then R(h̃) = 0, but the zero of R is unique. �

We will see below that factorizability of M = P + εD implies that the
norm polynomial ‖M‖ must factor into quadratic polynomial factors over the
dual numbers. Now we have all the tools to prove that this condition is also
sufficient, provided P does not have a real polynomial factor of positive de-
gree. This distinguishes factorization of general polynomials M ∈ DH[t] from
the factorization of motion polynomials as investigated in [3,7]: The latter
unconditionally factorize if the primal part is free from non-trivial real factors
since their norm polynomial always factors into quadratic polynomials.

Let us start by investigating the factorizability of polynomials in D[t].

Lemma 3.4. Let p = f + εg ∈ D[t] be a monic polynomial. Further let us
decompose the primal part of p into f =

∏m
i=1 Nni

i where N1, . . ., Nm ∈ R[t]
are coprime irreducible monic polynomials and n1, . . ., nm ∈ N are positive
integers. The polynomial p admits a factorization such that all factors are
monic and have an irreducible primal part if and only if

∏m
i=1 Nni−1

i is a
factor of g.

Proof. Let us first assume that p admits a factorization
∏n

j=1(fj +εgj) where
the fj are monic and irreducible (not necessarily coprime) factors of f . Ob-
viously, we get f =

∏n
j=1 fj and further

f + εg = f + ε

n∑
i=1

gi

∏
j �=i

fj ,

which shows that
∏m

i=1 Nni−1
i is a factor of g.

Let us assume on the other hand that
∏m

i=1 Nni−1
i is a factor of g.

Then p =
∏m

i=1 Nni−1
i p̃ where p̃ =

∏m
i=1 Ni + ελ is a monic polynomial,

i.e. deg(λ) ≤ deg(p̃) − 1. Set B :=
∏m

i=1 Ni and, for i ∈ {1,. . . ,m}, Bi :=∏
j �=i Nj . The polynomial p̃ admits a factorization of postulated shape, if

there exist λi ∈ R[t] with deg(λi) < deg(Ni) for i = 1, . . ., m such that
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p̃ =
m∏

i=1

(Ni + ελi) = B + ε

m∑
i=1

λiBi.

Without loss of generality we may assume that there is k ∈ N such that N1,
. . ., Nk are quadratic polynomials, and Nk+1, . . ., Nm are linear. To show
the existence of such λi, it is sufficient to show that the set of polynomials
Bi, for i = 1, . . ., m and tBi for i = 1, . . ., k form an R-basis of the real
vector space of polynomials up to degree deg(p̃) − 1 = m + k − 1. Since the
cardinality of this set is m + k, we only need to show linear independence.
Let us take μ1,. . . , μm ∈ R and ν1,. . . , νk ∈ R such that

m∑
i=1

μiBi +
k∑

i=1

νitBi = 0. (4)

Since all Ni are coprime, they have distinct complex roots zi, zi ∈ C\R for
i = 1, . . ., k and zi ∈ R for i = k + 1,. . ., m. The polynomials Bi =

∏m
j �=i Nj

evaluated at z� or z� are all zero, except for i = �. Thus, evaluating the left
hand side of (4) at these zeros results in a system of equations

μi + νizi = 0,

μi + νizi = 0,
(5)

for i = 1, . . . , k and μi = 0 for i > k. The difference of these two equations
yields

2νi Im zi = 0.

Since zi ∈ C\R, Im zi �= 0 so that νi = 0 and hence also μi = 0 follows. Thus,
the set of Eq. (5) only has the solution μi = νi = 0 for i = 1,. . . , k. Therefore,
the polynomials Bi and tBi are linearly independent and p consequently
admits a factorization of the desired shape. �

Theorem 3.5. Let M = P + εD ∈ DH[t] be a polynomial with no real poly-
nomial factor in the primal part (mrpf(P ) = 1) and ‖P‖ =

∏m
i=1 Nni

i for
irreducible, quadratic and coprime real polynomials N1, . . . , Nm ∈ R[t] and
positive integers n1,. . . , nm ∈ N. The polynomial M admits a factorization if
and only if

∏m
i=1 Nni−1

i is a factor of ‖M‖. (This is the case if and only if
‖M‖ factorizes in the sense of Lemma 3.4).

Proof. Let us assume M =
∏k

j=1 Fj , where Fj = Pj + εDj ∈ DH[t] are linear
polynomials. Then

‖M‖ =
k∏

j=1

‖Fj‖ =
m∏

i=1

Nni
i + ε

k∑
j=1

(PjDj
∗ + DjPj

∗)‖Pj‖−1
m∏

i=1

Nni
i .

Since for every j = 1, . . . , k there exists i ∈ {1, . . . , m} such that ‖Pj‖ = Ni,
we can conclude that

∏m
i=1 Nni−1

i is a factor of ‖M‖.
Let us assume on the other hand that

∏m
i=1 Nni−1

i is a factor of ‖M‖.
By Lemma 3.4 we know that ‖M‖ admits a factorization into quadratic and
monic polynomials q1, . . ., qk in D[t]. By assumption P does not have a real
factor. Thus we can use Lemma 3.3 to find hk ∈ DH and Q ∈ DH[t] such
that M = Q(t − hk) and ‖t − hk‖ = qk. Obviously, Q cannot have a real
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polynomial factor in the primal part as otherwise M would have a factor in
the primal part which contradicts our assumptions. Further ‖M‖ = ‖Q‖qk,
whence ‖Q‖ =

∏k−1
i=1 qi. Thus we can use Lemma 3.3 recursively to obtain

h1,. . . , hk−1 ∈ DH[t] such that M =
∏k

i=1(t − hi) and ‖t − hi‖ = qi. �

Example 1. The polynomial M = P +εD with P = (t−i)(t−k) and D = t−j
does not admit a factorization. The norm of M equals (t2 + 1)2 + 2ε(t3 + 1)
but its dual part does not have the factor t2 + 1. This violates the necessary
factorization condition of Theorem 3.5.

3.2. Algorithm

The proofs of Lemma 3.3 and Theorem 3.5 are constructive and similar to the
proofs in [3]. The difference is, that we need to use quadratic dual polynomial
factors of the norm polynomial. Nonetheless the same Algorithm 1 can be
used to compute factorizations.

mrpf

Algorithm 1 is not deterministic as its output depends on the choice of
the quadratic factor N in Line 2. In the generic case, the norm polynomial of
P has n coprime irreducible quadratic factors in R[t]. Then the factorization
of ‖M‖ is unique up to permutations of the factors, as we have seen in the
proof of Lemma 3.4. In this case, there exist n! different factorizations of M ,
as in the original case of “generic motion polynomials” [3]. The situation is
different, if the norm of P has quadratic factors of higher multiplicity.

Corollary 3.6. Let M = P + εD ∈ DH[t] be a dual quaternion polynomial
that admits a factorization. If the norm of P has a quadratic factor N ∈ R[t]
with multiplicity m ≥ 2, then M admits infinitely many factorizations.

Proof. The norm polynomial ‖M‖ has the factor Nm + εNm−1λ for a linear
polynomial λ ∈ R[t]. There are infinitely many ways to write λ as a sum of
m linear polynomials λi so that

Nm + εNm−1λ = Nm + εNm−1
m∑

i=1

λi =
m∏

i=1

(N + ελi).

Consequently, ‖M‖ has infinitely many factorizations and so does M . �

3.3. Translational Factors

Algorithm 1 is known to work for many more general cases (without the
assumption mrpf(P ) = 1) but cases of failure are known as well. In particular,
it was already observed in [3] that the algorithm is applicable to motion
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polynomials where the irreducible real polynomial factors of its primal part
are linear and at most of multiplicity one. This is still the case for general
polynomials M = cP + εD ∈ DH[t], where c =

∏n
i=1 ci ∈ R[t] is a product of

distinct linear polynomials ci and P has no real polynomial factor. The norm
polynomial of M has c as factor and the primal part of ‖M‖ has c2 as factor.
Thus we can use Lemma 3.4 to find linear λi ∈ R[t] such that ‖M‖ has the
factors c2

i + ελi. The primal part of these factors do not divide the primal
part of M due to the assumption that every linear factor of the primal part
has multiplicity one, thus we can use Lemma 3.3 to compute linear factors
ci+ε(d1i+d2j+d3k) of M and consequently, the Algorithm 1 still works in this
more general setting. The linear factors ci+ε(d1i+d2j+d3k) parameterize all
translations in the fixed direction (d1, d2, d3), hence the name “translational
factors”.

If on the other hand, we have a reduced polynomial M = c2P+εD where
c ∈ R[t] is a linear polynomial, it does not admit a factorization. To see this,
let us assume the contrary M =

∏n
i=1(Pi + εDi). Since the primal part of

M is the product of the primal parts of the factors, we know that two of the
factors have c as primal part. Thus, there exist Q1, Q2, F1 and F2 ∈ H[t]
such that M = (cQ1 + εF1)(cQ2 + εF2) = c(cQ1Q2 + ε(Q1F2 + F1Q2)). But
this contradicts the assumption that M is reduced.

3.4. Circularity and Factorizability

It is known that generic motion polynomials Q = P + εD (polynomials in
DH[t] with mrpf(P ) = 1 and PD∗ +DP ∗ = 0) have the following properties:

• Their norm polynomial ‖P‖ factors into quadratic irreducible polyno-
mials over R,

• they always admit factorizations and
• their generic trajectories are entirely circular [6, Theorem 1].

The circularity of an algebraic curve is defined as half the number of
intersection points with the absolute circle at infinity counted with their
multiplicities. A curve is entirely circular if all its intersections with the plane
at infinity lie on the absolute circle.

Let us quickly cast these concepts into algebraic equations. In the dual
quaternion formalism, P3(R) is identified with the projective space over the
vector space spanned by 1, εi, εj, εk. Writing a general vector as x0 + εx
with x = x1i+x2j+x3k, the plane at infinity is described by x0 = 0 and the
absolute circle at infinity is given by the additional equation ‖x‖ = 0. If x0+εx
is not a constant dual quaternion but a dual quaternion polynomial (that is,
a rational parameteric curve), the parameter values of its intersection points
with the plane at infinity are the zeros of x0. If they are also zeros of ‖x‖,
they contribute, with their respective multiplicity, to the curve’s circularity.

Consider now a general polynomial M = P + εD with mrpf(P ) = 1
whose norm polynomial ‖M‖ factors over D into quadratic polynomials. We
have already seen that M admits a factorization. Now we investigate neces-
sary properties of its trajectories. It turns out that these are much weaker
than in the motion polynomial case.
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Theorem 3.7. Let M = P +εD ∈ DH[t] be a polynomial such that mrpf(P ) =
1 and M admits a factorization. Then the trajectories of the motion parame-
terized by M have the following property: All intersection points of the curve
with the plane at infinity with multiplicity μ > 1 intersect the absolute circle
with multiplicity μ.

Proof. The trajectory of an arbitrary point x0 + εx with x = x1i+ x2j+ x3k
in projective three-space with respect to M is given by

(P − εD)(x0 + εx)(P ∗ + εD∗) = x0‖P‖ + ε(PxP ∗ + x0(PD∗ − DP ∗)).
(6)

This curve’s intersection points with the plane at infinity correspond to zeros
of its primal part and consequently to the factors of ‖P‖. Let us write ‖P‖ =∏m

i=1 Nni
i where N1, . . . , Nm ∈ R[t] are coprime irreducible polynomials. We

need to show that all Nni
i with ni > 1 are factors of the norm of the dual

part in (6). Let us have a look at the polynomial

‖PxP∗ + x0(PD∗ − DP∗)‖ = ‖P‖2‖x‖ − x0‖P‖(PxD∗ + Dx∗P∗)

+x0P (xP∗D + D∗Px∗)P∗ + x2
0‖PD∗ − DP∗‖.

The first two summands have ‖P‖ as a factor. The middle factor of the third
summand is a real polynomial, thus it commutes with P and therefore the
third summand also has the factor ‖P‖. For the last summand it holds

‖PD∗ − DP ∗‖ = 4‖P‖‖D‖ − (PD∗ + DP ∗)2.

Since M admits a factorization, we know that c :=
∏m

i=1 Nni−1
i is a factor

of the dual part of ‖M‖ which is PD∗ + DP ∗. Thus the last summand has
the factor c2 which in turn has the factors Nni

i with ni > 1. This proves the
statement. �

The converse of Theorem 3.7 is not true which can be seen in the fol-
lowing example.

Example 2. Let M = (t− i)(t−k)+ε(t− j) be the polynomial of Example 1.
The polynomial Q = M(t − k)2 does not admit a factorization, because it
does not fulfill the requirements of Theorem 3.5, but its norm polynomial
‖Q‖ has the factor (t2 + 1)2. From the proof above we can conclude that the
trajectories of Q are entirely circular even though the polynomial does not
admit a factorization.

4. Construction of Mechanisms

In [3,7] the authors presented algorithms to find factorizations of monic mo-
tion polynomials M = P + εD ∈ DH[t] into linear factors where all factors
are motion polynomials themselves, i. e. they parametrize rotations or trans-
lations. This composition of rotations and translations can be used to con-
struct an open kinematic chain with revolute and prismatic joints, coupled
by the common parameter t, which can perform the rational motion given by
M . Different factorizations yield different open chains which can be coupled
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Figure 2. Realization of two factorizations M = F1F2 =
G1G2 as a mechanisms

to reduce the degrees of freedom in the resulting kinematic structure. This
is illustrated in Fig. 2 for a quadratic motion polynomial M with two dis-
tinct factorizations M = F1F2 = G1G2. Each factorization yields a kinematic
chain consisting of two revolute joints, which are interlocked to obtain the
depicted mechanism. The connecting link of F2 and G2 performs the desired
one-parametric motion given by M .

As is usual in mechanism science, we denote revolute joints by the letter
“R” and prismatic joints by the letter “P”. The mechanism of Fig. 2 would
then be referred to as closed RRRR- or 4R-mechanism.

In this paper we consider polynomials in DH[t] which no longer need to
fulfill Study’s condition. This results in factorizations where not all linear fac-
tors are motion polynomials and hence represent vertical Darboux motions.
In theory this would allow the construction of kinematic chains with “vertical
Darboux” joints (and revolute or prismatic joints in special cases). Darboux
joints are problematic from an engineering viewpoint. Thus we will focus
on a different approach where vertical Darboux joints are simply replaced
by cylindrical (“C”) joints that allow the simultaneous rotation around and
translation along an axis. Of course, this comes with the downside that cylin-
drical joints have two degrees of freedom. This will increase the degrees of
freedom of the corresponding open chain but, if it is sufficiently constrained
otherwise, does not increase the degrees of freedom of the complete mechan-
ical system: The cylindrical joints will actually just perform the respective
vertical Darboux motions. In this way, kinematic chains obtained by the
known algorithms might be coupled with chains obtained by our results to
construct mechanisms with revolute, prismatic and cylindrical joints.

As cylindrical joints introduce an additional degree of freedom, it might
be desirable to keep the number of C-joints low. This can be done by a certain
extend by choosing appropriate quadratic factors of the norm polynomial in
Algorithm 1. We will use this in Sect. 4.2 to obtain over-constrained mecha-
nisms corresponding to certain quadratic dual quaternion polynomials which
is only feasible by keeping the number of C-joints minimal.

4.1. Bennett Motions and Four-Bar Linkage

Quadratic motion polynomials generically represent so-called Bennett mo-
tions [2]. In general, i.e. when the norm polynomial is the product of two
coprime real quadratic polynomials, we can use the factorization algorithm
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for motion polynomials to obtain two distinct factorizations which in turn
correspond to a closed chain with four revolute joints, a closed 4R-linkage
or “Bennett mechanism” (Fig. 2). But if the norm polynomial is a quadratic
irreducible polynomial to the power of two, there exists only one factorization
into linear motion polynomials and the construction fails. (This is actually a
quite common case. The motion can be obtained by composing two rotations
around different axes but with identical angular velocities.) Our algorithm
allows us to find another factorization into linear (non-motion) polynomials,
which enables us to construct an RRCC-linkage that is capable of performing
the given Bennett motion.
Example 3. The motion polynomial M = t2−((1+2ε)i+k+εj)t−j+ε(i−2)
has the norm polynomial (t2 + 1)2. It only admits a unique factorization
into motion polynomials, namely M = G1G2 with G1 = t − i − εj and
G2 = t − k − 2εi. But we can also write ‖M‖ = (t2 + 1 + ελ)(t2 + 1 − ελ)
for an arbitrary linear polynomial λ = λ1t + λ0 ∈ R[t]. Using these factors
of the norm polynomial in Algorithm 1 yields the additional factorization
M = F1F2 where

F1 = G1 +
ε

2
((i + k)λ0 − (1 + j)λ1),

F2 = G2 − ε

2
((i + k)λ0 − (1 + j)λ1).

Note that F1 and F2 are not motion polynomials and therefore parametrize
“proper” vertical Darboux motions. Thus we need to use C-joints to obtain
an open kinematic chain corresponding to this factorization. We can cou-
ple this 2C-chain with the 2R-chain obtained by the first factorization, since
M = F1F2 = G1G2. To specify the mechanism corresponding to these fac-
torizations, it suffices to calculate the angles and distances between the joint
axes. They are independent from the mechanism’s configuration which de-
pends on the common joint parameter t. In the following, we will calculate
these values for the mechanism corresponding to the values λ0 = 3, λ1 = 4.
To find the axes of G1 and G2, we can use (3). They are (0, 0,−1)+R(1, 0, 0)
and (0,−2, 0)+R(0, 0, 1). The axes of F1 and F2 can be found by computing
the fixed line of these transformations. For F1 we know the direction of the
axis from the primal part, namely (1, 0, 0), thus it suffices to find a point on
the axis. For t = 0, the image of an arbitrary line (x1, x2, x3) + R(1, 0, 0) is
(x1+4,−x2−3,−x3−6)+R(1, 0, 0). Subtracting the point (x1, x2, x3) should
yield the line R(1, 0, 0). We infer x2 = −3/2, x3 = −3 while x1 can be chosen
arbitrarily, for example x1 = 0. The axis of F2 can be found similarly, it is
given by (−2,−7/2, 0)+R(0, 0, 1). The angles between F1 and F2, or G1 and
G2 are π/2, respectively. The axes of F1 and G1 or F2 and G2 are parallel.
The distance between F1 and F2 or G1 and G2 is 2, the distance between F1,
G1 or F2, G2 is 5/2, respectively. Figure 3 depicts the resulting mechanism.

4.2. Quadratic Polynomials and Four-Bar Linkages

While all rational motions can be represented by motion polynomials, the
degree of this representation might not be optimal. Consider a generic poly-
nomial Q = P +εD. We can use equation (2) to obtain the motion polynomial
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Figure 3. An RRCC-mechanism to perform a Bennett mo-
tion

M = ‖P‖P + 1
2ε(PD∗ − DP ∗)P which represents the same motion. In gen-

eral, the degree of M is three times the degree of Q (it can be lower, if real
polynomials can be canceled). Thus factorizing Q instead of M might result
in fewer factors and therefore in mechanisms with fewer joints. We study this
in the case of quadratic polynomials in DH[t]. Their representations as mo-
tion polynomials are of degree four or six, which results in factorizations with
four or six linear motion polynomials, respectively. If we get six linear fac-
tors, each factorization corresponds to an open 6R-chain which parametrize
the whole SE(3). Coupling different 6R-chains therefore does not constrain
the obtained mechanism and we cannot obtain a mechanism with a degree of
freedom lower than six. In the case that M has degree four, factorizations of
M correspond to open 4R-chains. Interlocking two different 4R-chains yields
a closed 8R-mechanism which has two degrees of freedom. To obtain a mech-
anism which only allows for a one-parametric motion we need to couple this
closed 8R-mechanism with a third open 4R-chain. This approach therefore
results in a rather complicated mechanism. The quadratic polynomial on the
other hand admits a factorization into two linear polynomials, provided it
meets the requirements of Theorem 3.5. This allows for the construction of
open CC-chains. This is actually just a special RPRP-chain (revolute and
prismatic joints alternate) in disguise and in this sense does not offer advan-
tages over 4R-chains.

However, if the norm polynomial of the primal part is a square, there
exist two different factorizations, each with a linear motion polynomial as one
factor. Combining the corresponding kinematic chains, an open RC- and an
open CR-chain, gives a closed RCRC four-bar linkage. It has just one degree
of freedom and performs the motion given by Q and M .
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Figure 4. An RCRC-mechanism constructed from a qua-
dratic polynomial

Example 4. For P = t2−t(i+k)−j and D = (2k−4i−1)t+(i−j−1) the motion
polynomial M = ‖P‖P + 1

2ε(PD∗−DP ∗)P is of degree four (after dividing off
a real polynomial factor), but the representation as a general polynomial Q =
P +εD is just of degree two. The motion polynomial M admits factorizations
into four linear motion polynomials and thus the construction of open 4R-
chains. The general polynomial Q on the other hand can be factored as
Q = F1F2 = G1G2 with

F1 = t − i + 3εk, F2 = t − k − e(1 + 4i + k),
G1 = t − i − ε(1 + i + j − 2k), G2 = t − k − ε(3i − j).

The first factorization F1F2 corresponds to an RC-chain, the second factor-
ization G1G2 gives a CR-chain. Combining them yields the RCRC four-bar
linkage of Fig. 4.

5. Concluding Remarks

We have shown how to factorize polynomials over the dual quaternions under
two assumptions:

• The norm polynomial factorizes into quadratic factors over the dual
numbers and

• the primal part does not have a real polynomial factor of positive degree.

The first condition is obviously necessary for existence of a factorization, the
second condition is a certain restriction. Precise criteria for existence of fac-
torizations and algorithms for their computation in the excluded non-generic
case are subject of ongoing research. Even in case of motion polynomials a
complete answer is yet unknown.
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We consider our factorization results as interesting in their own right
but we also demonstrated that they complement well the known construc-
tions of mechanisms from motion polynomials. It seems that abandoning
Study’s condition (and thus giving up uniqueness of motion representation)
is a promising concept and deserves further investigations.
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