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Abstract. Conformal Geometric Algebra (CGA) provides a unified rep-
resentation of both geometric primitives and conformal transformations,
and as such holds significant promise in the field of computer graphics. In
this paper we implement a simple ray tracer in CGA with a Blinn–Phong
lighting model, before putting it to use to examine ray intersections with
surfaces generated from the direct interpolation of geometric primitives.
General surfaces formed from these interpolations are rendered using
analytic normals. In addition, special cases of point-pair interpolation,
which might find use in graphics applications, are described and ren-
dered. A closed form expression is found for the derivative of the square
root of a scalar plus 4-vector element with respect to a scalar parameter.
This square root derivative is used to construct an expression for the
derivative of a pure-grade multivector projected to the blade manifold.
The blade manifold projection provides an analytical method for find-
ing the normal line to the interpolated surfaces and its use is shown in
lighting calculations for the ray tracer and in generating vertex normals
for exporting the evolved surfaces as polygonal meshes.
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1. Introduction

Tubular and ribbon surfaces have wide interest in fields such as neuronal
modelling and streamline visualisation. The need to represent vast networks
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Figure 1. Three images rendered with varying lighting
positions. These demonstrate the lighting model, multiple
light source capability and recursive tracing of rays for reflec-
tions

of tubular data efficiently and render these surfaces in a visually pleas-
ing way has led to a range of different parametric representations, fitting
methods and rendering techniques [2,23,24]. Conformal Geometric Algebra
(CGA) encodes circles and line-segments, as well as planes, spheres, infi-
nite lines and the geometric transformations between them, as natural ele-
ments of an algebra [13,16,22]. Given its representational power for curved
surfaces and simple encoding of complicated operations, CGA appears to
hold great promise in the field of Computer Graphics. Indeed several ray-
tracers/path-tracers/sphere-marchers using CGA have been implemented in
the past [5,6,10,11,13,19,25]. More recently the design of more intricate sur-
faces has been investigated with rotors [8] and direct-interpolation of geo-
metric primitives [15]. In this paper we will press some of these techniques
into use to describe tubes and ribbons as well as to develop the techniques
required to render them. Figure 1 shows an example of output from the CGA
ray-tracer we describe in this paper.

2. Conformal Geometric Algebra, CGA

The ray-tracer used in this paper is constructed using CGA and all algebraic
expressions given will be in terms of elements of this algebra. CGA adds two
more basis vectors, e and ē, to the original basis vectors of 3D Euclidean
space, giving a complete basis for the 5D space with the following signature:
e2
1 = e2

2 = e2
3 = e2 = 1 and ē2 = −1. These extra basis vectors are used to

define two null vectors: n∞ = e + ē ≡ n and n0 = ē−e
2 ≡ − n̄

2 —note that the
(n, n̄) notation was that originally used when Hestenes first introduced this
model in [17]. The mapping from a 3D vector, x, to its corresponding CGA
vector, X, is given by:

X = F (x) =
1
2

(
x2n + 2x − n̄

) ≡ 1
2
x2n∞ + x + n0. (1)

All vectors formed from such a mapping are null. CGA is chosen for the
construction of the ray-tracer since we seek neat expressions for describing
intersections, reflections and lighting models, made possible in CGA since
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Figure 2. The camera is defined by a focal length, a trans-
formation from the origin, and bounds on the image plane

rays and scene objects are both elements of the algebra. More background
on CGA can be found in [13,16,22].

3. Camera Model and Ray Casting

A pinhole camera model is used with the geometry shown in Fig. 2. It is
defined by a rotor RMV (where MV indicates model view) incorporating
rotation and translation that takes the camera from the origin to its pose
in space, a focal length f and two bounds xmax and ymax on the size of the
image plane.

We take (i, j) = (0, 0) to be at the bottom left hand corner of the image.
For an image of width w and height h, the world coordinates of the point Pij

at the centre of pixel (i, j) are given by:

Wi,j = F
(
fe2 − xmax

2
(1 − (2i/w))e1 − ymax

2
(1 − (2j/h))e3

)
,

Pij = RMV Wi,jR̃MV .
(2)

We then generate the ray from the camera centre, Lij , that passes through
Pij , via the expression

Lij = X0 ∧ Pij ∧ n∞

where X0 is the origin transformed by the model-view rotor RMV to the
position of the camera.

4. Ray Geometries for Basic Objects

Initially we will start with some basic objects representable as blades in CGA.
The ray-tracer will thus initially concentrate on rendering planes, spheres and
circles/discs, an example of which is shown in Figs. 1 and 3.
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Figure 3. An image from the ray-tracer containing exam-
ples of disks, spheres and planes

4.1. Ray-Object Intersections

In order to compute intersections between blades, the meet operator (∨) is
used. We will, for the proposes of this paper, always take the meet with
respect to the full 5D space rather than to the join of the blades. Thus, if X
is an r-grade blade, Y is an s-grade blade, and the number of basis vectors
in the algebra is n, then :

X ∨ Y = 〈XY 〉2n−r−s I5, (3)

where 〈Z〉m indicates the m-grade component of the multivector Z, and I5

represents the 5D pseudoscalar of the algebra [22].

4.1.1. Planes. A plane is a 4-blade and a ray is a 3-blade so the meet gives a
2-blade. If the meet itself is 0, the line lies in the plane. If the meet squared
is 0, there is no finite intersection. Otherwise, the intersection point, X, of a
line L with a plane Φ, satisfies the following: L ∨ Φ = λX ∧ n∞ [22], where λ
is a scalar. When extracting the 3D intersection point x, we need to account
for the sign and magnitude of the line in our extraction, we can do this via
the constant of proportionality λ:

L ∨ Φ = λX ∧ n∞ = λx ∧ n∞ − λn∞ ∧ n0. (4)

Therefore, x can be extracted from the eie and eiē coefficients (for i ∈
{1, 2, 3}) by dividing by λ, the eē coefficient.

4.1.2. Spheres. Spheres are also 4-blades and so once again, taking the meet
with a ray gives a 2-blade, F . With spheres, there can be zero, one or two
points of intersection corresponding to the cases where F 2 < 0, F 2 = 0 and
F 2 > 0 respectively.
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Figure 4. Image showing the positions of intersection
points with spheres

If F = A ∧ B (with A and B null vectors) and F 2 ≥ 0, the points can
be extracted from the point pair/blade, F , by the following formula [22]:

σaA =

(

1 − F
√

−FF̃

)

(F · n∞), σbB =

(

1 +
F

√
−FF̃

)

(F · n∞),

A =
−σaA

(σaA) · n∞
, B =

−σbB

(σbB) · n∞
,

(5)

where σa, σb are scalar constants. If we define F = A ∧ B with F oriented in
the same direction as our ray L, then A is the point closest to the origin of
the ray, P0, as long as our sphere is ‘in front of’ the ray source. To ensure the
alignment we can pre-normalise our sphere S via the following expression:

S −→ − S

S∗ · n∞
. (6)

For any given sphere, its dual can square to a positive or negative num-
ber; however, by carrying out the normalisation in Eq. (6), we ensure that
all spheres, S, satisfy S∗ · n∞ = −1. If the meet of a ray L and a normalised
sphere S, is then formed from L ∨ S, as in Eq. (3), the resulting bivector
will be ordered as A ∧ B where A is the point that the ray hits first in its
orientation.

In Fig. 4, the meet of the ray (direction as shown) from a point P0 with
the smaller sphere, would result in the point pair A2 ∧ B2. For the larger
sphere in Fig. 4, the point pair resulting from the meet will be A1 ∧ B1. We
extract the points from the point pair and form the distance between these
points and P0 (via taking the inner product). We then see that for the smaller
sphere the distance of the first point is less than that of the second point,
whereas for the larger sphere, the distance of the first point is larger than that
of the second point—which will therefore lead us to label the larger sphere
as being ‘behind’ the point P0. This allows us to perform bounces only with
spheres that are in front of the ray origin point P0.
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4.1.3. Circles/Discs. Circles are 3-blades and so the meet with a ray gives a
1-vector, Y .

• If Y itself is zero the ray (or line) lies in the plane of the circle and
either does not intersect the circle or intersects the circle in one or two
points.

• If Y 2 < 0, the ray does not lie in the plane of the circle and passes
through the circle disc but does not intersect.

• If Y 2 > 0 the line does not lie in the plane of the circle and passes
outside the circle disc without intersecting.

• If Y 2 = 0 (and Y 
= 0) the ray intersects the circumference of the circle.

Figure 5 shows an example of each case along with a geometric inter-
pretation of the form of the meet. If Y 
= 0 and there is an intersection, the
plane containing the circle is formed by taking the wedge product between
the circle and n∞, C ∧ n∞, and the intersection point is then extracted from
the ray and this plane.

If Y = 0, so that the ray lies in the plane of the circle, we need to
work in 2D, so that our ‘meet’ will result from taking the 2-part of the
geometric product and dualising (with respect to the plane of the circle) to
give a bivector. If the bivector has negative square there are two intersections
at points A and B, so the bivector is A ∧ B. If the bivector has positive
square, there is no intersection. If the bivector squares to zero there is one
intersection at A, and the bivector is a ∧ n0, where A = F (a). In both cases,
the intersection points are easily extracted.

4.2. Extracting Normals and Reflecting Rays

Extracting the normal to the surface of an object at a ray intersection
point, X, and the reflection of that ray at X, are two fundamental build-
ing blocks in our ray tracer.

For a plane Φ which intersects with a ray, we can compute the reflec-
tion L′ of an incident ray L (we assume Φ and L have been normalised such
that Φ2 = −1, L2 = 1) with the plane by simple sandwiching: L′ = ΦLΦ.
The resulting line is oriented correctly, passes through the intersection point
and L′2 = 1. For the case of a sphere S, we use the following formula from
[22]:

L′ ∝ − (X · (SLS)) ∧ n∞, (7)

where X is the first point of intersection. Here, SLS is an example of an
inversion, where the incoming ray/line, L, is inverted in the sphere to give
a circle which passes through the two points of intersection and the origin
of the sphere (note we only have a meaningful reflection if there are two
points of intersection). The tangent line to this circle at the first point of
intersection, X, is the reflected ray, L′. Figure 6 illustrates this geometrical
construction. Note that one can also form the tangent plane at X and reflect L
in this plane; this is performed by the following formula:

L′ ∝ ΦXLΦX , ΦX = (X · S) ∧ n∞. (8)
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Figure 5. The 5D meet of a ray, L (in red) and a circle
C (black) results in a vector Y whose dual is the sphere S
(grey), the properties of this sphere vary with the relative
positioning of C and L. In the top case the ray passes out-
side of the circle, S passes orthogonally through both the
circle and the ray and squares to a negative number as we
would expect from a standard CGA sphere. In the middle
case the ray hits the perimeter of the circle and the meet
squares to zero, in this case the dual sphere is the special
case of zero radius, it represents the intersection point itself.
In the bottom case the ray passes inside the circle. Here
the sphere squares to a positive scalar implying it is now an
imaginary sphere and in fact the circle passes through the
sphere’s antipodal points
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Figure 6. A ray in blue hits a sphere. The tangent plane at
the point of impact is shown in green. The inversion of the
ray in the sphere produces the red circle. The reflection of
the ray in the tangent plane gives the red line. The reflected
ray is also the tangent to the red circle at the point of impact

For a circle/disc C, we first form the plane C ∧ n∞ = Φ in which
it lies. If the ray intersects the disc (see Sect. 4.1), the reflected ray can
then be found using the same formula as for the plane reflection case:
L′ ∝ (C ∧ n∞) L (C ∧ n∞). Note that these expressions specifically give the
(correctly oriented) reflected ray that passes through the point of intersection
of the incident ray and the object, rather than a parallel ray at the origin.

We end this section with two very useful constructions which we will
put to use later in the paper. Firstly, consider the reflected ray, L′, and the
incident ray, L, both normalised such that they square to 1. The normal line
to the surface, N , can be simply found:

N ∝ (L′ − L).

The tangent line, T , (in the plane containing incident and reflected rays) can
similarly be found from the sum

LT ∝ L′ + L.

Figure 7 shows a graphical example of these constructions for the reflection
of a ray in a sphere.

5. Ray Tracing Evolved Circles

We will now turn to an interesting class of surface that arises from the direct
interpolation of CGA circles [15], examples of which are shown in Fig. 8.
In order to generate such a surface, a direct interpolation is first performed
between two boundary circles, C1 and C2 both of which are normalised such
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Figure 7. An incident ray L (black) hits a sphere from the
right hand side of the figure. The reflected ray L′ (also black)
scatters to the top right corner of the figure. For L and L′

normalised such that L2, L′2 = 1, the normal N (red) to the
surface is proportional to L′ −L. The tangent line LT (pink)
in the plane containing the incident and reflected rays can
be found from LT ∝ L′ + L

that C2
1 = C2

2 = 1. Our interpolation is of the form:

C
′
α = αC1 + (1 − α)C2, (9)

where we take α moving between 0 and 1, which moves us from C2 to C1.
The result of this interpolation is not itself a valid circle and needs to be
‘projected’ onto a blade via multiplication by a projector, which we shall
call S. This projector has only scalar and 4-vector parts and its construction
is detailed in [15] and outlined in the following.

Consider a quantity Σ = 〈Σ〉0 + 〈Σ〉4. We then define the quantity
[[Σ]] =

√
〈Σ〉20 − 〈Σ〉24, and with this the principal square root [14] of the

scalar + 4-vector, Σ, can be found as:

√
Σ =

Σ + [[Σ]]√
2
√〈Σ〉0 + [[Σ]]

=
〈Σ〉0 + [[Σ]]√

2
√〈Σ〉0 + [[Σ]]

+
〈Σ〉4√

2
√〈Σ〉0 + [[Σ]]

. (10)
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Figure 8. Polynomial interpolation through circular con-
trol objects. a Linear, b quadratic, c cubic

With this square root we can then form:

kS− =
√

−C ′
αC̃ ′

α, (11)

where S− is S with the sign of the 4-vector part reversed and 1
k = S−S.

We then construct kS by reversing the sign of the 4-vector part, (kS =
〈kS−〉0 − 〈kS−〉4), and use this to produce the following expression for the
projector S and interpolated circle Cα:

Cα =
kS

(kS)(kS−)
C

′
α ≡ SC

′
α, α ∈ [0, 1]. (12)

Given that these surfaces may find genuine applications in computer
graphics and CAD, it is desirable to explore their properties with respect
to the ray tracing framework. Specifically, for a given ray and scene object,
the geometric constructions of interest for lighting models are the point of
intersection between a ray and a surface, and the surface normal at that
specific intersection point.

In order to render this surface, we first show how to extract the inter-
section point with a given ray and then how to construct the surface normal
at this point.

5.1. Intersection Point of Ray and Interpolated Surface

We saw earlier that the intersection of a ray with a circle produces the 1-
vector Y . If Y = 0 the ray lies in the plane of the circle and if Y 
= 0 and
Y 2 = 0 there is one intersection. Therefore (in the case where the meet is
not zero) to find the intersection point between our interpolated surface and
a ray L, we need to find a value of α for which:

(Cα ∨ L)2 = 0 =⇒ 〈CαL〉24 = 0.
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Figure 9. Left: an image showing an example interpolated
surface and a ray passing through it, the circles in blue show
the circles which have a meet squared of 0 with the incident
ray, the red circle shows where the meet squared is min-
imised. Right: a plot showing the value of the meet squared
as a function of α for this case

The system must also be tested for the case of Y = 0; if an α exists such that
(Cα ∨ L) = 0, the ray may intersect Cα once, twice or not at all.

Figure 9 provides a simple visual illustration of one example of the
shape of this curve as a function of α. While this example shown in the
figure is particularly smooth, experiments indicate that in the general case
this function is not well approximated by low order polynomials.

5.1.1. Non-linear Intersection Point Finder. As it is in general difficult to
extract a closed form expression for the solution to (Cα ∨ L)2 = 0, it is
necessary to design an iterative algorithm to find the roots of the equation.
Our implemented algorithm works as follows:

1. Check for intersection with a sphere enclosing the entire surface
2. Calculate the value of (Cα ∨ L)2 at N intermediate values of α
3. Record where (Cα∨L)2 changes sign between successive evaluated values

of α
4. Locally approximate (Cα ∨ L)2 as a quadratic equation in the region of

the sign change and solve to get the value of α at the intersection point

Computing the intermediate objects in the surface can be done once per scene
and reused for all rays calculated in that scene. To generate the enclosing
sphere again we reuse the intermediary objects, in the following way:

1. Given C1 and C2, form intermediate circles, Cα, and then calculate the
bounding sphere which is given by Sα = I5Cα(Cα ∧ n∞)

2. Construct a sphere that contains all intermediate circle bounding
spheres by successive application of a two sphere bounding algorithm
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Again the enclosing sphere of the object can be calculated once per scene
and used for all rays. Any two sphere bounding algorithm can be used, here
we chose the algorithm from [18] which is summarised as follows:

1. Ensure both spheres S1, S2 are normalised according to Eq. (6)
2. Construct the line L joining the centres of both spheres L = (S1I5) ∧

(S2I5) ∧ n∞
3. Intersect the line with the first sphere to produce a point pair L ∨ S1 =

F1 ∝ A1 ∧ B1 and extract A1 using Eq. (5)
4. Intersect the line with the second sphere to produce a point pair L∨S2 =

F2 ∝ A2 ∧ B2 and extract B2 using Eq. (5)
5. Check if B2 · (S1I5) > 0, if so S1 encloses S2 and so S1 is the bounding

sphere
6. Check if A1 · (S2I5) > 0, if so S2 encloses S1 and so S2 is the bounding

sphere
7. If neither original sphere is enclosed by the other, the new bounding

sphere is given by 1
2 (A1 + B2)I5

This iterative algorithm for the most part performs perfectly satisfac-
torily. When compared against specially constructed test cases for which the
intersection points are known it produces negligible error. The main downside
to this solution is that it is not mathematically guaranteed to give correct
results especially in the case of small numbers of intermediary objects. In
practice we can pre-compute large numbers of intermediary objects before
rendering, allowing us to get good approximations to the function of interest.
Having said that, the more intermediate objects that are created, the more
computationally expensive the process is, as the root finder has to evaluate
our function at each one for each ray.

5.1.2. ‘Closed Form’ Solution for the Intersection of a Ray and an Evolved
Circle Surface. In this section we will use C ′

α to be the interpolated circle;
however we emphasise that the process outlined here will also hold for the
intersection of rays with other evolved objects. The intersection of the ray,
L, and the surface, SC ′

α (see Eq. (12)) occurs when:

(L ∨ [SC ′
α])2 = 0.

Writing Σ = −C ′
αC̃ ′

α, this can be rewritten as:
⎛

⎝
L ∨

[
〈√Σ〉0C ′

α − 〈√Σ〉4C ′
α

]

(
〈√Σ〉0 − 〈√Σ〉4

)√
Σ

⎞

⎠

2

= 0. (13)

The denominator of this expression is never infinite (other than in the unin-
teresting case of Σ = 0) and so does not contribute roots. Thus we can write:

(
L ∨ [〈

√
Σ〉0C ′

α] − L ∨ [〈
√

Σ〉4C ′
α]

)2

= 0.

Now expanding
√

Σ as:
√

Σ =
Σ + [[Σ]]√

2
√〈Σ〉0 + [[Σ]]
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means we can write:
(

L ∨
[〈

Σ + [[Σ]]√
2
√〈Σ〉0 + [[Σ]]

〉

0

C ′
α

]

− L ∨
[〈

Σ + [[Σ]]√
2
√〈Σ〉0 + [[Σ]]

〉

4

C ′
α

])2

= 0.

Again the denominator of the square root function is simply a scalar which
is never infinite, thus it contributes no roots and we can write:

(L ∨ [〈Σ + [[Σ]]〉0C ′
α] − L ∨ [〈Σ + [[Σ]]〉4C ′

α])2 = 0.

The quantity [[Σ]] is a scalar and so distributing the grade selection operators
gives us:

(L ∨ [〈Σ〉0C ′
α] + [[Σ]]L ∨ C ′

α − L ∨ [〈Σ〉4C ′
α])2 = 0.

Expanding this leads to:

0 = [L ∨ (〈Σ〉0C ′
α) − L ∨ (〈Σ〉4C ′

α)]2 + [[Σ]]2(L ∨ C ′
α)2

+ [[Σ]] {(L ∨ (〈Σ〉0C ′
α) − L ∨ (〈Σ〉4C ′

α))(L ∨ C ′
α)

+ (L ∨ C ′
α)(L ∨ (〈Σ〉0C ′

α) − L ∨ (〈Σ〉4C ′
α))} . (14)

To make progress on solving this we recall that Σ = −C ′
αC̃ ′

α and that for our
linear interpolation of circles we have defined C ′

α as:

C ′
α = αC1 + (1 − α)C2 = α(C1 − C2) + C2.

As C ′
α has terms in α of order 1 we would expect Σ to have terms of order 2.

Continuing on this train of thought one might suspect that it is possible to
re-write Eq. (14) as a simple polynomial in α. However, it is easy to see that
this is not possible due to [[Σ]], which is a scalar polynomial in α enclosed
entirely in a square root:

[[Σ]] =
√

〈Σ〉20 − 〈Σ〉24.
Thus in order to solve Eq. (14) we need to rearrange:

[L ∨ (〈Σ〉0C ′
α) − L ∨ (〈Σ〉4C ′

α)]2 + [[Σ]]2(L ∨ C ′
α)2

= −[[Σ]] {L ∨ (〈Σ〉0C ′
α) − L ∨ (〈Σ〉4C ′

α)} (L ∨ C ′
α)

+ (L ∨ C ′
α) {L ∨ (〈Σ〉0C ′

α) − L ∨ (〈Σ〉4C ′
α)} . (15)

We can then square both sides of the equation, eliminating the square root
in the process:

(
[L ∨ (〈Σ〉0C ′

α) − L ∨ (〈Σ〉4C ′
α)]2 + [[Σ]]2(L ∨ C ′

α)2
)2

= [[Σ]]2 [{L ∨ (〈Σ〉0C ′
α) − L ∨ (〈Σ〉4C ′

α)} (L ∨ C ′
α)

+ (L ∨ C ′
α) {L ∨ (〈Σ〉0C ′

α) − L ∨ (〈Σ〉4C ′
α)}]2 . (16)

Expanding this out will give a polynomial in α—it turns out that this is a
scalar polynomial due to the fact that 〈Σ〉4C ′

α has only trivector components.
This polynomial can then be solved with any numerical polynomial solver
such as finding the eigenvalues of the companion matrix [20].

For this case of linear evolution of circles we will get a polynomial of
order 12, implying 12 potential roots. In reality 6 of these roots are extrane-
ous, generated by the process of squaring to handle the square root term in
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[[Σ]]. Some of the 6 remaining roots may be imaginary, some may be outside
of the range 0 ≤ α ≤ 1 and some will be spurious roots corresponding to
S = 0. To filter out the valid roots we simply take all roots between 0 and 1
and evaluate (L ∨ [SC ′

α])2 at these positions, selecting the roots for which
|(L∨ [SC ′

α])2| < ε for some small ε threshold where ε > 0 (in our experiments
ε = 10−6 works satisfactorily).

An interesting point to note here is that we could extend this inter-
section finding method to C ′ being higher order functions of α, so long as
(L ∨ [SC ′

α])2 = 0. Generating such higher order splines through geometric
primitives is described in Sect. 8.

5.1.3. A Comment on Rendering Speed. For this paper our raytracer was
implemented in Python with the Clifford Library [1]. It is simply an inves-
tigative tool used as a framework in which to conduct basic research into the
shapes and properties of surfaces as well as the algorithms used to render
them. Of course in a production computer graphics environment, a higher
performance language such as C/C++/GLSL would be required and the
trade off of accuracy for speed with regard to the number of intermediary
objects would need to be closely analysed. Such an analysis would require
very careful benchmarking and comparison across multiple modern computer
architectures and as such is beyond the scope of this paper.

5.2. Analytic Form for Normals

Given the α for which the ray intersects the surface, we have both the inter-
polated circle, Cα, and the point of intersection X. Using the result from [22],
which is also used in Eq. (7), we extract a tangential line LC in the plane of
the circle at X:

LC = (X · Cα) ∧ n∞. (17)

We would now like an analytic form for the tangent to the surface corre-
sponding to evolving the surface through an increment of α, postulating that
this will be orthogonal to LC : some future work remains to understand how
these two tangent vectors are related to the directions of principal curvature.
Clearly dC(α)

dα ≡ Ċα will be a key quantity in deriving this additional tan-
gent vector. A first observation is that the circle and its derivative will be
orthogonal to one another, i.e. Ċ · C = 0, and that the geometric product is
minus itself under reversion, i.e. Ċ C = −C Ċ (note that here, and in what
follows, we will drop the α subscript on C). This follows from the fact that
C2 = C · C = 1 (our circles are all normalised), so that:

d

dα
(C · C) = C · Ċ + Ċ · C = 0,

d

dα
(C C) = C Ċ + Ċ C = 0. (18)

Since C · Ċ = −C · Ċ and they are both scalars, this tells us Ċ ·C = 0. Using
the fact that C̃ = −C, we see that C Ċ = −C Ċ = −(C Ċ)˜. As there are no
6-vector parts, this indicates that the product can only have bivector parts
(this is a standard construct in many areas, the most obvious being rigid
body dynamics [12]). Let us call this bivector, ΩC :

ΩC = CĊ. (19)
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Using the analogy with rigid body dynamics, we think of this bivector
as the angular velocity bivector of the circles as they evolve under the param-
eter α. We note here that a similar construction would be possible for the
other main objects that we use in CGA, since they are all normalised to 1
or 0. The null vectors representing points, X, have a constant ‘length’ due to
normalisation, so as with the circles, we can differentiate wrt α to see that X
and Ẋ are orthogonal, i.e. X · Ẋ = 0. If we were to define the ‘velocity’, Ẋ
to be the inner product with the angular velocity bivector given in Eq. (19):

Ẋ = X · ΩC = X · (CĊ), (20)

the condition X · Ẋ = 0 is satisfied since X · (X · B) = (X ∧ X) · B = 0.
Thus, given an X on the surface, lying on a circle with parameter α, the Ẋ
defined above will preserve its length and is, we claim, the tangential direction
required. In order to show this, the first thing we must do is establish that if
we evolve X according to this rule, generating a quantity we call X(α), then
X(α) should lie on Cα, for all α, i.e.,

X(α) ∧ Cα = 0.

Differentiating this (and again dropping the subscript α for clarity) and using
Ẋ = X · (CĊ), gives

Ẋ ∧ C + X ∧ Ċ = 0

=⇒ Ẋ ∧ C ≡
(
X · (CĊ)

)
∧ C = −X ∧ Ċ.

We now expand this expression using standard expansion results (a · (Ar ∧
Bs) = (a · Ar) ∧ Bs + (−1)rAr ∧ (a · Bs)):

(
X · (CĊ)

)
∧ C = X ·

(
(CĊ) ∧ C

)
− (CĊ) ∧ (X · C)

= −1
2
〈CĊ(XC + CX)〉4

=
1
2
〈ĊC(XC + CX)〉4. (21)

The first term on the right hand side of the first line of this expansion is zero
as (CĊ) ∧ C = 〈CĊC〉5 = 〈−C2Ċ〉5 = 〈−Ċ〉5 = 0. Since X lies on C and so
X ∧ C = 0, we see that XC = CX which means that

1
2
〈ĊC(XC + CX)〉4 = 〈ĊC2X〉4 = 〈ĊX〉4 = Ċ ∧ X = −X ∧ Ċ

giving Ẋ ∧C = −X ∧ Ċ as required, so the proposed evolution is compatible
with the constraint.

If we therefore assume that Ẋ is the direction we want, we can calculate
the tangent line in this direction via:

LT = Ẋ ∧ X ∧ n∞. (22)

The fact that lines LC and LT are perpendicular can be verified by
showing that the quantity LT LC has only a bivector part (see [22] for a
discussion of when intersecting lines are orthogonal—if two lines L1 and L2
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intersect at a point, then 〈L1L2〉4 = 0. In addition, if they are orthogonal,
〈L1L2〉0 = 0 ). If this is the case, LT LC will reverse to minus itself.

To show this, we need to consider the reverse of (Ẋ ∧X ∧n∞)((X ·C)∧
n∞). We will need the facts that that XC = CX, ẊC = −CẊ, CĊ = −ĊC,
XẊ = −ẊX and C̃ = −C. We have shown all of these identities earlier in
this section. We also need an additional fact, which is that Ẋ anticommutes
with C. To see this we use another standard result (a ∧ (Ar · Bs) = (a · Ar) ·
Bs + (−1)rAr · (a ∧ Bs)):

Ẋ · C =
(
X · (CĊ)

)
· C = X ∧

(
(CĊ) · C

)
− (CĊ) · (X ∧ C). (23)

The first term on the RHS of this equation is zero as (CĊ) · C = 〈CĊC〉1 =
〈−C2Ċ〉1 = 0, and the second term on the RHS is also zero as X lies on C

so X ∧ C = 0. Thus Ẋ · C = 0 and Ẋ therefore anticommutes with C as
required.

We are now in a position to expand out (Ẋ ∧ X ∧ n∞)((X · C) ∧ n∞):

(Ẋ ∧ X ∧ n∞)((X · C) ∧ n∞)

=
(
(ẊX) ∧ n∞

)
((XC) ∧ n∞)

=
1
4

[(
ẊXn∞ + n∞ẊC

)
(XCn∞ + n∞XC)

]

=
1
4

[
ẊXn∞XCn∞ + n∞ẊXn∞XC

]
. (24)

In the above we have used the facts that Ẋ ∧ X = ẊX, XC = X · C
and X2 = 0. Note that the term Xn∞X in the final line of Eq. (24) can be
written as 2(X ·n∞)X (from the standard reflection formula and the fact that
C2 = 0). Reversing the final line of Eq. (24) and using the commutation and
anticommutation relations discussed, it is easy to show that the reverse of
LT LC is indeed minus itself, implying it has only a bivector part, as required,
meaning the lines are orthogonal. Note that this result relies crucially on the
fact that Ẋ and C anticommute, which is a good indication that Ẋ lies in
the right direction.

Given these two orthogonal tangent lines LC and LT , we can construct
the plane tangent to the surface at X by computing the join of the two lines.
Or, we can bypass the plane entirely and compute the surface normal line
directly as:

N = 〈LT LC〉2 I5. (25)

6. Calculating the Derivative of the Object Manifold
Projection

To calculate Ċ we must differentiate the projection onto the blade manifold
of our interpolated object with respect to our evolution parameter α. We
will continue to work with circles but note that the process works with the
general case where C ′

α is any pure-grade multivector which is a function of



Vol. 31 (2021) Exploring Novel Surface Representations Page 17 of 33 16

a scalar parameter α. Let the projection of C ′
α onto the blade manifold be

given by:

Cα = SC ′
α

where S is our blade projector. The differential of this with respect to α is
given by:

∂Cα

∂α
=

∂S
∂α

C ′
α + S ∂C ′

α

∂α
. (26)

Thus, any closed form expression for the derivative on the manifold will first
require a closed form for the derivative of the projector ∂S

∂α . Recall from
Eq. (13) that we can write the projector S as a function of

√
Σ, where Σ =

−C ′
αC̃α, and so

Cα =
〈√Σ〉0 − 〈√Σ〉4(

〈√Σ〉0 − 〈√Σ〉4
) √

Σ
C ′

α ≡ SC ′
α. (27)

Thus to find an expression for ∂S
∂α we will first need one for ∂

√
Σ

∂α .

6.1. Closed Form Derivative of the Square Root Operation

The closed form for the derivative of the principal square root function can
be found by repeated application of the chain and product rules:

∂[[Σ]]
∂α

=
〈∂Σ

∂α 〉0〈Σ〉0 + 〈Σ〉0〈∂Σ
∂α 〉0 − 〈∂Σ

∂α 〉4〈Σ〉4 − 〈Σ〉4〈∂Σ
∂α 〉4

2[[Σ]]
, (28)

where we are using the fact that
〈

∂Σ
∂α

〉
g

= ∂〈Σ〉g

∂α .

∂

∂α

(
1√

2
√〈Σ〉0 + [[Σ]]

)

=
−1
2
√

2
(〈Σ〉0 + [[Σ]])− 3

2

(
〈∂Σ
∂α

〉0 +
∂[[Σ]]
∂α

)
,

∂
√

Σ
∂α

=
(

∂Σ
∂α

+
∂[[Σ]]
∂α

) (
1√

2
√〈Σ〉0 + [[Σ]]

)

+ (Σ + [[Σ]])
∂

∂α

(
1√

2
√〈Σ〉0 + [[Σ]]

)

. (29)

Thus the derivative of
√

Σ is a function only of Σ and ∂Σ
∂α which in turn can

be written in terms of C ′
α and ∂C′

α

∂α :

Σ = −C ′
αC̃ ′

α,
∂Σ
∂α

= −∂C ′
α

∂α
C̃ ′

α − C ′
α

˜∂C ′
α

∂α
.

6.2. Closed Form Derivative of the Projector

With our square root derivative in place we can proceed to finding the deriv-
ative of the projector S. Recall, S is given by:

S =
〈√Σ〉0 − 〈√Σ〉4(

〈√Σ〉0 − 〈√Σ〉4
) √

Σ
.
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We can again differentiate this with repeated applications of the chain and
product rule:

∂
(
〈√Σ〉0 − 〈√Σ〉4

)

∂α
=

〈
∂
√

Σ
∂α

〉

0

−
〈

∂
√

Σ
∂α

〉

4

,

∂

([(
〈√Σ〉0 − 〈√Σ〉4

) √
Σ

]−1
)

∂α

=

[(〈
∂
√

Σ
∂α

〉

0

−
〈

∂
√

Σ
∂α

〉

4

)√
Σ +

(
〈
√

Σ〉0 − 〈
√

Σ〉4
) ∂

√
Σ

∂α

]

∗
[
−

(
〈
√

Σ〉0 − 〈
√

Σ〉4
) √

Σ
]−2

and so finally we have our closed form expression for the projector derivative:

∂S
∂α

=

(〈
∂
√

Σ
∂α

〉

0

−
〈

∂
√

Σ
∂α

〉

4

)
[(

〈
√

Σ〉0 − 〈
√

Σ〉4
)√

Σ
]−1

+
(
〈
√

Σ〉0 − 〈
√

Σ〉4
) ∂

([(
〈√Σ〉0 − 〈√Σ〉4

) √
Σ

]−1
)

∂α
. (30)

Now consider C ′
α to be an interpolated circle of the form C ′

α = C ′
α = αC1 +

(1 − α)C2. The derivative of this with respect to α is a constant:

∂C ′
α

∂α
= C1 − C2.

This derivative is the final piece required for Eq. (26), giving us a completely
closed form for ∂Cα

∂α ≡ Ċ.
An important point to note here is that this blade projection derivative

is grade-agnostic and so can be used for objects other than just evolved circles.

7. Ray Tracing Evolved Point Pairs

We will return to the actual ray tracing of circles later (see Figs. 16, 17), but
first we turn our attention to point pairs. Due to the mathematical similarities
between circles and point-pairs in CGA [13], as well as the practical desire
to represent ribbon-like surfaces, we can apply similar ray-tracing methods
to surfaces formed from the interpolation of point-pair bivectors representing
line segments. If P1 and P2 are point-pairs which represent a line segment,
we form a surface via:

Pα = SP ′
α = S(αP1 + (1 − α)P2),

where again, S is a scalar plus 4-vector which maps the interpolated bivector
onto a 2-blade. Figure 10 gives examples of such surfaces.
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Figure 10. Polynomial interpolation through point-pair
control objects. From left to right: linear, quadratic, cubic

7.1. Closed Form Solution for the Intersection of a Ray and an Evolved
Point-Pair Surface

To find the intersection point of a ray and these surfaces we again form the
meet of a ray L and the form of the evolved point-pair Pα. The result is a
scalar quantity that can be written as:

L ∨ Pα ≡ (L∗ ∧ P ∗
α)I5.

In the case that the ray and the line that passes through both of the points
in the point-pair in the surface (also known as the carrier line) intersect, this
will give an answer of zero:

L ∨ Pα = 0.

As with the evolved circle surfaces we will attempt to construct this as a
simple polynomial in α. We start with:

L ∨ [SP ′
α] = 0.

Expressing S in terms of Σ where as before, Σ = −P ′
αP̃ ′

α, gives

L ∨
⎡

⎣ 〈√Σ〉0 − 〈√Σ〉4(
〈√Σ〉0 − 〈√Σ〉4

)√
Σ

P ′
α

⎤

⎦ = 0.

As before, the denominator cannot usefully be zero, giving:

L ∨ [〈
√

Σ〉0P ′
α] − L ∨ [〈

√
Σ〉4P ′

α] = 0,

L ∨
[〈

Σ + [[Σ]]√
2
√〈Σ〉0 + [[Σ]]

〉

0

P ′
α

]

− L ∨
[〈

Σ + [[Σ]]√
2
√〈Σ〉0 + [[Σ]]

〉

4

P ′
α

]

= 0,

(L ∨ [〈Σ〉0P ′
α] + [[Σ]]L ∨ P ′

α − L ∨ [〈Σ〉4P ′
α])2 = 0.

As again, the denominator is not zero.We now take the term containing [[Σ]]
(a scalar), to the RHS;

L ∨ [〈Σ〉0P ′
α] − L ∨ [〈Σ〉4P ′

α] = −[[Σ]]L ∨ P ′
α.
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Squaring then gives us:

(L ∨ [〈Σ〉0P ′
α] − L ∨ [〈Σ〉4P ′

α])2 = [[Σ]]2(L ∨ P ′
α)2.

allowing us to form a simple scalar polynomial in α (we can see that this
produces a scalar equation since 〈Σ〉4P ′

α has only bivector parts):

(L ∨ [〈Σ〉0P ′
α] − L ∨ [〈Σ〉4P ′

α])2 − [[Σ]]2(L ∨ P ′
α)2 = 0, (31)

which can again be solved with a fast numerical polynomial solver.
This intersection equation for linearly interpolated point pairs is of order

6, implying there are up to 6 potential hitting points. Again the same pro-
cess can be used to filter the roots as was done for the roots of the circle
intersection equation.

7.2. Bounding Sphere and Normal Calculation

We saw earlier that the meet will be zero if the ray hits anywhere along the
carrier line of the point-pair LC = P ∧n∞. Assuming the carrier line and ray
do meet, the point of intersection can be extracted via the method outlined
in the last section of [15]. Given that the carrier line of Pα (for some α) and
the ray intersect at a point X, we can then check if the intersection point is
within the bounding sphere S = P1 ∧ P2 of the surface by ensuring:

S∗ · X = [(P1 ∧ P2)I5] · X > 0.

Since the endpoints of all interpolated point-pairs will lie on the surface of S
(see [15]), the above condition ensures there is an intersection with the line
segment and not just the carrier line of the point-pair. To find the normal to
the point-pair surface we can simply use exactly the same argument, and in
fact the same code, as we did before for the evolved circles case but this time
extracting LC as:

LC = P ∧ n∞.

Figure 11 shows an example of rendering a surface composed of interpolated
point-pairs.

7.3. Special Cases of Evolved Point-Pairs

A special case of the evolved point-pairs occurs when they are co-planar and
form chords of a circle, Fig. 12 shows two examples of this. As proved in
[15] this special case results in the 4-vector part of the projector becoming
zero implying the interpolation requires no re-projection back to the object
manifold, i.e.,

Pα = αP1 + (1 − α)P2.

In this case the intersection of the carrier line can be found by looking for a
point at which:

Pα ∨ L = αP1 ∨ L + (1 − α)P2 ∨ L = 0.

Re-arranging gives an expression for α:

α =
P2 ∨ L

P2 ∨ L − P1 ∨ L
.
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Figure 11. Ray tracing evolved point-pairs. Left: the scene
to be rendered, in blue is a representation of the point-pair
surface to be rendered, the camera frustum is shown in black,
the camera axis is shown in red. Right: the resultant rendered
surface of interpolated point-pairs

Figure 12. Two examples of point-pair interpolations for
which all intermediary objects are blades without requiring
projection to the object manifold

If the α derived from the above expression is between 0 and 1 then there is
an intersection of the ray with the carrier line.

The disappearing 4-vector part of the projector, which is proportional to
P1 ∧P2, allows the ray-tracer to detect these cases reduces the computational
expense of a ray-surface intersection considerably.

7.4. Triangular Facets from Evolved Point-Pairs

The intersection of co-circular point-pairs also allows us to examine the inter-
section of rays with triangular facets. Consider a ray L and a set of three
points A, B, C which together form a triangular facet. First we will form a
set of normalised point pairs:

P1 =
A ∧ C

|A ∧ C| , P2 =
A ∧ B

|A ∧ B| , P3 =
C ∧ B

|C ∧ B| .
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Figure 13. Ray tracing a triangular facet

We can then check if the ray intersects the facet by computing two scalar
quantities

α =
P2 ∨ L

P2 ∨ L − P1 ∨ L
, β =

P3 ∨ L

P3 ∨ L − P2 ∨ L
.

If both α and β are between 0 and 1 then the ray hits the facet. Figure 13
shows an example of rendering a triangular facet using this technique. It is
of course possible to combine together multiple triangular facets and thus
make meshes. Note that the line-facet intersection problem is not new in
CGA, an alternative solution is already known via a reciprocal frame con-
struction equivalent to barycentric coordinates and is well demonstrated in
the raytracers of [13,22].

8. Bézier Curves and Hermite Splines through Geometric
Primitives

So far we have restricted our mathematics to linear interpolation of objects
but have hinted that higher order interpolations are possible. A commonly
used family of higher order interpolating curves are the Bézier curves [3],
which in the cubic case and with specific first order endpoint conditions are
known as Hermite curves.

8.1. Linear Interpolation as a Linear Bézier Curve

The simplest form of Bézier curve is simply a linear interpolation between
two vectors. If we replace the vectors with k-blades and couple with the
projection to the blade manifold we have the exact same linear interpolation,
although this time with α going in the other direction. Adopting a notation
of C0 as the first object and C1 as the second:

C ′
α = (1 − α)C0 + αC1, Cα = SC ′

α.

In Sects. 5.2 and 6, our analysis to extract surface normals was based on
having an expression for the derivative of the pure grade multivector as a
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Figure 14. Projected multivector Bézier curves of progres-
sively higher order. The surfaces are shown in grey while the
control objects are shown in red

function of α. For the case of the linear interpolation the solution is constant:
∂C ′

α

∂α
= C1 − C0.

8.2. Quadratic Bézier Curve

With three multivectors we can specify a quadratic function of α:

C ′
α = (1 − α)2C0 + 2(1 − α)αC1 + α2C2.

This is known as a quadratic Bézier curve. Again we can take derivatives:
∂C ′

α

∂α
= 2(1 − α)(C1 − C0) + 2α(C2 − C1).

8.3. Cubic Bézier Curves

With four control multivectors we get the the most commonly used form of
Bézier curve, the cubic Bézier curve:

C ′
α = (1 − α)3C0 + 3(1 − α)2αC1 + 3(1 − α)α2C2 + α3C3.

Again we can take derivatives allowing us to extract surface normals:
∂C ′

α

∂α
= 3(1 − α)2(C1 − C0) + 6(1 − α)α(C2 − C1) + 3α2(C3 − C2).

Figure 14 shows examples of orders 1, 2 and 3 Bézier interpolation through
circles, along with the control objects used to generate the surface.

8.4. Nth Order Bézier Curve

More generally we can say that an Nth order multivector Bézier curve is of
the form

C ′
α =

N∑

i=0

bi,NCi,
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where

bi,N =

{(
N
i

)
αi(1 − α)N−i, 0 ≤ i ≤ N,

0, otherwise,

are known as the Bernstein polynomials. The derivative of our Nth order
Bézier curve is:

∂C ′
α

∂α
=

N∑

i=0

∂bi,N

∂α
Ci where

∂bi,N

∂α
= N(bi−1,N−1 − bi,N−1).

If we re-arrange our coefficients the Bézier curve derivative can also be written
in the form:

∂C ′
α

∂α
= N

N−1∑

i=0

bi,N−1(Ci+1 − Ci).

8.5. Rational Bézier Curves

A rational Bézier curve adds weights wi to the polynomials allowing them to
represent a broader class of curves:

C ′
α =

∑N
i=0 bi,NCiwi

∑N
i=0 bi,Nwi

.

Again, a closed form for their derivatives with respect to α can be calculated:

∂C ′
α

∂α
=

1

[
∑N

i=0 bi,Nwi]2

([
N∑

i=0

∂bi,N

∂α
Ciwi

] [
N∑

i=0

bi,Nwi

]

−
[

N∑

i=0

bi,NCiwi

][
N∑

i=0

∂bi,N

∂α
wi

])

. (32)

Thus we can additionally represent projected multivector rational Bézier
curves and calculate analytic normals to the evolved surfaces formed.

8.6. Hermite Cubic Curves and Splines

Hermite cubic curves are another common form of interpolating curve. They
are defined by control points, Ci, (where we use the notation C for points
as we will see shortly that these can be replaced by objects) and associated
tangent vectors, Vi, at each end of the curve, for α ∈ [0, 1]:
C′

α = (2α3 − 3α2 + 1)C0 + (α3 − 2α2 + α)V0 + (−2α3 + 3α2)C1 + (α3 − α2)V1.

The derivative of the curve is:
∂C ′

α

∂α
= (6α2 − 6α)C0 + (3α2 − 4α + 1)V0 + (−6α2 + 6α)C1 + (3α2 − 2α)V1.

Cubic Hermite curves can be converted to cubic Bezier curves and vice-
versa. As with Bezier curves, putting multivectors and multivector derivatives
instead of the control points and tangents will give us a multivector valued
curve.

A very common use of Hermite curves is in the construction of Hermite
splines; these are piece-wise constructions in which multiple Hermite curves
are placed end to end, sharing tangent vectors and control points at each
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endpoint. By constructing a curve in this way, a C1 continuous piece-wise
curve is designed that passes through the control points exactly.

When moving the spline generation process to the multivector domain
we must check whether the blade projection introduces problems with C1
continuity on the manifold. To check C1 continuity we need to evaluate the
curve derivative either side of a junction between curves in the spline. Con-
sider the form of the derivative:

∂Cα

∂α
=

∂S
∂α

C ′
α + S ∂C ′

α

∂α
. (33)

Let us now evaluate this at the endpoint of the nth curve in a piece-wise
spline where α = 1 and of curve (n + 1) where α = 0. First we note that
on both curves at these points, S = 1 because the curve passes through a
blade control object which requires no projection. Additionally we see that
by definition of the Hermite spline at that point, the derivative in pure-grade
space is shared across both curves as is the control point:

∂C ′
α

∂α
= Vn,n+1, C ′

α = Cn,n+1,

where Vn,n+1 and Cn,n+1 are the derivative (or ‘tangent’) and control objects
respectively of the curve that are shared between segments n and n + 1.

Thus for the derivative to evaluate to the same on either side of the
boundary, we only need to check that ∂S

∂α is the same either side of the
boundary. Considering the equations in Sect. 6.1 we can see that ∂S

∂α is a
function only of C ′ and ∂C′

∂α which are both constant across the junction.
Thus the curve is C1 continuous on the manifold as required. With assurances
that the spline is continuous across the boundaries we are free to chose any
means of generating tangents in the pure-grade space that we like.

One such mechanism for generating tangents for Hermite splines comes
from Kochanek and Bartels [21]. The Kochanek–Bartels (KB) spline is an
interpolating spline with three scalar design parameters t, b, c known as ten-
sion, bias and continuity respectively. For given control objects Ci, Ci+1 the
corresponding tangents Vi, Vi+1 can be calculated using the control objects
in the spline Ci−1 and Ci+2 which lie previous to, and after, the curve in the
order of the spline:

Vi =
(1 − t)(1 + b)(1 + c)

2
(Ci − Ci−1) +

(1 − t)(1 − b)(1 − c)
2

(Ci+1 − Ci),

Vi+1 =
(1 − t)(1 + b)(1 − c)

2
(Ci+1 − Ci)

+
(1 − t)(1 − b)(1 + c)

2
(Ci+2 − Ci+1).

Setting all three scalar parameters to a value of 0 produces the commonly
used Catmull–Rom spline [7]. Figure 15 shows an example of a KB spline of
multivector geometric primitives.
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Figure 15. A Kochanek–Bartels spline of evolved circles
meshed, textured, and rendered with smooth shading

9. Blinn–Phong Lighting Model

To complete our discussion of the ray-tracer we need to describe its lighting
model. We employ the Blinn–Phong lighting model, this simple model is well
studied in the graphics literature, for more in depth information see [4]. Under
this model the intensity value for each pixel for colour channel λ is given by
the following expression:

Iλ = cλka + krIrλ

+
∑

i

SifattIpiλ (cλkd (Li · N) + ks (N · H)q) , ∀λ ∈ {R,G,B}.(34)

Note that traditionally the terms N , Li and H are standard 3D vectors. Since
the language of our ray-tracer is CGA, these terms in Eq. (34) actually repre-
sent trivector lines which pass through the ray-object intersection point. As
all these lines are normalised such that L2 = 1 the inner products between
them will simply give the cosine of the angles between them as in the tra-
ditional 3D vector case [12]. Other terms will be described in the following
subsections.

The normal line is required across multiple terms and is crucial to the
lighting model. This is given in CGA as N = L′−L√

(L′−L)2
where L′ is the

normalised reflected ray and L is the normalised incident ray. Note that L′

is necessarily calculated for tracing reflected rays. The line Li specifying the
direction to the ith point light source is given by forming the wedge product
between the point of intersection of the incident ray and the object, the point
position of the ith light source and n∞ and again normalising the result such
L2

i = 1. The normalised half way line H can be found by H = Li−V√
(Li−V )2

,

where V is the normalised line from the intersection point to the viewer.

9.1. Diffuse Term

The diffuse term is given by:

Id = Ipiλcλkd (Li · N) , ∀λ ∈ {R,G,B}. (35)
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The line Li again represents the normalised line pointing towards specifying
the the ith light source. The intensity of channel λ of the ith light source
is labelled Ipiλ where the p subscript denotes that it is a point light source.
Ipiλ along with the material channel reflection coefficient cλ (which effectively
controls the colour of the material) and kd the diffuse property of an object
material, are all scalar parameters of the model.

9.2. Specular Term

Is = Ipiλks (N · H)q
, ∀λ ∈ {R,G,B}. (36)

This term requires the computation of the CGA line that corresponds to the
half-way vector, H, defined as the vector halfway between the vectors to the
viewer, V, and the light source, so that H ∝ Li − V . The normalised half
way line H can be found by H = Li−V√

(Li−V )2
, where V is the normalised line

from the intersection point to the viewer. ks and q are scalar parameters of
the object material.

9.2.1. Depth Attenuation. Depth attenuation is given by an inverse qua-
dratic: fatt = 1/

(
a + bd + cd2

)
where d is the distance from the origin of a

ray to the intersection point and a, b, c are scalar parameters of the lighting
model. For the examples presented here we use a = 0.02, b = 0 and c = 0.002.

9.2.2. Shadow Attenuation. In order to determine whether an object is in
shadow, the ray cast from the point of intersection to the light source is used
for intersection tests with objects in the scene. If this yields an intersection,
the shadow attenuation constant, Si, is used, otherwise it is omitted.

10. Examples of Ray Tracing Simple Objects and Evolved
Surfaces

Putting together the material from previous sections we can now raytrace
both simple objects and evolved surfaces. Figure 3 shows an example of simple
objects, spheres, planes and disks being rendered. Figure 16 shows an example
of an evolved surface being rendered on its own. The class of surfaces that
are able to be generated with the interpolation of circles is large and Fig. 17
shows a more unusual surface being rendered in a scene with a sphere and a
plane.

11. Meshing Evolved Surfaces

Most graphics pipelines in modern computers use triangular meshes with
some form of interpolation of vertex normals for approximating the look of
curved surfaces. In light of this it is clearly desirable to be able to convert
from an explicitly parameterised evolved surface to a mesh approximation of
that surface.

To produce a mesh approximation we first need to generate a set of
points that are in some sense evenly spaced and lie on the surface itself. To
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Figure 16. Left: a scene composed of only an evolved sur-
face in blue and a camera. Right: the rendering of the scene
from the camera

do this we will begin by producing a set of evenly spaced points on the first
object C1 and then transform these points along a small step in α to give a
second set of points. Continuing in this way we can cover the surface entirely.
An appropriate transformation for this task needs to preserve the relative
spacing of the points on the objects in order to produce a good quality mesh.
TRS (Translation Rotation Scaling) rotors have this property and can map
circles to circles, spheres to spheres and point pairs to point pairs (these
quantities are sometimes known as rounds). A TRS rotor that takes one
object C1, to another, C2, can be calculated with the following process:

• Calculate T1 and T2 the translation rotors that bring C1 and C2 respec-
tively to the origin

• Apply T1 and T2 to C1 and C2 respectively, bringing them to the origin
and producing C ′

1 and C ′
2

• Calculate the rotation rotor R12 between the blades C ′
1∧n∞ and C ′

2∧n∞
(if C1 and C2 are spheres then we do not need a rotation rotor so set
R12 = 1)

• Calculate the difference in scale between the objects by extracting their
relative sizes
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Figure 17. Left: a scene composed of a ground plane in
cyan, an evolved surface in blue and a sphere in red. Right:
the rendering of the scene from the camera

• Use the scale to generate a dilation rotor D12 that scales C ′
1 to the same

size as C ′
2

• Compose the final TRS rotor Z12 that takes C1 to C2 as:

Z12 = T̃2D12R12T1.

Armed with our transformation, we now simply need to generate a set
of starting points on the first object. First consider the case of evolved circles.
We can produce a set of N evenly spaced points on the unit circle in the e1, e2

plane by N successive rotations about the origin of a point X lying initially
at X0 = F (e1) yielding Xn for n ∈ 0, . . . , N i.e., for a fixed rotor Rθ:

Xn = (Rθ)nX0(R̃θ)n

where θ is chosen so that N + 1 uniformly spaced points cover the whole
circle. With the TRS rotor Z01 that maps from the unit circle at the origin
to the first object C1 it is possible to transform our points to the first object:

Un1 = Z01XnZ̃01.
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Figure 18. A linear interpolation surface of evolved circles
meshed and rendered with flat shading

Our process then becomes one of stepping sequentially through α from 1 to 0
in small increments of δα and transforming our points along the way. We will
use Zα to refer to the TRS rotor that maps Cα to Cα−δα and so can write
the nth point at α as:

Un(α−δα) = ZαUnαZ̃α.

By doing this we have effectively constructed a mapping from a coordinate
system in the 2D plane of α and n to the surface manifold. This is useful as
it lets us generate the mesh in the 2D plane of α and n and map the vertex
positions directly to 3D.

Modern graphics engines allow users to write shaders that interpolate
vertex normals in smart ways, giving the illusion of curved surfaces over flat
facets. In our ray tracing experiments we have already identified how to cal-
culate the normal to the evolved surface at any point on the surface provided
that α is known at the point. The vertex normals are calculated using the
formulae in the above sections. While Fig. 18 shows a surface of evolved cir-
cles meshed and rendered using flat shading with ganja.js [9], Fig. 15 shows
a tubular KB spline surface, meshed, textured, and shaded with a smooth
vertex normal interpolation scheme.

12. Summary and Conclusions

In this paper we have outlined the basic workings of a CGA ray tracer that can
render geometric primitives as well as more advanced interpolated surfaces
defined by two circles or point-pairs and an evolution parameter, α. Integral
to ray-tracing these evolved surfaces is the derivation of analytic intersection
points and normal vectors.
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