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Abstract. We study reflection principle for several central objects in
pluripotential theory. First we show that the odd reflected function gives
an extension for pluriharmonic functions over a flat boundary. Then we
show that the even reflected function gives an extension for nonnega-
tive plurisubharmonic functions. In particular cases odd and/or even
reflected functions give extensions for classical solutions of the homo-
geneous complex Monge–Ampère equation. Finally, we state reflection
principle for the generalized complex Monge–Ampère equation and max-
imal plurisubharmonic functions.
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1. Introduction

Reflection is a method to extend functions and, in particular, solutions of
homogeneous equations across a flat boundary. Classically, it is applied to
some strong type equations but later on also to several weak type equations.
The original reflection principle states that an analytic function given in the
upper half unit disk can be extended to the whole unit disk by reflection.
This result originates with Schwarz. A similar principle holds for harmonic
functions in the space, see [2].
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In higher real dimensions Martio and Rickman [16] introduced the reflec-
tion principle for quasiregular mappings. Later on Martio [14] showed that
the reflection principle holds for solutions of certain elliptic partial differential
equations, and he also treated further the reflection principle for quasiregular
mappings, see also [9]. Moreover, Martio [15] studied equivalent principle for
quasiminimizers in R

n. Recently, Koskenoja [12,13] considered the reflection
principle for both classical and viscosity solutions of the homogeneous real
Monge–Ampère equation.

In several complex variables many authors have studied the reflection
principle which is well understood for holomorphic mappings and related
Cauchy–Riemann equations, see expository surveys by Coupet and Sukhov
[6] and by Diederich and Pinchuk [7]. We concentrate on pluriharmonic and
plurisubharmonic functions and the homogeneous complex Monge–Ampère
equation that are central objects in pluripotential theory, see [3,8,10,11].

2. Basic Properties of the Reflection

We first set central notation connected to the reflection in C
n. Let G+ be

a domain in C
n
+ = {z = (z1, . . . , zn) ∈ C

n : Im zn > 0}. Let P : Cn →
C

n be the reflection with respect to ∂Cn
+, that is, P (z) = P (z1, . . . , zn) =

(z1, . . . , zn−1, z̄n). Suppose that there is a non-empty set G0 ⊂ ∂Cn
+ open in

∂G+. Set G = G+ ∪ G0 ∪ G− where G− = PG+. Then G is a domain (open
and connected set) in C

n. Suppose that a function u : G+ → R satisfies the
following boundary condition on G0:

lim
z→w

u(z) = 0 for all w ∈ G0. (2.1)

We define the odd reflected function ũ : G → R,

ũ(z) =

⎧
⎪⎨

⎪⎩

u(z), z ∈ G+,

0, z ∈ G0,

−u(P (z)), z ∈ G−.

(2.2)

Correspondingly, the even reflected function û : G → R is given by

û(z) =

⎧
⎪⎨

⎪⎩

u(z), z ∈ G+,

0, z ∈ G0,

u(P (z)), z ∈ G−.

(2.3)

In [12] Koskenoja studied differentiability properties of the reflected
functions in the real n-space. Most of these results and examples can be
adopted straightforward to the complex n-space. It is remarkable that if we
reflect a differentiable function, then it may happen that the differentiability
gets broken in the reflection boundary G0, see examples in [12].

Recall next some standard terminology. Let Ω ⊂ C
n be open. A map-

ping f : Ω → R is said to be differentiable (or R-differentiable) in Ω if it is
differentiable in Ω with respect to the real coordinates. This means that the
first order real partial derivatives of f exist at each point of Ω. Correspond-
ingly, we say that a mapping is twice differentiable in Ω meaning that the
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second order real partial derivatives exist at each point of Ω. It is obvious that
if u ∈ C1(G+), then ũ, û ∈ C1(G−), and if u ∈ C2(G+), then ũ, û ∈ C2(G−),
see [12, Lemmas 3.1 and 3.7].

We start with giving reflection formulas for the complex partial differ-
ential operators

∂

∂zk
=

1
2

(
∂

∂xk
− i

∂

∂yk

)

and
∂

∂z̄k
=

1
2

(
∂

∂xk
+ i

∂

∂yk

)

, k = 1, . . . , n,

and for the complex Hesse matrix, see [17]. These formulas are complex coun-
terparts of the formulas given in [12, Lemmas 3.1 and 3.7 and Theorem 3.14].
We omit many calculations since the methods are rather evident and often
similar to those of given earlier in the proofs.

Lemma 2.1. Let a point z ∈ G− be such that u is differentiable at P (z) ∈ G+.
Then

∂ũ

∂zk
(z) =

{
− ∂u

∂zk
(P (z)), k = 1, . . . n − 1,

− ∂u
∂z̄k

(P (z)), k = n,
(2.4)

∂ũ

∂z̄k
(z) =

{
− ∂u

∂z̄k
(P (z)), k = 1, . . . n − 1,

− ∂u
∂zk

(P (z)), k = n,
(2.5)

∂û

∂zk
(z) =

{
∂u
∂zk

(P (z)), k = 1, . . . n − 1,
∂u
∂z̄k

(P (z)), k = n,
(2.6)

∂û

∂z̄k
(z) =

{
∂u
∂z̄k

(P (z)), k = 1, . . . n − 1,
∂u
∂zk

(P (z)), k = n,
(2.7)

In particular,
∂ũ

∂zk
(z) = − ∂û

∂zk
(z) (2.8)

and
∂ũ

∂z̄k
(z) = − ∂û

∂z̄k
(z) (2.9)

for every k = 1, . . . , n.

Proof. The reflection P = (P1, . . . , Pn) : Cn → C
n is given coordinately by

Pl(z) =

{
zl, l = 1, . . . , n − 1,

z̄l, l = n,

and therefore

P l(z) =

{
z̄l, l = 1, . . . , n − 1,

zl, l = n,

where we denote P l : Cn → C, P l(z) = Pl(z) whenever z ∈ C
n. Therefore we

have

∂Pl

∂zk
(z) =

∂P l

∂z̄k
(z) =

{
1, k = l = 1, . . . , n − 1,

0, otherwise,
(2.10)
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and

∂Pl

∂z̄k
(z) =

∂P l

∂zk
(z) =

{
1, k = l = n,

0, otherwise.
(2.11)

Hence by the complex chain rules, see [11, (1.2.10), (1.2.11)],
∂ũ

∂zk
(z) =

∂(−(u ◦ P ))
∂zk

(z)

= −∂(u ◦ P )
∂zk

(z) = −
n∑

l=1

(
∂u

∂zl
(P (z))

∂Pl

∂zk
(z) +

∂u

∂z̄l
(P (z))

∂P l

∂zk
(z)

)

=

{
− ∂u

∂zk
(P (z)), k = 1, . . . , n − 1,

− ∂u
∂z̄k

(P (z)), k = n,

and
∂ũ

∂z̄k
(z) =

∂(−(u ◦ P ))
∂z̄k

(z)

= −∂(u ◦ P )
∂z̄k

(z) = −
n∑

l=1

(
∂u

∂zl
(P (z))

∂Pl

∂z̄k
(z) +

∂u

∂z̄l
(P (z))

∂P l

∂z̄k
(z)

)

=

{
− ∂u

∂z̄k
(P (z)), k = 1, . . . , n − 1,

− ∂u
∂zk

(P (z)), k = n.

In the same way, we obtain formulas (2.6) and (2.7). Finally, Eq. (2.8) follows
from (2.4) and (2.6), and (2.9) follows from (2.5) and (2.7). �
Remark 2.2. We could prove formulas (2.4), (2.6), (2.5) and (2.7) also with-
out complex chain rules just by using the corresponding formulas for the first
order partial differential operators given in [12]. For example, since by [12,
Lemma 3.1]

Dũ(z) =
(

− ∂u

∂x1
(P (z)),− ∂u

∂y1
(P (z)), . . . ,− ∂u

∂xn
(P (z)),

∂u

∂yn
(P (z))

)

,

we have
∂ũ

∂zk
(z) =

1
2

(
∂ũ

∂xk
(z) − i

∂ũ

∂yk
(z)

)

=

⎧
⎨

⎩

1
2

(
− ∂u

∂xk
(P (z)) + i ∂u

∂yk
(P (z))

)
= − ∂u

∂zk
(P (z)), k = 1, . . . n − 1,

1
2

(
− ∂u

∂xk
(P (z)) − i ∂u

∂yk
(P (z))

)
= − ∂u

∂z̄k
(P (z)), k = n.

The complex Hesse matrix (or the complex Hessian) of a twice differ-
entiable function u at a point z is the n × n matrix

Hu(z) =
[

∂2u

∂zj∂z̄k
(z)

]

,

where the entries are given by the second order complex partial differential
operator

∂2

∂zj∂z̄k
=

1
4

(
∂2

∂xj∂xk
+ i

∂2

∂xj∂yk
− i

∂2

∂yj∂xk
+

∂2

∂yj∂yk

)

. (2.12)
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In particular, if a function u is twice continuously differentiable, then by
(2.12) the trace of the complex Hesse matrix of u at z satisfies

4
n∑

j=1

∂2u

∂zj∂z̄j
(z) =

n∑

j=1

(
∂2u

∂x2
j

(z) +
∂2u

∂y2
j

(z)

)

= Δu(z).

Lemma 2.3. Let a point z ∈ G− be such that u is twice differentiable at
P (z) ∈ G+. Then

Hũ(z) = −

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2u
∂z1∂z̄1

(P (z)) · · · ∂2u
∂z1∂z̄n−1

(P (z)) ∂2u
∂z1∂zn

(P (z))

...
. . .

...
...

∂2u
∂zn−1∂z̄1

(P (z)) · · · ∂2u
∂zn−1∂z̄n−1

(P (z)) ∂2u
∂zn−1∂zn

(P (z))
∂2u

∂z̄n∂z̄1
(P (z)) · · · ∂2u

∂z̄n∂z̄n−1
(P (z)) ∂2u

∂zn∂z̄n
(P (z))

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.13)

and

Hû(z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2u
∂z1∂z̄1

(P (z)) · · · ∂2u
∂z1∂z̄n−1

(P (z)) ∂2u
∂z1∂zn

(P (z))
...

. . .
...

...
∂2u

∂zn−1∂z̄1
(P (z)) · · · ∂2u

∂zn−1∂z̄n−1
(P (z)) ∂2u

∂zn−1∂zn
(P (z))

∂2u
∂z̄n∂z̄1

(P (z)) · · · ∂2u
∂z̄n∂z̄n−1

(P (z)) ∂2u
∂zn∂z̄n

(P (z))

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(2.14)

In particular,

Hũ(z) = −Hû(z). (2.15)

Proof. The complex chain rules yield now together with formulas (2.5), (2.7),
(2.10) and (2.11) that

∂2ũ

∂zj∂z̄k

(z) =
∂

∂zj

(
∂ũ

∂z̄k

(z)

)

=

⎧
⎨

⎩

∂
∂zj

(
− ∂u

∂z̄k
(P (z))

)
= − ∂

∂zj

((
∂u
∂z̄k

◦ P
)

(z)
)

, k = 1, . . . , n − 1,

∂
∂zj

(
− ∂u

∂zk
(P (z))

)
= − ∂

∂zj

((
∂u
∂zk

◦ P
)

(z)
)

, k = n,

=

⎧
⎨

⎩

− ∑n
l=1

(
∂2u

∂zl∂z̄k
(P (z)) ∂Pl

∂zj
(z) + ∂2u

∂z̄l∂z̄k
(P (z)) ∂P l

∂zj
(z)

)
, k = 1, . . . , n − 1,

− ∑n
l=1

(
∂2u

∂zl∂zk
(P (z)) ∂Pl

∂zj
(z) + ∂2u

∂z̄l∂zk
(P (z)) ∂P l

∂zj
(z)

)
, k = n,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∂2u
∂zj ∂z̄k

(P (z)), j, k = 1, . . . , n − 1,

− ∂2u
∂z̄j ∂z̄k

(P (z)), j = n, k = 1, . . . , n − 1,

− ∂2u
∂zj ∂zk

(P (z)), j = 1, . . . , n − 1, k = n,

− ∂2u
∂z̄j ∂zk

(P (z)), j, k = n.

and

∂2û

∂zj∂z̄k

(z) =
∂

∂zj

(
∂û

∂z̄k

(z)

)

=

⎧
⎨

⎩

∂
∂zj

(
∂u
∂z̄k

(P (z))
)

= ∂
∂zj

((
∂u
∂z̄k

◦ P
)

(z)
)

, k = 1, . . . , n − 1,

∂
∂zj

(
∂u
∂zk

(P (z))
)

= ∂
∂zj

((
∂u
∂zk

◦ P
)

(z)
)

, k = n,

=

⎧
⎨

⎩

∑n
l=1

(
∂2u

∂zl∂z̄k
(P (z)) ∂Pl

∂zj
(z) + ∂2u

∂z̄l∂z̄k
(P (z)) ∂P l

∂zj
(z)

)
, k = 1, . . . , n − 1,

∑n
l=1

(
∂2u

∂zl∂zk
(P (z)) ∂Pl

∂zj
(z) + ∂2u

∂z̄l∂zk
(P (z)) ∂P l

∂zj
(z)

)
, k = n,
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2u
∂zj ∂z̄k

(P (z)), j, k = 1, . . . , n − 1,

∂2u
∂z̄j ∂z̄k

(P (z)), j = n, k = 1, . . . , n − 1,

∂2u
∂zj ∂zk

(P (z)), j = 1, . . . , n − 1, k = n,

∂2u
∂z̄j ∂zk

(P (z)), j, k = n.

Therefore, we have verified formulas (2.13) and (2.14) from which formula
(2.15) follows immediately. �

Remark 2.4. We observed in Remark 2.2 that for the first order formulas of
the reflected functions we can avoid the use of the complex chain rules in the
proofs. It is similarly possible now for the second order formulas (2.13) and
(2.14). For example, it follows from [12, formula (3.8) of Lemma 3.7] that

∂2ũ

∂zj∂z̄k

(z) =
1

4

(
∂2ũ

∂xj∂xk

(z) + i
∂2ũ

∂xj∂yk

(z) − i
∂2ũ

∂yj∂xk

(z) +
∂2ũ

∂yj∂yk

(z)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

(
− ∂2u

∂xj∂xk
(P (z)) − i ∂2u

∂xj∂yk
(P (z))

+i ∂2u
∂yj∂xk

(P (z)) − ∂2u
∂yj∂yk

(P (z))
)

, j, k = 1, . . . , n − 1,

1
4

(
− ∂2u

∂xj∂xk
(P (z)) − i ∂2u

∂xj∂yk
(P (z))

−i ∂2u
∂yj∂xk

(P (z)) + ∂2u
∂yj∂yk

(P (z))
)

, j = n, k = 1, . . . , n − 1,

1
4

(
− ∂2u

∂xj∂xk
(P (z)) + i ∂2u

∂xj∂yk
(P (z))

+i ∂2u
∂yj∂xk

(P (z)) + ∂2u
∂yj∂yk

(P (z))
)

, j = 1, . . . , n − 1, k = n

1
4

(
− ∂2u

∂xj∂xk
(P (z)) + i ∂2u

∂xj∂yk
(P (z))

−i ∂2u
∂yj∂xk

(P (z)) − ∂2u
∂yj∂yk

(P (z))
)

, j, k = n.

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ∂2u
∂zj∂z̄k

(P (z)), j, k = 1, . . . , n − 1,

− ∂2u
∂z̄j∂z̄k

(P (z)), j = n, k = 1, . . . , n − 1,

− ∂2u
∂zj∂zk

(P (z)), j = 1, . . . , n − 1, k = n,

− ∂2u
∂z̄j∂zk

(P (z)), j, k = n.

3. Reflection Principle for Pluriharmonic Functions

Let Ω ⊂ C
n be open. A C2-function u : Ω → R is pluriharmonic in Ω if for

all j, k = 1, . . . , n,

∂2u

∂zj∂z̄k
(z) = 0 (3.1)

at every z ∈ Ω. Equivalently, a function u is pluriharmonic in Ω if and only if
for every z ∈ Ω and w ∈ C

n \ {0} the function λ �→ u(z +λw) is harmonic on
{λ ∈ C : z +λw ∈ Ω}. This means that a pluriharmonic function is harmonic
when restricted to any complex line inside Ω.

Pluriharmonic functions form an invariant class under biholomorphic
mappings. Therefore, in several complex variables pluriharmonic functions is
a more important class of functions than harmonic functions which are not
invariant under holomorphic mappings or even under complex linear map-
pings.

Pluriharmonic functions are harmonic in the sense of real coordinates.
Hence the classical reflection principle for harmonic functions imply that a
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pluriharmonic function given in an open G+ ⊂ C
n
+ has a harmonic extension ũ

to the reflected domain G but it is not straightforward that ũ is pluriharmonic
in G. However, using the classical reflection principle for harmonic functions,
it is simple to prove that the reflection principle holds for pluriharmonic
functions. The crucial observation in the proof is that the reflected function
ũ is C∞ in G, and hence the second order derivatives exist in G0 and they
are limits of the second order derivatives in G+ ∪G−. In general, if a function
u is C2 in G−, it may happen that ũ is not differentiable in a point z0 ∈ G0,
see Example 5.1.

Theorem 3.1. If u : G+ → R is pluriharmonic and the boundary condition
(2.1) holds, then the odd reflected function ũ is pluriharmonic in G.

Proof. Suppose that u : G+ → R is pluriharmonic and the boundary condi-
tion (2.1) holds. Since u is harmonic in G, the classical reflection principle
for harmonic functions implies that ũ is harmonic in G. It follows that ũ is
C∞ in G.

Let z ∈ G−. Since u is pluriharmonic in P (z), formula (2.13) yields

∂2ũ

∂zj∂z̄k
(z) = − ∂2u

∂zj∂z̄k
(P (z)) = 0

for every j, k = 1, . . . , n − 1. Since ũ is C∞ in G, we may change the order of
the partial differentiation, and we have again by formula (2.13) that

∂2ũ

∂zn∂z̄n
(z) = − ∂2u

∂z̄n∂zn
(P (z)) = − ∂2u

∂zn∂z̄n
(P (z)) = 0.

Moreover, since u is C∞ and harmonic in G+, formulas in Remark 2.4 yield

∂2ũ

∂zj∂z̄k
(z) = − ∂2u

∂z̄j∂z̄k
(P (z)) = − ∂2u

∂zj∂zk
(P (z)) = 0

whenever j = n, k = 1, . . . , n − 1 or j = 1, . . . , n − 1, k = n. Hence the Eq.
(3.1) holds for all j, k = 1, . . . , n at every z ∈ G+ ∪ G−, in other words, ũ is
pluriharmonic in G+ ∪ G−.

Let z0 ∈ G0. Since ũ is C∞ in G, we obtain

∂2ũ

∂zj∂z̄k
(z0) = lim

z→z0
z∈G

∂2ũ

∂zj∂z̄k
(z) = 0

for all j, k = 1, . . . , n. Hence the Eq. (3.1) holds in G for all j, k = 1, . . . , n,
and thus ũ is pluriharmonic in G by definition. �

Remark 3.2. Armitage [1] showed that the classical reflection principle for h
harmonic in G+ holds when one assumes (instead of the boundary condition
(2.1), that is, h tending to 0 at each point of G0 ⊂ ∂Rn

+) that h converges
locally in mean to 0 on G0, that is, for all (x, 0) ∈ G0 there exists r > 0 such
that

lim
t→0+

∫

|y−x|<r

h(y, t) dy = 0. (3.2)
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It is clear that the boundary condition (2.1) is stronger than the boundary
condition (3.2). Therefore, in Theorem 4.1, it is sufficient to assume that the
boundary condition (3.2) holds.

The classical reflection principle for harmonic functions can be proved
by using the mean value principle of harmonic functions, see [2, Proof of
Theorem 1.3.6]. It is remarkable that for the proof of the reflection principle
for pluriharmonic functions (Theorem 4.1) the mean value principle can not
be applied in G0. This is because if we take points z0 ∈ G0 and z ∈ G+,
then the reflected point P (z) ∈ G− is not usually in an arbitrary complex
line passing through the points z0 and z.

4. Reflection Principle for Plurisubharmonic Functions

Let Ω be an open set in C
n. An upper semicontinuous function u : Ω →

R ∪ {−∞} which is not identically −∞ on any component of Ω is said to
be plurisubharmonic in Ω if for each z ∈ Ω and w ∈ C

n, the function λ �−→
u(z + λw) is subharmonic or identically −∞ on every component of the set
{λ ∈ C : z + λw ∈ Ω}. A function v is called plurisuperharmonic in Ω if −v
is plurisubharmonic in Ω.

We need to restrict our considerations here to plurisubharmonic func-
tions having nonnegative values only. The set of nonnegative reals is denoted
by R+ = {x ∈ R : x � 0}.

Theorem 4.1. If u : G+ → R+ is plurisubharmonic and the boundary condi-
tion (2.1) holds, then the even reflected function û is plurisubharmonic in
G.

Proof. Upper semicontinuity of u in G+ implies that û is upper semicontin-
uous in G−. Therefore û is upper semicontinuous in G = G+ ∪G0 ∪G− since
û is continuous in a neighbourhood of G0. If z ∈ G− and w ∈ C

n are such
that {z + λw : λ ∈ C, |λ| � 1} ⊂ G−, then

1
2π

∫ 2π

0

û(z + eit) dt =
1
2π

∫ 2π

0

u(P (z + eit)) dt

=
1
2π

∫ 2π

0

u(P (z) + eit) dt

� u(P (z)) = û(z)

(4.1)

because P (z) ∈ G+, {P (z) + λw : λ ∈ C, |λ| � 1} ⊂ G+ and u is plurisub-
harmonic in G+. Hence the plurisubmean value principle [11, Theorem 2.9.1]
holds for û in G+ ∪ G−, since it is clear that it holds in G+ where û = u is
plurisubharmonic. It holds also for every z0 ∈ G0 since

û(z0) = 0 � 1
2π

∫ 2π

0

û(z0 + eit) dt

because û � 0 in {z + λw : λ ∈ C, |λ| � 1} whenever it is inside G. Hence û
is plurisubharmonic in G. �
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Remark 4.2. Since the even reflection preserves upper semicontinuity, it fol-
lows from (4.1) that the following more general observation is valid: If u is
plurisubharmonic in an open set U ⊂ C

n
+, then û is plurisubharmonic in

PU ⊂ C
n
−.

5. Reflection Principle for the Classical Homogeneous
Complex Monge–Ampère Equation

In this section we study reflection principle for the classical homogeneous
complex Monge–Ampère equation

det
[

∂2u

∂zj∂z̄k

]

= 0

whenever u is twice differentiable. However, we immediately meet several
principal difficulties which are not present in the corresponding theory of
the homogeneous Laplace equation. Studies of the reflection principle for
the homogeneous Laplace equation and for harmonic functions coincide, but
in case of the homogeneous complex Monge–Ampère equation and plurihar-
monic functions the situation is different and more complicated.

If a plurisubharmonic function u is a solution to the homogeneous com-
plex Monge–Ampère equation in G+, then the odd reflected function ũ is
plurisuperharmonic in G−. Hence it is worthwhile that we first restrict our
study to the case where the plurisubharmonic solution of the homogeneous
complex Monge–Ampère equation is in the class C2 in G+. Therefore we con-
sider the strong pointwise (i.e. classical) form of the complex Monge–Ampère
equation.

Example 5.1. Consider the functions v, w : C2
+ → R, v(z) = v(z1, z2) =

z2−z̄2
2i = Im z2 and w(z) = w(z1, z2) = z1z̄1 where z = (z1, z2) ∈ C

2
+. Then

det
[

∂2v

∂zj∂z̄k
(z)

]

= det
[

0 0
0 0

]

= 0

and

det
[

∂2w

∂zj∂z̄k
(z)

]

= det
[

1 0
0 0

]

= 0

at every z ∈ C
2
+, hence both v and w are classical solutions of the homo-

geneous complex Monge–Ampère equation in C
2
+. Moreover, the boundary

condition (2.1) holds for v and w.
For the even reflected function v̂ we have for each z ∈ C

2
− that

v̂(z) = v(P (z)) = v(z1, z̄2) =
z̄2 − z2

2i
= − Im z2,

and hence the first order derivative ∂v̂
∂z2

(z) = − 1
2i . But since for each z ∈ C

2
+

we have ∂v̂
∂z2

(z) = 1
2i , the first order derivative ∂v̂

∂z2
(z0) does not exist in any

z0 ∈ ∂C2
+. Consequently, v̂ is not C1 in any neighbourhood of ∂C2

+.
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For the odd reflected function w̃ we have for each z ∈ C
2
− that

det
[

∂2w̃

∂zj∂z̄k
(z)

]

= det
[
∂2(−w)
∂zj∂z̄k

(P (z))
]

= det
[−1 0

0 0

]

= 0.

Therefore the limit

lim
z→z0

det
[

∂2w̃

∂zj∂z̄k
(z)

]

= 0 at every z0 ∈ ∂C2
+.

However, the second order partial derivative ∂2w̃
∂z1∂z̄1

(z0) does not exist in any
z0 ∈ ∂C2

+, because the limit 1 when approaching to z0 from above does
not equal to the limit −1 from below. Consequently, w̃ is not C2 in any
neighbourhood of ∂C2

+.

The next theorem states our main result of this section.

Theorem 5.2. Suppose that u ∈ C2(G+) satisfies the homogeneous Monge–
Ampère equation det

[
∂2u

∂zj∂z̄k

]
= 0 in G+ and the boundary condition (2.1)

holds.

(i) The odd reflected function ũ satisfies the equation det
[

∂2ũ
∂zj∂z̄k

]
= 0 in G

if and only if the second order derivatives ∂2ũ
∂zj∂z̄k

exist at every z0 ∈ G0.

(ii) The even reflected function û satisfies the equation det
[

∂2û
∂zj∂z̄k

]
= 0

in G if and only if the second order derivatives ∂2û
∂zj∂z̄k

exist at every
z0 ∈ G0.

Proof. (i) Since ũ(z) = u(z) for every z ∈ G+, it is clear that ũ satisfies the
homogeneous Monge–Ampère equation in G+. If z ∈ G−, then

det
[

∂2ũ

∂zj∂z̄k
(z)

]

= det
[
∂2(−u)
∂zj∂z̄k

(P (z))
]

= −det
[

∂2u

∂zj∂z̄k
(P (z))

]

= 0,

because P (z) ∈ G+. Suppose that z0 ∈ G0. Then the limit from above or
below as well as from the left or the right is

lim
z→z0

z∈G+∪G−

det
[

∂2ũ

∂zj∂z̄k
(z)

]

= lim
z→z0
z∈G0

det
[

∂2ũ

∂zj∂z̄k
(z)

]

= 0,

since ũ ≡ 0 in G0. Therefore

lim
z→z0

det
[

∂2ũ

∂zj∂z̄k
(z)

]

= 0

and the assertion (i) holds. The proof of (ii) is similar. �

Remark 5.3. If the assumptions of Theorem 5.2 are valid, it is possible due
to Example 5.1 that ũ and û are not C2 in any neighbourhood of G0.
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6. Reflection Principle for the Generalized Complex
Monge–Ampère Equation

Finally, we consider reflection principle for the homogeneous generalized com-
plex Monge–Ampère equation, analogously to solutions of certain elliptic par-
tial differential equations, see [9] and [14]. A plurisubharmonic and locally
bounded function u : Ω → [−∞,∞) can be operated by the generalized com-
plex Monge–Ampère operator (ddc)n, see [11, Section 3.4]. If u ∈ C2(Ω),
then

(ddcu)n = 4nn! det
[

∂2u

∂zj∂z̄k

]

dV, (6.1)

where dV is the volume form in C
n.

The primary definition of the generalized complex Monge–Ampère oper-
ator was given by Bedford and Taylor [4]. Later on, Cegrell [5] introduced a
slightly more general and in some sense optional definition of (ddc)n. Then
the plurisubharmonic function u is not required to be locally bounded but
the definition is still not valid for all plurisubharmonic functions given in a
general open set Ω ⊂ C

n. If u is plurisubharmonic and locally bounded in
Ω, then (ddcu)n gives a nonnegative Borel measure on Ω. Contrary to this,
if u is plurisuperharmonic and locally bounded in Ω, then (ddcu)n gives a
non-positive Borel measure on Ω.

A plurisubharmonic and locally bounded function u : Ω → [−∞,∞) is
said to satisfy the homogeneous generalized complex Monge–Ampère equation
(ddcu)n = 0 in Ω if

∫

Ω

(ddcu)n = 0. (6.2)

In other words, the Monge–Ampère mass of u in Ω is zero if u satisfies the Eq.
(6.2). Our first result is an easy observation concerning the reflection princi-
ple for the homogeneous generalized complex Monge–Ampère equation. Note
that every pluriharmonic function satisfies the Eq. (6.2), but the converse is
not true.

Theorem 6.1. If u is pluriharmonic in G+ such that the boundary condition
(2.1) holds, then the odd reflected function ũ satisfies the homogeneous gen-
eralized complex Monge–Ampère equation (ddcũ)n = 0 in G.

Proof. By Theorem 4.1, ũ is pluriharmonic in G. Hence ũ satisfies the
homogeneous generalized complex Monge–Ampère equation (ddcũ)n = 0 in
G. �

A plurisubharmonic function u : Ω → R is said to be maximal if for each
open set D � Ω and for each upper semicontinuous function v on D,

v is plurisubharmonic in D and v � u on ∂D =⇒ v � u in D.

It is equivalent to require that
v is plurisubharmonic in Ω, D � Ω is open and v � u on ∂D

=⇒ v � u in D,

see [11, Proposition 3.1.1].
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The notion of maximal plurisubharmonic functions is due to Sadullæv
[18]. In one complex variable, the maximal plurisubharmonic functions are
precisely the harmonic functions, hence solutions to the Laplace equation
Δu = 0 and consequently they belong to C∞(Ω). In more than one variable,
the class contains, for example, all plurisubharmonic functions which depend
on n − 1 variables only.

It is known that a locally bounded plurisubharmonic function u in Ω
satisfies the homogeneous generalized complex Monge–Ampère equation (6.2)
if and only if u is maximal [11, Theorem 4.4.2]. Moreover, we observe that
if a locally bounded plurisubharmonic function u in G+ is nonnegative and
satisfies the boundary property (2.1), then it is plurisuperharmonic in Ω−.
Therefore our main result regarding the reflection principle for the general-
ized complex Monge–Ampère equation can be stated for the even reflected
functions only.

Theorem 6.2. Let u be a nonnegative, locally bounded and plurisubharmonic
function in G+ such that the boundary condition (2.1) holds. If u is maximal
in G+, then û is maximal in G.

Proof. Let u be maximal in G+. By Theorem 4.1 the even reflected function
û is plurisubharmonic in G. It is clear that the restriction û|G− is plurisub-
harmonic and maximal in G−.

Suppose by contradiction that û is not maximal in G. Then there exist
a plurisubharmonic function v in G, an open set D � G and a point z0 ∈ D
such that v � û on ∂D but v(z0) > û(z0). If z0 ∈ G+, then u = û|G+

is not maximal in G+, and if z0 ∈ G−, then û|G+ is not maximal in G−,
which are both contradictions. Finally, suppose that z0 ∈ G0. Since v is upper
semicontinuous, there is a point z1 ∈ G+∩D such that v(z1) > û(z1) = u(z1).
By considering the function

w(z) = max{v(z), u(z)}, z ∈ G+,

which is plurisubharmonic in G+, we see that u is not maximal in G+. This
is again a contradiction. �

Corollary 6.3. Let u be a nonnegative, locally bounded and plurisubharmonic
function in G+ such that the boundary condition (2.1) holds. If u satisfies the
homogeneous generalized complex Monge–Ampère equation (ddcu)n = 0 in
G+, then the even reflected function û satisfies the same equation (ddcû)n = 0
in G.
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