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Abstract. In this paper, we consider several parameterizations of rigid
transformations using motors in 3-D conformal geometric algebra. In
particular, we present parameterizations based on the exponential, outer
exponential, and Cayley maps of bivectors, as well as a map based on
a first-order approximation of the exponential followed by orthogonal
projection onto the group manifold. We relate these parameterizations
to the matrix representations of rigid transformations in the 3-D special
Euclidean group. Moreover, we present how these maps can be used to
form retraction maps for use in manifold optimization; retractions being
approximations of the exponential map that preserve the convergence
properties of the optimization method while being less computationally
expensive, and, for the presented maps, also easier to implement.
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1. Introduction

Traditionally, Lie group methods for optimization, filtering, and integration
of rotations and rigid body motions perform the state update using the expo-
nential map, see [14,20,23,26]. However, there exist alternative parameteri-
zations and maps that approximate the exponential map which are less com-
putationally expensive. In terms of Riemannian optimization, such maps are
called retraction maps [2,7,29]; the choice of which is important for high-
performance numerical algorithms on nonlinear manifolds [2].

Retraction-based line-search and trust-region optimization methods on
Riemannian matrix manifolds are presented in detail in [1,2,4,31]; these
approaches is based on locally linearizing the manifold around the current
iterate, computing the update direction in the current tangent space, and
then mapping the solution back to the manifold using the retraction map.
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Note that, as the tangent space of a nonlinear manifold is a linear space, the
use of retractions enable vector space optimization methods on manifolds.

An example of a retraction map is the Cayley map; a rational polynomial
map from the Lie algebra to the Lie group. The use of rational polynomial
maps is advantageous in numerical applications as it does not involve the
evaluation of possibly time-consuming trigonometric and exponential func-
tions [17,24]. In [8], the Cayley map was used in numerical integration of
rotations on the special orthogonal group SO(3), see also [16]. Following [3],
other retractions on SO(3) can be formed using QR-, polar-, and singular
value decomposition.

In [27,28], we employed the exponential map in optimization of rigid
body motions, parameterized using motors in 3-D conformal geometric alge-
bra, from observations of geometric objects such as points, lines, circles, and
planes. In [6], the authors used observations from lines to estimate motors
using the so called motor extended Kalman filter.

In this paper, we present the exponential map and three alternative
maps which can be used to form retraction maps for use in manifold opti-
mization of motors. Two of the presented maps are based on the two classical
maps: the Cayley map and the outer exponential map. The third map is a
novel map constructed by performing a first-order series approximation of
the exponential map followed by an orthogonal projection onto the motor
manifold. For each of the presented maps, we present how the rotation and
translation parameters relate to the rotation and translation distance of the
exponential map. In addition, we present how the exponential map and outer
exponential map for motors are related to the exponential map and Cayley
map for homogeneous transformation matrices in SE(3), respectively.

This paper is organized as follows. Section 2 presents motors in confor-
mal geometric algebra. Section 3 presents screw motions and the exponential
map. Presentations of the Cayley map and the outer exponential map follows
in Sects. 4 and 5, respectively. Then, Sect. 6, presents a novel projection-based
map. Section 7 presents retractions and retractions-based optimization on the
motor manifold. Section 8 concludes the paper.

2. Motors in 3-D Conformal Geometric Algebra

Let R4,1 denote the conformal geometric algebra of Euclidean 3-D space R
3

generated by the basis vectors e1, e2, e3, no, n∞ where

e2
i = 1, n2

o = 0, n2
∞ = 0, and no · n∞ = −1

The three Euclidean basis vectors ei form an orthonormal frame, while the
geometric interpretation of the two basis vectors no and n∞ is that no rep-
resents an arbitrary origin, and n∞ represents the point at infinity.

Following [6,30], let the 8-D space M ⊂ R
+
4,1 be defined by

M = span{1, e23, e31, e12, e1n∞, e2n∞, e3n∞, I3n∞},

where I3 ∈ R
3
3 is the unit Euclidean pseudoscalar. The space M is closed

under the geometric product; if X,Y ∈ M, then XY ∈ M. If X ∈ M, then
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〈X ˜X〉2 = 0 and 〈X ˜X〉24 = 0, where 〈·〉k denotes the grade projection operator
onto the grade k. The inverse of an element X ∈ M is given by

X−1 = ˜X

(

〈X ˜X〉 − 〈X ˜X〉4
〈X ˜X〉2

)

(1)

Note that X is invertible if and only if |X| �= 0, where the absolute |X| of X

can be found as the square root of |X|2 = |〈X ˜X〉| = 〈X ˜X〉.
Further, let the 6-D bivector subspace B ⊂ M be defined by

B = span{e23, e31, e12, e1n∞, e2n∞, e3n∞}
and the 2-D subspace S ⊂ M of grades 0 and 4 be defined by

S = span{1, I3n∞}
An element X ∈ M can be split into symmetric and anti-symmetric parts
according to X = S + B, where S = 1

2 (X + ˜X) ∈ S is symmetric in that
S = ˜S and B = 1

2 (X − ˜X) ∈ B is anti-symmetric in that B = − ˜B.
Motors M ∈ M model rigid-body motions, where M is the 6-D Lie

group defined by

M = {M ∈ M : M ˜M = 1} (2)

Note that the constraint M ˜M = 1 means that 〈M ˜M〉 = 1 and 〈M ˜M〉4 = 0.
Consider the trajectory M(t) : R → M describing a continuous rigid

body motion. Let M(0) = M , then Ṁ(0) is said to be a tangent vector to
M at M . The set of all tangent vectors at M , denoted TMM, is called the
tangent space of M at M , and is of the form

TMM = {MB : B ∈ B,M ∈ M} (3)

This can be seen by differentiating the group constraint ˜M(t)M(t) = 1 with

respect to t and evaluating at t = 0. It follows that ˜MṀ = − ˙̃
MM. It is seen

that ˜MṀ equals minus its reverse, so it can only contain elements of grade
2, 6, 10, etc [12]. That is, there exists a bivector B ∈ B such that Ṁ = MB
[5].

The tangent space at the identity, the Lie algebra of M, can be identified
as the linear bivector space B together with the commutator product B1 ×
B2 = 1

2 (B1B2 − B2B1) for B1, B2 ∈ B.

2.1. The Dual Unit

We define the grade 4 blade ε ∈ S by

ε = I−1
3 n∞

The blade ε satisfies ε2 = 0, and, as ε ∈ S, it is symmetric; ε = ε̃. Moreover, ε
anti-commutes with Euclidean vectors a ∈ R

1
3 and commutes with Euclidean

2-blades B ∈ R
2
3: εa = −aε and εB = Bε, respectively.

We call ε the dual unit, as it is isomorphic to the dual unit in screw
theory [21], dual quaternions [25], motor algebra [5,6],as well as to Clifford’s
ω introduced in the seminal paper “Preliminary Sketch of Biquaternions”
[10].
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It will be shown in the following that multiplication by ε can be seen
as a duality operation which transforms a rotation about any axis into a
translation along that axis. Note that this property is in direct agreement
with Clifford’s use of ω, see [10, p. 385].

3. The Exponential Map

Any motor M ∈ M can be written as the exponential series of a bivector
B ∈ B,

exp : B → M : B �→ 1 + B +
1
2!

B2 +
1
3!

B3 + · · · (4)

Chasles’ theorem [9,11] states that a general displacement, or rigid body
motion, from one location to another can be achieved by a rotation about a
unique axis, and, independently, a translation along that axis. Such a motion
is said to be a screw motion about a screw axis, with the property that the
rotation and translation commutes. Note that rigid body motions do not
generally commute. Let B1, B2 ∈ B, then exp(B1) exp(B2) = exp(B1 +B2) =
exp(B2 + B1) = exp(B2) exp(B1) if and only if B1 × B2 = 0.

Consider a screw motion about a screw axis. Let θ ∈ R be the rotation
angle around the screw axis, and let d ∈ R be the translation distance along
the screw axis, then θ̂ = θ + εd ∈ S is said to be the dual angle of the screw
motion. Further, let the screw axis be given by the dual line � = A+ εB ∈ B.
Here, A ∈ R

2
3, |A| = 1, is a unit Euclidean 2-blade representing the direction

of the line, while B ∈ R
2
3 is a Euclidean 2-blade orthogonal to A, in that

A · B = 0, representing the moment of the line. Then, the bivector

B = θ̂� ∈ B (5)

is said to be a screw.
Any bivector B ∈ B of the form B = B + tn∞ can be decomposed

into screw form. Let the Euclidean vector t ∈ R
1
3 be decomposed into com-

ponents parallel and perpendicular to the unit Euclidean 2-blade B/|B|,
t‖ = PB/|B|(t) and t⊥ = t−t‖, respectively. The bivector B can then be writ-
ten as the sum B = B1+B2 where B1 = B+t‖n∞ and B2 = t⊥n∞ commute.
We identify the dual angle θ̂ ∈ S of the screw motion of B as θ̂ = |B| + ε|t⊥|
and the screw axis � ∈ B as the dual line � =

(

B + t‖n∞
)

/|B|.
If the screw B ∈ B is given as in (5), then

exp
B

2
= cos

θ

2
+ sin

θ

2
A + ε

d

2
cos

θ

2
A + ε sin

θ

2
B − ε

d

2
sin

θ

2
(6)

Using that

cos
θ̂

2
= cos

θ

2
− εd sin

θ

2
and sin

θ̂

2
= sin

θ

2
+ ε

d

2
cos

θ

2
(7)

the bivector exponential in (6) can be further written as

exp
B

2
= cos

θ̂

2
+ sin

θ̂

2
� (8)
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This result can be shown by noting that

�2 = −1 and θ̂n = θn + nθn−1εd (9)

and performing a series expansion of the exponential, using that

cos θ̂ = 1 − 1
2!

θ2 +
1
4!

θ4 − · · · and sin θ̂ = θ̂ − 1
3!

θ̂3 +
1
5!

θ̂3 − · · ·
Now, let the screw B ∈ B represent a pure rotation around a line that

does not intersect the origin. Then B = θ�, with rotation angle θ ∈ R and
screw axis � ∈ B. The exponential of B then gives

exp
θ

2
� = cos

θ

2
+ sin

θ

2
� (10)

If the screw axis � intersects the origin, then the screw exponential reduces
to the rotator (rotation rotor),

exp
θ

2
A = cos

θ

2
+ sin

θ

2
A

If the rotation angle θ = 0 and the translation distance is given by
d ∈ R, then the exponential

exp ε
d

2
� = 1 +

1
2
tn∞ (11)

reduces to a translator (translation rotor), representing a pure translation,
where t = dAI−1

3 ∈ R
1
3 is a Euclidean translation vector, encoding a transla-

tion of distance d in the direction normal to the rotation plane A.
From (10) and (11), it is seen that the dual unit ε transforms a rotation

around an axis into a translation along that axis.
Implementation-wise, the exponential map in (4) can be computed by

explicitly evaluating the exponential series up to a certain order [13]. For
general multivectors, this approach tends to be slower and less precise than
evaluating a closed-form solution. Fortunately, as shown, the exponential map
for bivectors B ∈ B in (4) has a closed-form solution; see e.g. [27] for an
implementation in C++.

3.1. Matrix Representations

Let the motor M ∈ M be given as the exponential of the bivector B ∈ B as
M = exp(−B/2). Moreover, let M be the orthogonal transformation of the
multivector X ∈ R4,1 defined by

MX = MX ˜M

Then, the matrix form [M ] of M can be written as the matrix exponential

[M ] = exp([A])

where [A] is the matrix form of the anti-symmetric transformation A defined
by

AX = X × B (12)

see [22, pp. 158–160]. If the bivector B is given in terms of its components as

B = a1e23 + a2e31 + a3e12 + b1e1n∞ + b2e2n∞ + b3e3n∞
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and X is a flat point expressed on the basis {e1 ∧ n∞, e2 ∧ n∞, e3 ∧ n∞, no ∧
n∞}, the matrix form [A] of A is found to be

[A] =

⎡

⎢

⎢

⎣

0 −a3 a2 b1

a3 0 −a1 b2

−a2 a1 0 b3

0 0 0 0

⎤

⎥

⎥

⎦

(13)

It is seen that [A] ∈ se(3), where se(3) is the Lie algebra of the 3-D special
Euclidean group SE(3), and it follows that [M ] ∈ SE(3) is a 4 × 4 homoge-
neous transformation matrix. Moreover, if X is expressed on the basis of the
bivector space B, it can easily be shown that [A] and [M ] are elements of the
6 × 6 adjoint representation of se(3) and SE(3), respectively.

4. The Cayley Map

A classic rational polynomial map that can be used as an approximation of
the exponential map in Lie-group methods is the Cayley map; which has
the advantage of being easier to implement and cheaper to compute than
the bivector exponential map presented in the previous section. The Cayley
map for dual quaternions was studied in [25], while the Cayley map for 3-D
conformal transformations was studied in [17].

The Cayley map for bivectors B ∈ B to the group of motors M is
defined as

Cay : B → M : B �→ (1 + B)(1 − B)−1 (14)

While the exponential map in (4) results, physically, in a screw motion,
it is not clear from (14) what the physically resulting motion of the Cayley
map is. The relation between the exponential and Cayley maps for motors
in terms of the rotation angle, translation distance, and screw axis will be
presented in the following.

Let the bivector B ∈ B be given in screw form with rotation parameter
ϕ ∈ R, translation parameter λ ∈ R, and screw axis � = A + εB, |A| = 1,
and A ·B = 0, so that B = ϕ̂� = ϕA+ ϕεB+ λεA. Using the inverse in (1),
the Cayley map in (14) can be written as

Cay B =
(1 + B)2(1 − 〈B2〉 + 〈B2〉4)

(1 − 〈B2〉)2 (15)

We first expand (1 + B)2 and write

(1 + B)2 = 1 − ϕ2 + 2(ϕA + ϕεB + λεA) − 2ελϕ

where we have used that

B2 = 〈B2〉 + 〈B2〉4 = −ϕ2 − 2ελϕ (16)

which follows directly from (9). Then, using that

1 − 〈B2〉 + 〈B2〉4 = 1 + ϕ2 − 2ελϕ and (1 − 〈B2〉)2 = (1 + ϕ2)2
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the expression in (15) can further be written as

Cay B =

(

1 − ϕ2 + 2(ϕA + ϕεB + λεA) − 2ελϕ
)(

1 + ϕ2 − 2ελϕ
)

(1 + ϕ2)(1 + ϕ2)

and expanded to

Cay B =
1 − ϕ2

1 + ϕ2

+
2ϕA

1 + ϕ2
+

2ϕεB
1 + ϕ2

− 2ϕA
1 + ϕ2

2ελϕ

1 + ϕ2
+

2λεA
1 + ϕ2

1 + ϕ2

1 + ϕ2

− 2ελϕ

1 + ϕ2
− 1 − ϕ2

1 + ϕ2

2ελϕ

1 + ϕ2

where

− 2ϕA
1 + ϕ2

2ελϕ

1 + ϕ2
+

2λεA
1 + ϕ2

1 + ϕ2

1 + ϕ2
= λ

2
1 + ϕ2

1 − ϕ2

1 + ϕ2
εA =

λ

ϕ

2ϕ

1 + ϕ2

1 − ϕ2

1 + ϕ2
εA

Finally, this means that

Cay B =
1 − ϕ2

1 + ϕ2

+
2ϕ

1 + ϕ2
A +

2ϕ

1 + ϕ2
εB +

λ

ϕ

2ϕ

1 + ϕ2

1 − ϕ2

1 + ϕ2
εA

−λ
2ϕ

1 + ϕ2
ε − λ

1 − ϕ2

1 + ϕ2

2ϕ

1 + ϕ2
ε (17)

To compare the Cayley map with the exponential map, we substitute the
rotation parameter ϕ with

ϕ = tan
θ

4
=

sin θ/2
1 + cos θ/2

(18)

The rotation parameter ϕ then satisfies the trigonometric identities

1 − ϕ2

1 + ϕ2
= cos

θ

2
and

2ϕ

1 + ϕ2
= sin

θ

2
for rotation angle θ ∈ R, resulting in

CayM B = cos
θ

2
+ sin

θ

2
A + sin

θ

2
εB + λ cos

θ

2

(

1 + cos
θ

2

)

εA

−λ sin
θ

2

(

1 + cos
θ

2

)

ε

Finally, we substitute the translation parameter λ with

λ =
d/4

cos2 θ/4
=

d/2
1 + cos θ/2

(19)

where d ∈ R is the translation distance. Using the substitutions in (18) and
(19), the bivector B can be written in terms of the dual angle θ̂ = θ + εd as

B = tan
θ̂

4
�
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which follows directly from the expressions in (1) and (7). It can then be seen
that the Cayley map for motors satisfies

Cay tan
θ̂

4
� = exp

θ̂

2
� (20)

and that for small θ and small d the approximation

Cay
θ̂

4
� ≈ exp

θ̂

2
�

can be used.
Note that in applications, the Cayley map would be implemented using

(14) and the inverse in (1), directly. The above presented expressions are only
used to relate the Cayley map geometrically to the exponential map.

5. The Outer Exponential Map

Another classical map of interest from the bivector space B to the motor
group M that can be used as an approximation to the exponential map is
the outer (exterior) exponential map; the exponential series of a bivector with
the outer product as multiplication [15,17–19].

Employing the notation in [15], and restricting to bivectors B ∈ B, the
outer exponential map is defined as

Exp : B → M : B �→ 1 + B +
1
2!

B ∧ B +
1
3!

B ∧ B ∧ B + · · · (21)

Note that this series is finite and truncates at 1
2!B ∧ B as higher order terms

result in elements of grade 6, 8, 10, etc; these elements are thus not elements
of the space M.

The outer exponential map of a bivector B ∈ B results in an even
versor V = ExpB satisfying V ˜V ∈ R and transform multivectors X ∈ R4,1

according to X �→ V XV −1. That is, the outer exponential map of a bivector
B ∈ B must be normalized to form a motor M ∈ M.

We define the normalized outer exponential by

ExpM : B → M : B �→ Exp B

|Exp B| (22)

Let the rotation parameter of the bivector B ∈ B be given by ϕ ∈ R,
let the translation parameter be given by λ ∈ R, that is, the dual angle of
the rigid body motion is given by ϕ̂ = ϕ + ελ, and, again, let the screw axis
be given by the dual line � = A + εB where |A| = 1 and A · B = 0, giving
B = ϕ̂� = ϕA+ ϕεB+ λεA. Using (16) and that 1

2!B ∧ B = 1
2 〈B2〉4, we find

that

Exp B = 1 + B +
1
2
〈B2〉4

= 1 + ϕA + ϕεB + λεA − ελϕ

The absolute value |Exp B| can then be found as the square root of

|Exp B|2 = ExpB(Exp−B) = 1 − 〈B2〉 = 1 + ϕ2
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Here, we have used that 〈B2〉24 = 0 and that B〈B2〉4 = 〈B2〉4B, since ele-
ments of grade 4 commute with bivectors. The normalized outer exponential
ExpM B can then be written as

ExpM B =
1

√

1 + ϕ2
+

ϕ
√

1 + ϕ2
A

+
ϕ

√

1 + ϕ2
εB + λ

1
√

1 + ϕ2
εA − λ

ϕ
√

1 + ϕ2
ε (23)

To relate the normalized outer exponential in (23) to the exponential in
(6), we substitute the rotation and translation parameters by

ϕ = tan
θ

2
and λ =

d

2
respectively. The rotation parameter ϕ then satisfies

1
√

1 + ϕ2
= cos

θ

2
and

ϕ
√

1 + ϕ2
= sin

θ

2
(24)

From (24), it can be seen that the outer exponential map in (23) satisfies

ExpM

(

tan
θ

2
+ ε

d

2

)

� = exp
(

θ

2
+ ε

d

2

)

� (25)

for θ �= π mod 2π. Moreover, for small θ and small d the approximation

ExpM
θ̂

2
� ≈ exp

θ̂

2
�

can be used, where the dual angle θ̂ ∈ S is given by θ̂ = θ + εd.
The normalized outer exponential map is easy to implement. Given the

bivector B = A+ εB ∈ B, B2 = A2 + ε(AB+BA) = A2 + 2ε(A ·B) so that
B ∧ B = 〈B2〉4 = 2ε(A · B). This means that

ExpM B =
1 + A + εB + εA · B

|1 + A|

5.1. Matrix Representation

Let the motor U ∈ M be given as the outer exponential of the bivector
B ∈ B as U = ExpM B and let U be the orthogonal transformation of the
multivector X ∈ R4,1 defined by

UX = UX ˜U

Then, the matrix form [U ] of U can be written as the Cayley map

[U ] = (1 + [A])(1 − [A])−1

where [A] is the matrix form of the anti-symmetric transformation A defined
in (12). See also [18]. If, again, X is represented on the basis {e1 ∧ n∞, e2 ∧
n∞, e3 ∧ n∞, no ∧ n∞}, then [A] ∈ se(3) and [U ] ∈ SE(3). The Cayley map
for the 4×4 and 6×6 representation of SE(3) are presented in detail in [24].
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6. Orthogonal Projection

The exponential, Cayley, and exterior exponential maps are all known clas-
sical maps. A novel map from the bivector space B to the motor group M
can be formed by performing a first-order series expansion of the exponential
map followed by orthogonal projection onto the motor manifold.

In the following we consider in detail the map defined by

ProjM : B → M : B �→ PM(1 + B) (26)

where

PM : M → M : X �→ X

|X|

(

1 − 〈X ˜X〉4
2〈X ˜X〉

)

is the orthogonal projection based on polar decomposition presented in [30,
Lemma 2.3].

Again, let the bivector B ∈ B be given by B = (ϕ + ελ)� where ϕ ∈ R

and λ ∈ R are the rotation and translation parameters, respectively, and
� = A + εB ∈ B is the screw axis, where |A| = 1 and A · B = 0. This gives
B = ϕ̂� = ϕA + ϕεB + λεA. Let X = 1 + B, and using (16), we find that

X ˜X = 1 − 〈B2〉 − 〈B2〉4 = 1 + ϕ2 + 2λϕε

The absolute value |X| of X follows directly,

|X| =
√

1 + ϕ2

The map ProjM B can then be written as

ProjM B =
(1 + ϕA + εϕB + ελA)

√

1 + ϕ2

(

1 − λϕε

1 + ϕ2

)

which can be expanded to

ProjM B =
1

√

1 + ϕ2
+

ϕ
√

1 + ϕ2
A +

ϕ
√

1 + ϕ2
εB

+λ

(

1
√

1 + ϕ2
− ϕ2

3
√

1 + ϕ2

)

εA − λϕε
3
√

1 + ϕ2

By substituting the rotation and translation parameters with

ϕ = tan
θ

2
and λ =

d

2
respectively, and using (24), the final expression for the projection-based map
ProjM becomes

ProjM B = cos
θ

2
+ sin

θ

2
A + sin

θ

2
εB +

d

2
cos

θ

2

(

1 − sin2 θ

2

)

εA

−d

2
sin

θ

2

(

1 − sin2 θ

2

)

ε (27)

It is seen that for small θ and small d the approximation

PM
θ̂

2
� ≈ exp

θ̂

2
�
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can be used for dual angle θ̂ = θ + εd ∈ S.
Note that it is also possible to perform higher-order series expansion

of the exponential map followed by orthogonal projection onto the motor
manifold; however, this has not been investigated further at the present stage.

7. Retraction-Based Optimization on the Motor Manifold

Consider the following optimization problem

min
M∈M

f(M) (28)

where f : M → R is a smooth real valued function to be minimized and
M ∈ M is a motor. A retraction map is a map from the tangent space
TMM to the motor manifold M defined by

RetrM : TMM → M : X �→ RetrM X

where RetrM is continuously differentiable, satisfies RetrM (0) = M , and for
every tangent vector X ∈ TMM there exists a curve γX : t �→ RetrM (tX)
such that γ̇X(0) = X, see [31] and [2, Def. 2.31 and Def. 4.11], respectively.
The retraction RetrM maps a tangent vector X ∈ TMM back to the mani-
fold, as well as moves the cost function f from the manifold M to the tangent
space TMM by evaluating the composite function

̂fM : TMM → R : X �→ f(RetrM (X))

The tangent space TMM is a six-dimensional linear space. This means that,
by moving the cost function f to the linear space TMM, the retraction RetrM
enables the use of vector space optimization methods on the manifold.

Let Mk ∈ M be the iterate in iteration k of a numerical optimization
method solving (28), e.g., gradient descent or other line-search or trust-region
methods. The search direction for the next iterate Mk+1 ∈ M can then be
computed in the tangent space TMk

M as the tangent vector X ∈ TMk
M,

and mapped back to the manifold by the update equation

Mk+1 = RetrMk
(αX) (29)

where α ∈ R is the step length.
The update Eq. (29) can be considered as moving along a curve RetrX in

the direction of the tangent vector X while constrained to the motor manifold
M [2].

The exponential map can be used to form a retraction on the motor
manifold; the exponential retraction. However, one of the main ideas behind
retraction-based optimization is to approximate the exponential with other
maps that are less computationally expensive while preserving the conver-
gence properties of the optimization method [2,4]. The above presented maps
from the bivector space B (the tangent space at the identity) to the motor
group M can all be used to form such retraction maps for use in optimization.
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Figure 1. Projection onto the yz-plane of the trajectories
formed by the presented maps, given a random unit bivector
B ∈ B, when the rotation angle θ ∈ R is in the range 0 ≤
θ < π

Let M ∈ M and X = MB ∈ TMM. We define the exponential retrac-
tion by

expM : TMM → M : X �→ M exp(˜MX) = M exp B

and similarly, the Cayley retraction and the outer exponential retraction by

CayM : TMM → M : X �→ M Cay(˜MX) = M Cay B

and

ExpM X : TMM → M : X �→ M ExpM(˜MX) = M ExpM B

respectively. Further, using that the tangent space TMM can be considered
as a linear subspace of the motor space M, we define the projection retraction
by

ProjM : TMM → M : X �→ PM(M + X) = PM(M + MB)
= PM(M(1 + B)) = MPM(1 + B) = M ProjM B

To compare the presented retraction maps, we consider the motion gen-
erated by the update equation in (29), given an update bivector B ∈ B with
absolute value |B| = 1 when the step length α ∈ R is in the range 0 ≤ α < π;
in this setting the step length α corresponds to the rotation angle of the gen-
erated motor. The trajectories formed by the presented maps are shown in
Fig. 1. It is seen that all three alternative maps, as expected, approximate the
exponential map for small α; small α typically being the case in line-search
methods. The main result here is then that, in manifold optimization and in
other Lie-group methods, the exponential map can be exchanged with any
of the other presented maps which are less computationally expensive and
easier to implement.
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8. Conclusion

In this paper, we have presented the exponential map, as well as three alter-
native maps that can be used in Lie group methods such as interpolation,
optimization and numerical integration of rigid transformations parameter-
ized by motors in 3-D conformal geometric algebra; namely the Cayley map,
the outer exponential map, and a novel map based on a first-order series
expansion of the exponential map followed by orthogonal projection onto the
motor manifold. We have also shown how the exponential and outer exponen-
tial map relate to the exponential and Cayley maps on SE(3), respectively.

Moreover, we have shown how these maps can be used to form retraction
maps on the motor manifold that can be used in manifold optimization;
retractions being approximations to the exponential map that are easier to
compute that do not sacrifice the convergence properties of the optimization
method of choice. In this regard, the main result of the paper is that we have
shown how these maps relate to and approximate the exponential map for
small angles, and that in manifold optimization, the exponential map can be
exchanged with any of the presented maps which are computationally less
expensive and easier to implement.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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