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Abstract. We consider the scator space in 142 dimensions—a hyper-
complex, non-distributive hyperbolic algebra introduced by Fernandez-
Guasti and Zaldivar. We find a method for treating scators algebraically
by embedding them into a distributive and commutative algebra. A no-
tion of dual scators is introduced and discussed. We also study isometries
of the scator space. It turns out that zero divisors cannot be avoided
while dealing with these isometries. The scator algebra may be endowed
with a nice physical interpretation, although it suffers from lack of some
physically demanded important features. Despite that, there arise some
open questions, e.g., whether hypothetical tachyons can be considered
as usual particles possessing time-like trajectories.
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1. Introduction

Following Ferndndez-Guasti and Zaldivar [1] we consider a commutative, non-
distributive 1 + 2 dimensional algebra S, which is also associative provided
that divisors of zero are excluded. The elements of this algebra will be called
1 + 2 dimensional scators [1]. Scators are denoted by a= (ao; a1, az), where
components ai,as are referred to as director components, and ag is usually
called scalar component, or, in physical context, temporal component. The
space of scators possesses the additive structure of the usual vector space and
a specific non-distributive product. Scalars form a subset of the scator space
closed under addition and multiplication. In this paper we confine ourselves to
this definition of a scator, leaving aside earlier concepts of scators as objects
generalizing scalars and vectors, see [2,3]. Dealing with scators, one has to
be aware that they are defined in a fixed reference frame (although some
analogue of the Lorentz transformation can be introduced).
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It was shown in [4] that this algebra may be given physical interpretation
corresponding to some ideas of special relativity, although the metric in the
scator space is different from the standard metric of Minkowski space. This
scator metric (defined below) is called a scator-deformed Lorentz metric. It
was emphasized that scators and deformed metrics can describe a kinematics
of some kind of particles, including hypothetical tachyons.

In our paper we study metric properties of scators, paying special at-
tention to proper definitions for causal realms appearing in this framework,
what finally will lead to some convergence with work of Kapuscik [5].

To begin with, we reconsider some main points in reasoning leading to
physical interpretation of scators, as introduced in [1]. The idea of describing
physical phenomena along lines of the scator framework takes its origin in
the fact that multiplication of scators mimics the shape of velocity addition
formula known from special relativity (SR). Adapting popular convention
¢ =1 (speed of light being unity), we denote scators by overset o symbol, so
that

a1 a o by b
a:(ao;alaa2):a0 1a71772 ) b:(bo;b17b2>:b0 1771772 ) (11)
ap ao bo " bo
since multiplication by a scalar acts on scators in usual component-wise way.
Here also we introduce notation 1 = &, B = Z—é, etc. We will refer to

objects of the form a% = (1; Ba1, Ba2), as velocity scators. We should show
now that the composition rule for the velocity scators yields the Einstein
law of addition of velocities. Moreover, properly applied, it recovers Lorentz
transformation of physical measurements from one inertial frame to another.

Hence we define

09 aiasb1b
ab = (ag; a1, az)(bo; by, bz) = <a0b0 + a1by + azbs + %; apby + a1by
0bo
b bib b b1b
9202 Q20002 by - aghy 4+ 927L L, G012 (1.2)
ao bo aon b()
and, if we denote ¢ = cozb, we can rewrite the above formula in the component
form
co = aobo (1 4+ M0 (1 4 2202
aobo aobo
azby
= b b 14+ ==
c1 = (agby + a1bg) ( + a0b0> )
aib
ca = (agba + asby) (1 + “> , (1.3)
apbo

o
which easily reads for velocity scators 3, b, ¢, that, for example

g = Patbn g 2 Bart B
T 14 BuBn’ 7T o 1+ BazBee’

what reminds the formula for velocity addition in SR. Using these definitions
we have to require ag # 0,by # 0 (this is a crucial assumption).

(1.4)
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It is worth stressing that this structure agrees with SR in 1 + 1 di-
mensions only. Results produced by the multiplication formula for higher
dimensions can be interpreted as a deformation of the standard Lorentz met-
ric. The latter is obtained in the limit ag — oo, by — oo [4]. Therefore, the
scator structure is compatible with the standard physical interpretation only
in the 1 + 1 case. Higher-dimensional generalizations should be treated with
care.

We emphasize the fact that multiplication acts in a non-distributive
way, what is the hallmark of the structure. Therefore, computing

(boar — agb1)(agbs — boaz) (0102_
—C2,C1 |,
aobo(ao + bo) Co

(1.5)

where ¢ = (co;c1,c2), we easily see that in the generic case the right-hand

o o

side does not vanish, i.e., (3 + b)g # aé + bé provided that boay # agby and
aogbs # bpas. Hence, in general, the scator product is not distributive. By the
way, the scator appearing on the right-hand side of (1.5) will be referred to

o ¢ o oo

o o
A(a,b;¢) := (4 + b)¢ — aé — be =

as dual to ¢ (see Definition 2.1 below).

Many properties of the scator product (1.2) were widely investigated
in many contexts [1,8,9], also physical [4]. To gain some insight in possi-
ble physical interpretation of the scator algebra, we recall here some basic
terminology from [1] and [9]:

Definition 1.1. The modulus squared of a scator is given by

2 2 2.2
||&||2=322*=a3< —Z;)< —;‘g>=a3—a%—a§+“;§2. (1.6)
0 0 0

Definition 1.2. We say that a scator is time-like, if

ai >a3, and a3 >a3 or a)<a3 and a<ai, (1.7)
it is said to be space-like, if

ai <a?, and al>a3 or a}<a3, and a}>ai, (1.8)

and it is light-like, if
ai=a3, or ai=ad3. (1.9)

The classification proposed above is analogous to what is well known
from special relativity. Note that in both cases componentwise addition of
scators or vectors does not preserve this classification. However, the norm of
the product of two scators is just the product of their norms [9], which is
very useful in this context. In this paper we present new results concerning
the metric structure of the scator space, extending results of [4,9].

Note the base difference between what is proposed above and what
was done in [8]: in the cited paper classification of scators was performed
using components of the objects and quite sensible assumption that nothing
observable can happen outside of the light bipyramid. As opposite, here we
perform a classification in terms of the deformed metric (1.6) only, what has
its formal consequences in the appearance of some new causal realms, with
potential physical interpretations.
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a

a4

FIGURE 1. Time-like wings at a fixed time ag (ap # 0).
Duality operations (sect. 2) take us out from the bipyra-
mid (represented in this cross-section by the inner square)
to other causal realms, and conversely

For instance, we indicate that the bipyramid considered in [4] has some
kind of time-like “wings” around, described by the regime a2 < a? and a3 <
a3, while, for example, in [9], there were considered mainly time-like events
inside the light bipyramid (a2 > a? and a? > a3). Time-like region is marked
as dark at Fig. 1.

We point out that the existence of such wings is not mentioned in the
paper [4]. Probably this possibility was excluded from considerations by as-
sumption. However, the wings seem to reveal some new aspects of causality in
scator-deformed Lorentz metric (see Fig. 1) and in next sections we propose
a possible physical interpretation.

A closely related notion, “super-restricted space conditions”, was intro-
duced in [9] without a direct relation to the type of considered events. Super-
restricted space conditions define either time-like events (in even-dimensional
spaces) or space-like events (in odd-dimensional spaces).

Note also important formal consequences of the proposed framework:
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e The scator space is not invariant with respect to rotations (see Fig. 1). It
may remind an archaic approach of Hamilton, where vector’s components
were treated as simple scalars.

e In the scator framework we do not expect continuous symmetries proper-
ties of any kind and the summation convention have to be dropped. In this
paper we introduce and study a number of discrete symmetries, instead.

e In order to not affect physics by dilations, in the scator framework Lorentz
boosts must be represented by unit-magnitude elements [4]. Good candi-

o o
date for this is normalized velocity scator U = %Z—f, where the proper

time 7 is defined in perfect analogy with this of SR, but here we use the
scator-deformed Lorentz metric.
e In [4] it was also shown that under a boost we have

o 00*
a' =20 = (vo; 21,22, 23)%u(1; —Bu1, —Buzs —Pus),
where 7, is deformed Lorentz factor (the norm of the velocity scator cor-

o
responding to the normalized scator U), and the conjugation is needed in
order to keep the standard sign convention.

o
e Note that the above defined U must be time-like, so that it excludes su-
perluminal boosts from the game.

The paper is organized as follows. In Sect. 2, we introduce basic objects
and transformations responsible for isometries in the scator space S. Then, in
Sects. 3 and 4, we propose and develop a new framework in which calculation
proceeds in a more natural way, using a distributive product. In Sect. 5, we
continue along these lines focusing on isometries. Sect. 6 is entirely devoted
to the question of metric properties of scators; in particular, we obtain the
closest analogue of a scalar product we can get, although it is not bilinear.
The last section contains physical comments and conclusions.

2. Dualities: Phenomenological Treatment

Now we turn our attention to the issue of isometries in the scator space S.
We begin by defining some operations and then check their properties.

Definition 2.1. If we have a 3-scator a = (ag; a1, az), then we call the scator

of the form
ch: <a1a2;a2,a1> (2.1)
ao

its dual (or ordinary dual) scator, and star denotes hypercomplex conjugate:

a* = (ag; —a1, —az). (2.2)
It follows straightforwardly that we have

Remark 2.2. Operation of duality commutes with hypercomplex conjugation.

o

Remark 2.3. Operation of duality is a second order involution: (a) =

.QO
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Remark 2.4. Hypercomplex conjugation is a multiplicative homomorphism
in S, ie.,

(ab)* = (a)"(b)". (2.3)
Remark 2.5. Operatlon of duahty does not provide yet another homomorphic
sctructure in S, i.e., ab #+ ab

The above statements follow from considerations similar to direct cal-
culations included in [7]. Soon we will get a better understanding of these
facts by applying a new approach which is both faster and simpler.

Proposition 2.6. Operation of duality preserves the scator product:

OO

ib = ab. (2.4)

Proof. We present explicit calculation for the scalar component:

ayazby by

(8,[7)0 = aobo + a161 + a2b2 + (25)

aobo
and
02 - - - G102b10
(@b)o = agbg + a1by1 + asbs + w
aobo
ajazby by ajazbiby
- agbo +agby + arby + 1110«251172
aobo
b1b 0?9
= agbg + a1b1 + asbs + 4142152 = (ab)o. (26)
aobo

Similar direct computation can be done for director components. O
Proposition 2.7. Operation of duality is an isometry in 3-scator space.

. o .
Proof. For ordinary scator a we have its norm

2 2

0,9 oo* 2 ay as
=aa = ) (1-22). 2.7
Jop =" = a3 (1- %) (1- %) (27)

Thus, for the dual scator 69l7 we get

[} a

2 2 2 2
Y 1%
a? aja3 aja3

0 (l2 (l2

0 0
2.2 2 2
a1a3 2 2 2 2 a a3z
= + ai—as=ag|1l—— -—=), 2.8
g ra-d-ad=ad(1-3) (1-3). es
which exactly coincides with the norm of the original scator. O

Remark 2.8. Taking into account (1.2), (2.2) and (2.1), we can easily verify

that
apa9 b1 b2 )

2.
2oo (2.9)

oo o0
a*b+ab® =2 (aobo —a1by — asby +
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where the right-hand side is proportional to 1 (omitted for simplicity here
and in many other places).

Definition 2.9. If we have a 3-scator a = (ap; a1, az2), then we call a scator of

the form
51‘ = <a1; agp, (J,1a2> (210)
ao

its internal dual scator, and a scator of the form

Go = <a2; m,a()) (2.11)
ag

its external dual.

Lemma 2.10. Internal and external duality operations anti-commute with hy-
percomplex conjugation.

Proof. We have
(@;) = (al;amal@) = a1;—ao7—a1a2> (2.12)

ao ( ao
and
(a*); = (ag; —a1, —az); = (—al;a(), a;f)lz) ) (2.13)
so that .
(@); + (@), = 0. (2.14)
Similarly we have
(C%)Z = (a2;w,a0)* = (ag;—a1a27—a(]> (215)
ao ag
and )
(a*), = (ag; —ai, —az)e = (—az; CL;aZ,aO) , (2.16)
0
so that .
(ae)* + (a*)e - 07 (217)
which ends the proof. O

Remark 2.11. Internal and external duality operations are second order in-
volutions.

Remark 2.12. Operation of external and internal duality do not provide yet
another homomorphic structure in S, that is

i (o) o i o o

((],b)z = a;b;, (ab)e 2% Gebe, (2.18)
which follows from straightforward calculation.

Remark 2.13. Operations of internal and external duality preserve scator
product.

Definition 2.14. A transformation that exchanges time-like events with space-
like events (and conversely) and leaves the type of light-like events unchanged
is called a causality swap (or a pseudo-isometry).
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Proposition 2.15. Both internal and external duality operations are causality
swaps of 3-scator space.

o
Proof. Denoting a; = (ag;; @14, G2;), we compute:
_o -
o as. as.
~ 12 —2 17 21
”aiH Qp; 1- —5 1- —5
az. a
01 01
- —2 —2 9o 2 2
g2 (1% % %% _ oy %0 _%
= %0i a2 @ aa) N a2 a2
0i 0i 0i Q0i 1 0

2 2
2 ay a3 02
3 (1-%) (1-%) = - (2.19)

Therefore, if original scator represents a time-like event, then its internal dual
has to represent a space-like event, and vice versa. Light-like scators do not
change their type. Analogous computation, with the same consequences, can
be done for the external dual. O

Corollary 2.16. Duality operations commuting with hypercomplex conjugation
are isometries, while duality operations anti-commuting with hypercomplex
conjugation are causality swaps.

Finally, we arrive at a very strong theorem providing some kind of trans-
lator between different kinds of duals.

Theorem 2.17. Ordinary, internal, and external duality operations have the
following properties:

b = @b = (ab). = aub = abe,
by = aob = (ab); = @b — ab;
Gobi = @ib, = ab = b — ab (2.20)

Proof. One can perform lengthy straightforward calculation. However, apply-
ing a new approach of next sections, we will be able to present a very short
proof in Theorem 5.3. O

3. Some Further Algebra

Let S’ denote the space of hyperbolic 3-scators with non-vanishing scalar
component (a € S if and only if ag # 0). We are going to identify S’ with
objects in a linear space A of dimension 4, where the fourth component is
reserved for some geometric invariant.

Definition 3.1. The fundamental embedding of S’ into A is given by the map
F:S5+— S=F(S)C A, defined by
a1a9

S'sq= (ag;ay,az) — F(a) = (ap;ay,as,a3), asz= o (3.1)
0
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Remark 3.2. F is a bijection between S” and S, so it has an inverse F~! :
S — S’. We have also a natural projection

m:AD (ao;al,QQ,CLg) — (ao;al,ag) es. (32)
Note that m # F~! but 7| = F~1.
We denote by {1,%1,42,%12} a basis in the linear space A such that
(Cl(); ai, ag, Cl3) = aol + a1i1 + a2i2 + CL3’I212. (33)
The first three elements span the scator space S. The basis {1,4;,45} is related
to {1,é1,é2} used in papers [1,8]. As in these papers, we demand that
7= =2 =i =1, (3.4)
but we define
i1 = 1189 = 1281 . (3.5)
while the authors of [1,8] make different assumptions: é1éo = é2¢1 = 0. The
last equalities can be neatly interpreted in our framework because

F~Yiyig) = F 1 (i12) = 0. (3.6)

Now we make our fundamental assumption about the space A. We assume
that this is a commutative, associative and distributive algebra, compare [7].
We denote

) o b1b
F(a) = <a0;a1,a2, ala2> , F(b) = <bo;b1,bz, 12) , (3.7)
ag bo

where we have written fourth components of scators explicitly in order to
keep track of possible agreement with expected results. We have

o o

. . . . . b1bs .
F(CL)F(b) = (ao “+ a121 + aste + a;a2112) (bo + b1ty + baio + 11)27,12) .
0 0

Next, we use distributivity and (3.4)

o o aiasbrb .
F(G)F(b) = agbg + a1by + asbs + % +’L1(aob1 + albO)
0bo
. . a6 .. bib . . . a6
1081 ——2by + iri10——ay + ia(aobs + asby) + 12— by
ap bo ap
. b . aia b1b ..
+ dgiig——ag + i1o < 2 b + 12&0) +4182(a1b2 + azby).
bo aq b()
(3.8)
Then, due to (3.5), we obtain
o aiasb1b .
F(Q)F(b) = agbo + arby + azbs + % + i1 (agby + a1bo)
0bo
.. ma .. bid . .. ma
+ 21222 ! 2172 +’l:2212£a2 +ia(agba + azby) + 1281 ! 2bl
ao bO Qg

.. bib . bib
+ 11112£a1 + 1212 it by + gao +aibs +agby | . (3.9)
bo ag bo
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We see that the obtained scalar component coincides with the scalar com-
ponent of (1.2). In order to get the same director components we have to
assume

11819 = t1281 = 1o, G212 = f1282 = 11, (3.10)
which follows from (3.4) and (3.5). Finally, we get
o o b1b
F(8)F(b) = agbo + a1by + asby + 122122
Clobo
. b1b
+1 <a0b1 + a1b0 + aaz bg + 12@2)
. bib
+ 29 (Cbobg + agbg + aaz bl + 120,1)
. b1bs
+ig <ala2bo+ 1—ao+a1b2 +a2b1> (3.11)
Qg bo

Corollary 3.3. From (3.11) we immediately see that ab = W(F((OL)F(I(;))

Theorem 3.4. The fundamental embedding (3.1) is a multiplicative homomor-
phism of S and S':

FQ)F(®) = F(8b), hence b= F'(F(&)F(b)). (3.12)

Proof. We may check it by tedious straightforward computation, multiplying
scalar and fourth component of (3.11) and comparing it with the product
of director components. However, calculations can be avoided when we take
into account the following factorization:

F@=ao (14 %6 (14 %a), F@) =0 (14 26) (14 24,),
ao ag bo bo

0\ /2 aiby ap b . azby (02 b2> ) )
F(@)F(b) = aghy [ 1+ 1 4 (242 1+ 224 (24 24y )
(@F(®) = a 0( aobo (ao bo) ) < aobo a  bo)
We see immediately that F(a)F (Z) € S which completes the proof. O

Remark 3.5. We can easily check that

o

F(ao*):(F(a))*, F(A\a) = AF(a), F~Y(\F(a)) = Aa, (3.13)

where ) is a real constant.

4. Formula for Distributive Multiplication

A crucial point in our analysis is to express the difference (1.5) in terms
of the fundamental embedding. We take into account distributivity of the
algebra A assumed in the previous section. Note that F' is a multiplicative
homomorphism but is not additive, i.e., in general

F(&) + F(b) # F(a+b). (4.1)
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Therefore, multiplication of scators has a geometric interpretation, while ad-
dition of such objects cannot be treated geometrically. In particular,

(F(& + b)) F(@) # F)F(@) + F(b)F(). (4.2)
But then we surely have

F(a)F(¢)+ F(b)F(¢) = (F(a) + F(g))F(c), (4.3)

~ o
because the product in S is distributive. We will try to express F (3 +b) in
o
terms of F(a) and F(b). First, we compute

F(a+b)F(c) = (ao;al,az, alag) (00;01»02, 0102>
aop Co

b1b
+ <bo;b17b2712) (Co;ChCmm)
bo Co

= (co(a0+bo)+01 (a1+b1)+ca(ag + ba) +

(a1 + b1)(a2 + bg)
ag + bo

crc crc
X%;Cl(ao +bo) + co(ar +b1) + %(@ + b2)
0 0

(a1 + b1)(az + b2)

X + 02702(a0+b0) +Co(a2+b2)

ag + by
c1Co (CL1 + bl)(ag + bg)
—= b b
+ o (a1+ 1)“!‘ a0+b0 01,01(a2+ 2)
c1C2 (a1 + b1)(az + b2)
b —_— b .
+ea(ay +by) + - (ap + bo) + P co
(4.4)
On the other hand
FEOFE) + FOFE = (aana, 22 (aiera, 22)
Qg Co
b1 b
+ (bo;b1,b2,12) <Co;0170276102>
bo Co
= (co(ao +bo) + ci(ar +b1) + ca(az + b2)
b1b
+ (a1a2 + 12) %;cl(ao +bo) +colar + b1)
ap bo Co

C1Co ai1as b1b2
+— (a2 +b2) + + —= ) o, ea(ap + bo)

co ap bo

c1C2 a;az b1bo
+co(ag +b2) + —= (a1 + b1) + +—c,
co ag bo

c1(ag + b2) + ca(ar +b1) + % (ap + bo)

a1ag blbg
+ ( 0 + b0> Co) . (45)
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Therefore

FE+D)F@) - F@)F@-FO)FE) = ((“1 Fo)(az+by)  man b1b2>

ag + bg ago bo
X (6162; 02701,00) (4.6)
co

and this is exactly F(A(a,b;c)), as defined in (1.5)! Thus we have

F((&4+D)e— 82 —bd) = F(A+BF(Q) — F()F@) — FB)F(©@),  (4.7)
which looks suspiciously homomorphic. Equation (4.6) can be rewritten as

o o o o 00

FG+b)F(@) — F()F(@) — F(b)F(&) = x(a,b)F(?) (4.8)

where /-@((01, b) is the scalar function standing before the dual of ¢ in formulas
(1.5) and (4.6).

Remark 4.1. From (1.6) it follows that the inverse of a scator (with respect

to the scator product) is given by

o

(e

(@' =5, (4.9)
l[ell®
and light-like scators are not invertible.
Theorem 4.2.
F(a+b) — F(a) — F(b) = r(a,biia. (4.10)

Proof. We multiply both sides of (4.8) by F((¢)~!) and, taking into account
that F' is a homomorphism, we obtain the left-hand side of (4.10). Then we
observe that

F(c) = % + coiy + criy + coira = i12F(C). (4.11)
Therefore
FEF(@)) = '“QF((C?P)F(C) i (4.12)
c
which ends the proof. |

Remark 4.3. As a direct consequence of (4.12) we get the following strange

result
o

a(@)~t =o, (4.13)

which manifestly shows that the scator algebra has numerous zero divisors.

Corollary 4.4. Theorem 4.2 implies that for a given set of scators, Qi =
(api; a1i,a9:), where i =1,...,n, we have:

F(a1+-+ay) = F(a1)+F(ag)+- -+ F(an) +in (a1, dg, - . ., 0 )ira. (4.14)
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where Kk, (a symmetric scalar function) can be expressed by k:

Hn(gbl,gbg, .. ,8n) = ZK(CLOl + 8/2 —+ -+ gzj,l,aj). (415)
j=2

Corollary 4.5. From Theorem 4.2 it follows that the inverse of the fundamen-
tal embedding is an additive homomorphism, i.e.,
o o o
F~Y(F(a) + F(b)) = FY(F(a) + F~Y(F (b)) = a + b, (4.16)
because F~1(i12) = 0.

We point out that F~! is not a multiplicative homomorphism. Counter-
examples will be given in the next section.

5. Dualities: Systematic Treatment

Here we also provide some back-up for what we have done earlier: at first,
we see why we call duality operation a duality operation. First, we note that
multiplication by the bivector 12 acts on any element of the algebra A in
a way similar to the Hodge operator producing its complementary element
with respect to the “maximal form” ;5. We have two pairs of complementary
basis elements: the first one is 1 and 215 and the second one is 4; and 5.

Definition 5.1. Duality operations are naturally given by:
a=F(F@), a=F"@F@), a=F"6@F@), (1)
and, of course, @ = F~'(1F(a)).
Therefore, we have

F(a) =ioF(6), F(@) =i1F(a), F(G.)=iF(a). (5.2)

o

Thus, taking into account F((a)~') = (F(a))~! and (3.12), we get:

0o—1 o o—1 . o o—1 .
aa =0, aa =11, aa =1is. (5.3)

In order to unify proofs it is convenient to introduce the following no-
tation, generalizing (5.1) and (5.2):

da(a) = F~'(dF(a)), F(da(a)) =dF(a), F(a)=dF(5a(a), (5.4)
where dg denotes one of duality operations and d denotes the corresponding

basis element (i1, 42 or i12). Note that d? = 1.

Lemma 5.2. Any duality operation commutes with inversion, i.e.,

sa((a)™") = (da(@) " (5.5)

Proof. Using F(a) = dF(64(a)) and 1 = F(a)F((a)~") (because F is a mul-
tiplicative homomorphism) we obtain

o

1 =dF(84())F((@)™") = F(6a(a))dF((a)~") = F(8a(a))F (a((a) ™))
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On the other hand, we have 1 = F(34(a))F((64(a))~"). Therefore,
F(8a((a)™")) = F((6a(@) ™)

and, taking into account that F' is a bijection, we obtain (5.5). O
Now, we can give a simple proof for Theorem 2.17. We rewrite this the-

orem in a more convenient way, using the unification of dualities formulated
in this section.

Theorem 5.3. Duality operations have the following properties:

0 o

5p(8D) = dp(@)b = G, (D),

o o

5p(@)3g(b) = 54(2)3p(b) = Gpq(ab), (5.6)

where p,q € {i1,12,%12}.

Proof. Using (5.4) and (3.12) we obtain:

5p(h) = FH(pF(ab)) = F~ (pF(&)F (b)) = P~ (F(@)pF (b). (5.7)
F-LYpF(&)F(b)) = F-L(F(5,(8))F(b)) = d,(&)b, 655
F-Y(F(@)pF(b) = F-L(F(@)F(5,(b))) = o, (b),

which ends the proof. O

Corollary 5.4. The preservation of the scator product by any duality is a
special case of Theorem 5.3 for ¢ = p, namely:

o

dp(a)dp(b) = ab, (5.9)
because 61 is the identity operation.

Using (3.12) we can express the scator product in terms of duality op-
erations. Expanding a with respect to the standard basis of A, we have

ng = F_l((ao + a1ty + asts + alaQilg)F(b)). (510)
0
Then
b = F~1(agF(b) + ari1 F(b) + azisF(b) + “;a%up(?)» (5.11)
0

and, finally, using (5.1), we get

ajaz 3

gd(; = F_l(aoF(Z) + alF(lg)i) + GQF(ie) + F(b)) (5.12)

ao
Thus we see that the formula for multiplication takes the form

2

o
f1dz2y, (5.13)

o o o
glb = agb + a1b; + asb. +

ag



Vol. 27 (2017) On the Geometry of the Hyperbolic Scator 1383

6. Metric Properties of Scators
We begin with a simple fact.
Lemma 6.1. Squared modulus of a scator satisfies:
lab]|* = [lall*llol,  [Aall = [Allla]l- (6.1)

where A 1s a real constant.

Proof. Using Definition (1.6) we have

)% = (@5)(D)* = (Ga”)(Bb%) = ] 1B]1, (6.2)
by virtue of commutativity and associativity of the scator product. The sec-
ond equality follows directly from (1.6). O

Therefore, the squared modulus of the scator product factorizes like the
product of complex numbers. Unfortunately, the squared modulus is not a
quadratic form of the scator components, which means that there is not a
corresponding bilinear form. However, we will introduce an analogue of the
scalar product postulating the formula obeyed by quadratic forms.

Definition 6.2. Scalar product of scators is defined by

1 o o
=5 (a4 B2 = 12 - ) (6.3

ISiS)

Corollary 6.3.

a-a=lal? (6.4)
Theorem 6.4. The scalar product in S is explicitly given by
(a1 +b1)%(a2 +b2)*>  afa3  b7b3

S b = agby — aiby — asb _ _ A% 65
a @000 1o azb2 + 2(a0—|—b0)2 2&% ng ( )

Proof. We start from
la+ b))% = (a+b)(a+b)* = (a+b)(a* +b%), (6.6)
and, since we cannot safely proceed because of lack of distributivity in S, we

move on to S, i.e.,

o

o o o o o
lla+b|? = FY(F(a+b)F(a*+ b)), (6.7)
and from the formula (4.10) we get

o o

F(&) + F(B) + #(6, b)i1e) (F(a®) + F(b*) + k(a*, b*Yi1a)).

and Theorem 3.4, we obtain

la+b]* = F~((
Hence, using (5 2)
16+ B2 = Ga* + bb* + ab* + a*b+ k(& b)@* + b*) + r(a*, b*)(@ + b)

k(6 D)k (a”, b°). (6.8)
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To proceed further we need Remark 2.8 and the following properties of the
hypercomplex conjugation and k:

o

o 2
@ +aq=-292 (6.9)
ao
° o o ay + bl)(ag + bg) a1a2 b1bs
k(a*,b*) = K(a,b :( — - —. 6.10
( ) =@b) (ao + bo) ao bo (6.10)
Then from (6.8) and Definition 6.2 we have
o © b1b b1b
2a-b= /i2+2/€ aa +g +2 a()b()—albl —a2b2+w
ag bo aopbg
2 2 2 272
a1a9 b1b2 a1a2 b1b2
= — 4+ —] - — —5= + 2(agbp — a1by — agb
(fi-i- a0 + b()) P 2 + 2(apbo — a1by — azbs),
where & = k(a, g) We complete the proof by substituting (6.10). O
Remark 6.5. We easily see that
(AQ) - (AB) = A2(4- b). (6.11)
but, in general, A(a - b) # (Aa) - b # a - (Ab) # (@ - b) and
o o
(a+b)-c£a-c+b-c. (6.12)

We point out that this scalar product is non-defined if a scalar component of
any factor is zero.

7. Underlying Physics and Conclusions

The scator metric (1.6) approaches the flat Minkowski metric of special rel-
ativity space-time in the limit ag — oo. In the context of doubly-special
relativity (DSR) [6], this limit means the restriction to times much larger
than the Planck’s time scale. Therefore the subject is not only of purely
mathematical interest but may have interesting physical points, as well.

The first question is, can we think of tachyons as para-particles possess-
ing space-like trajectories? In the scator framework this would mean that at
each instance of time tachyons have to be described by scators with negative
squared modulus. Thus understood tachyons, in order to remain tachyons,
need to experience sub-luminal Lorentz boosts at that each instance of time,
since otherwise the sign of the squared modulus would get reverted. It is
hard to imagine an inertial, super-luminal observer that could be turned
into another one with some kind of sub-luminal Lorentz-like transformation
preserving scator metric. Hence it seems to us that a more natural way of un-
derstanding tachyons is that they are ordinary particles in a different causal
domain and they cannot reach us because of the infinite-energy requirement
to pass the bipyramidal light-barrier, inside which we are capable of taking
the measurements.
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To sum up: we may suppose that tachyons are being super-luminal in a
sense of belonging to a different sub-luminal causal realm, although then we
look exactly the same way to them. Note that this hypothesis is surprisingly
in accordance with recent remarks on the nature of tachyons [5].

Thus, some interesting formal effects arise in a quite natural fashion
in the scator framework. Convergences with recent physical concepts [4,5],
even if accidental, is intriguing, all the more so that this framework does not
show any rotational symmetry properties we could expect on scientific and
intuitive grounds.

The next question that appears in the physical context is whether the
approach proposed in this paper works in the case of 1 + 3 dimensions? The
answer is yes. It may be easily shown that in physical space-time of scators
there is

o o
F(a+0b)=F(a)+ F(b) + €1,28182 + €1,38183 + C2 38983 + 1 2 3818283, (7.1)

as opposed to (4.10), opening all doors needed [7]. In the above expression
we have

eyt = Wit ba b)) aia;  biby
’ ag + bo ao bo

(7.2)

and

6172’3(601,, l‘;) _ (a1 + bl)(ag + bg)(ag + b3) B alagag B blbgbg. (7.3)
(ag + bp)? ag bg

We see that the generalization, although simple in principle, may lead to
cumbersome calculations. This also implies existence of more dualities, asso-
ciated with the basis of the A-space, now 8-dimesional. Here also dualities
introduced for 1 4+ 2 dimensional case find their interpretation: the ordinary
duality takes us into the realm of wings around the dipyramid, while internal
and external dualities carry us out of the light bipyramid.

Finally, we point out that the possibility for scators to be physically
interpreted is strongly suppressed by the fact that the scator algebra does
not possess rotational invariance. Fortunately, the considered dynamics does
not provoke the appearence of absolute-rest frame [4], which leaves some hope
for potential applications.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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