Adv. Appl. Clifford Algebras 22 (2012), 757-769
© 2012 Springer Basel AG

0188-7009/030757-13 -
published online July 18, 2012 Advances in

DOI 10.1007/s00006-012-0360-6 Applied Clifford Algebras
© 2012 The Author(s)

This article is published with open access at Springerlink.com

On the Ternary Approach to Clifford
Structures and Ising Lattices

J. Lawrynowicz, O. Suzuki and A. Niemczynowicz

In memory of Professor Jaime Keller

Abstract. We continue to modify and simplify the Ising-Onsager-Zhang
procedure for analyzing simple orthorhombic Ising lattices by consider-
ing some fractal structures in connection with Jordan and Clifford alge-
bras and by following Jordan-von Neumann-Wigner (JNW) approach.
We concentrate on duality of complete and perfect JNW-systems, in
particular ternary systems, analyze algebras of complete JNW-systems,
and prove that in the case of a composition algebra we have a self-dual
perfect JNW-system related to quaternion or octonion algebras. In this
context, we are interested in the product table of the sedenion algebra.
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1. Introduction and the organization of the paper

After recalling Jordan-von-Neumann-Wigner (JNW) procedure and Ising-
Onsager-Zhang (I0Z) approach, we discuss a JNW-system and related fractal
structures. Then, we turn our attention to the duality structure of complete
and perfect ternary systems. We consider algebras of JNW-systems, in par-
ticular algebras of Clifford type. We conclude with a study of a composition
algebra and self-dual perfect JNW-systems. Continuing our previous papers
[10,11,13] we prove in this case it is one of quaternion and octonion algebras,
and this needs a study of the product table of sedenion algebra. The idea of
applying the JNW-systems, considered in Section 3 and thereafter, to binary
and ternary alloys may be to some extent illustrated for instance by the first
step of fractal construction related to an AB3 binary alloy of an fcc lattice
and (111) surface orientation [2, Fig. 1].
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FIGURE 1. ABjg binary alloy of an fcc lattice and (111) sur-
face orientation.

The choice in this first step of the fractal construction is tightly related
to the theory of cooperative phenomena of Kikuchi [9]. From our point of view
it is important that like in the case of modern building model constructions,
Kikuchi takes into account collections of adjacent edges, mostly three or four,
of the crystal lattice. This suggests our subsequent steps: duality of fractals,
duality fractals, JNW-systems, duality structure of complete JNW-systems,
composition algebras of self-dual perfect JNW-systems, etc. These ideas can
also be expressed by the following scheme:

JNW-systems
INIRY

fractals including their duality <+— binary and ternary alloys
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The content of the paper may be visualized as follows:

duality structure of complete JNW-systems
duality structures of self-dual perfect JNW-systems

' ' (1.2)

composition algebra of self-

algebras of JNW-systems <— dual perfect JNW-systems

In order to pass from (1.1) to (1.2), we need the following expository (histor-
ical) part of the paper:

binary and ternary alloys

\: 3
JNW procedure <— 10Z approach
/ ! (1.3)
JNW elements, complete elements, per- fractal structure of
fect elements JNW procedure
e )
— e +
vd )
duality structure of complete
construction of perfect JNW-systems
JNW-systems duality structure of self-dual per-

fect JNW-systems

2. Jordan-von Neumann-Wigner procedure

Jordan, von Neumann, and Wigner proved [7] (cf. also [4-6]) that among
irreducible algebras there are algebras H,(F) of Hermitian g x g-matrices
with entries in a field F, namely

H3(0) and H,(F) with F=R,C,H and ¢ > 2. (2.1)

As it was observed in [11, p. 737], and then repeated in [21, p. 7], the natural
appearance of multiplication

Ao = ;(ABJrBA) (2.2)

instead of the usual matrix multiplication replaces in elegant way the desire
of Ising [3], Onsager [16], Zhang [20], and Staples [18] of finding commutative
subalgebras of the given algebra and studying their properties related to the
superposition of bilinear forms.
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3. Ising-Onsager-Zhang approach

The models of Ising [3] and Onsager [16] are extended by Zhang [20] so that
the resulting model applies to a simple orthorhombic crystal lattice in a three-
dimensional space. This extension involves, in particular, opening knots by a
rotation in a higher dimensional space, and studying important commutators
in the corresponding algebra.

In our approach, we extend Zhang’s idea of decomposing knots related to
lattice vertices to deformations of formal knot sequences arising from Reide-
meister moves [19]. The model consisting of an orthombic lattice constructed
by m rows and n sites per row in one of the ¢ planes involves [11] 27¢-
dimensional matrices s;' , a = 1,2,3, 1 <s </, 1 <r < n, related to the

so-called split-quaternions and, correspondingly, to the familiar Pauli matri-

ces
(01 (0 —i (1 0
g1 = 1 0/ 02 = i 0 ) g3 = 0 —1)/°
namely:

51,=101® 21918001 - ®11®1,

2 1 . 10
5:,=101®---®101® 0®1®---®1®1 with 1= 0 1)
’ i

$£$.=1R1® - 01lR301® - ®1.

4 ~ ~~ - ~ ~~ -
r—2,5—2 n—rl—s

It is worthwhile to notice that both Onsager and Zhang analyze continued

fractions and nested series, e.g.,

V5—1 1
) :1+1+ " :\{1—\/1—\/1—\/1—\/1—... (3.1)

(R

which give rise to two kinds of fractals: of flower type and of branch type,
and to the problem of their duality [8,10]. The objects of type (3.1) appear as
a result of calculations in [16] and [20], but they inspire in us a relationship
with the two types of fractals mentioned.

4. Jordan-von Neumann-Wigner system

We begin by introducing two kinds of systems for a set

{e1,ea,...,en}. (4.1)

The first system is called a triad. It is obtained by choosing three distinct
elements from the set (4.1), for example, (e1, es, e3). The second system is our
JNW-system: we choose two elements, for example, (e;, e;). Then, we select
the third element, for example, e ¢ {e;,e;}, and by doing so we define a
JNW-element: the triple (e;, e;, ex). The most important elements arise from



Vol. 22 (2012) On the Ternary Approach to Clifford Structures 761

the binary product of an algebra. All INW-elements selected from (4.1) make
up a JNW-system.

Definition 4.1. A JNW-system consisting exclusively of complete JNW-ele-
ments is called complete if it satisfies the following conditions:

(a) For any pair of elements (e;, e;) we can find a unique element e; which
constitutes a JNW-element (e;, e;, ex).

(b) For any element e; we can find a (not necessarily unique) pair (e;, e;)
which constitutes a JNW-element (e;, e;, ex).

(c) Each element is symmetric, i.e.,

(eia € ek) = (eo(i) y€a(4)> eo’(k))

for any permutation o of the three objects considered.

Definition 4.2. A JNW-system consisting exclusively of perfect JNW-elements
is called perfect if it satisfies conditions (a)—(c) from Definition 4.1 with the
condition (b) replaced by:

(d) For any element e, we can find pairs (e;,e;) such that each triple
(e, €5,ex) is a JNW-element and where the number of pairs (e;,e;)
does not depend on the given ey.

5. Fractal structure of Jordan-von Neumann-Wigner
procedure

We recall the following result from [11].

Theorem A. Let (eq,eq,...,e,) be an n-sequence.

(Al) The sequence generates a complete JNW-system if and only if n =
(204+1)2F —1,1=1,2,..., k=2,3,...;

(A2) The sequence generates a perfect JNW-system if and only if n = 2% —
1, k=23,....

(@) (b)

FIGURE 2. An example of construction of simple complete
JNW-systems.
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6. Construction of a perfect JNW-system

As in [11], we construct a base system of ternaries Z(n) and generate the
total system. For n = 3 we take (e1, ea,e3) and let Z(3) = (1,2, 3). Next, we
choose one element from among ey, e2, e3 which we call a polar point. Here, for
example, we choose ey, therefore we consider elements (eq, ez, e3), (e1, €4, €5)
and (e, es5, e7). The later step, involving ey, €5, . .. does not apply in the case
of n = 3.

Then, we fix the JNW-system:

Z(15) = (2,3) %1 (4,6) 1 (5,7) * (8,10) %1 (9,11) %y (12,14) # (13,15).

The relation *1, connected with the vertex ey, is visualized in Fig. 3.

) 6 4
AN
(a) 2 3

(b)
3 4 11 12
A
2 6
1 8 10 9 1 14
> ’ (© 13 15

FIGURE 3. An example of construction of simple perfect
JNW-systems.

Repeating this process and making a network, understood as a con-
nected system of non intersecting triangles, such that each pair of neighbor-
ing element has a common vertex or common site, we can obtain a complete
set of all perfect JNW-systems, in question.

It is clear that the structure in question is perfectly suitable for investi-
gating ternary alloys without vacancies, binary, as well as ternary alloys with
vacancies (cf. the triangle A(1,8,10) in Fig. 3(c)).

7. Duality structure of complete JNW-systems and the
characterization of self-dual perfect JNW-systems

In this section we shall determine a duality structure for complete ternary
systems and introduce a concept of a self-dual perfect JWN-system which
characterizes the composition algebra directly. At first, we describe the du-
ality structure for a complete JNW-system.
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7.1. The duality structure of complete ternary systems

We discuss the duality structure of complete ternary systems. By use of the
basic construction of complete ternary systems, let us define

A:A1) =1, A(t)=2t, 2<t <2k 1
Hence, we have a mapping called a duality mapping of genetic type,
cf. [12]. We refer to each of the following three sets
{1}, {t:2<t<2F1} {A@): 2<t<2M})
as a branch of the system. A ternary system is called self dual when each
branch of the system is preserved under the duality mapping.
7.2. The dual structure of perfect ternary systems
We are going to discuss the duality structure of perfect ternary systems:
A:AQ2)=2, AR =2M1412 k>2; A(t)=2t 3<t<2FL
Hence, we have the mapping which is natural to call duality of JNW-type.

Moreover, we have the following theorem.

Theorem 7.1.

(T1) Each complete JNW-system is self dual.
(T2) A perfect INW-system is self dual if and only if n =3 orn=1717.

8. Algebras of JNW-systems

We are going to introduce algebras of a JNW-system. Here we restrict our-
selves to a special class of the following unital real (not necessarily associative)
algebras.

Definition 8.1. A finitely generated algebra A = Rley,ea,...,e,] is said to
be of monic product type if, for any two generators e;,e; € A, we have
e;e; = n;;jey for some generator e, and n;; € R.

We concentrate on algebras of a perfect JNW-system. We begin with
the following definition.

Definition 8.2. A finitely generated algebra A = Rley,ea,...,e,] is said to
be of Clifford type if the following commutation relations are satisfied:

eiej +eje; =0 forall i#j and i,7# 1.
In the case when A is an associative, it becomes a Clifford algebra when it
additionally satisfies the following condition:
e? =nje; for some i and n; € R.

The following theorem has been proven in [11]:
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Theorem B.

(B1) Let A be a finitely generated algebra A = Rley,ea,...,e,]| of Clifford
type. Then the JNW-system of A is perfect.

(B2) Conversely, choosing a perfect system, we can find an algebra of Clifford
type which realizes the system.

We illustrate Theorem B with a few examples.

Ezample 1. Mendel algebra:

€1 €2
€1 261 €92
€9 €9 0

Ezample 2. Algebra of complex numbers:

(&3] €2
€1 €1 €2
€2 €2 —€1

Ezample 3. Quaternion algebra:

€1 €2 €3 €4
e €1 €92 €3 (7}
€y €2 —€1 €4 —€3
€3 €3 —€4 —€1 €9
€4 €4 €3 —€2 —€1

Ezample 4. Octonion algebra (¢ =1 in the table below):

€0 €1 €9 €3 €4 €5 €6 (rd
ey €o €1 €9 €3 () €5 €6 er
er €1 —€p €3 —€9 €5 —€4 —Ee€7 Ee€g
€9 €2 —€3 —€p €1 €g gey —€4 —E&€j
€3 €3 €9 —e€1 —€p €7 —CEe€g ey —e4
€4 €4 —€5 —€g —er —€p geq [ () €3
€5 €5 €4 —ce7 —€g —€&e€q —€p —¢&e3 gea
€ €p ger €4 —€€j A ) ges —€ep —€eq
er €7 —E&e€g €5 €4 —e3 —E&€y geq —€p

Ezample 5. See the sedenion algebra defined in Table 5.

9. Composition algebra and self-dual perfect JNW-systems

Finally, we characterize composition algebras in terms of the JNW-systems.
At first, we recall the definition of a composition algebra.

Definition 9.1. A unital algebra A over R with a nondegenerate norm N :
A — RT is a composition algebra if N(XY) = N(X)N(Y) for any two
elements X,Y € A.
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Definition 9.2. An algebra A with anorm N : A — R7 is said to be ternary of
composition type if its two ternaries (e;, €5, ex) and (e, €5, €;) have a common
vertex, for example e = e;. When studying the commutation relations we
may use the notation (e;,e; : ey), etc..

We know from the Hurtwitz’s Theorem that every (unital) composition
algebra (over the reals) which, at the same time, is a normed division alge-
bra, is isomorphic to one of the following four algebras: the real numbers R,
the complex numbers C, the quaternions H, or the Cayley numbers (the
octonions) O.

Here we shall treat this characterization in terms of the perfect JNW-
systems. We consider the characterization of the problem under the assump-
tion that the algebra is of monic product type. We have the following theorem.

Theorem 9.3.

(T3) If A is an alternative algebra, then we have a perfect JNW-system.

(T4) Moreover, if A is an alternative algebra, then the related perfect JNW-
system is self dual. Hence, A is either the quaternion algebra or the
octonion algebra.

Remark 9.4. Originally the authors formulated Theorem 9.3 for a composition
algebra. However, by the results of Guy Roos [17] we may suppose that A
is an alternative algebra. Precisely, in [17, p. 162], a relation is shown for
an algebra A with a unit element e and an involutive anti-automorphism
a +— a* such that a + a* and aa* are spanned by e for all a in A. With the
notation n(a) = aa*, if n is a nonsingular mapping into the field of A and A
is alternative, then (A4, n) is a composition algebra [1].

Proof of (T3). We notice that we have the following identities from the as-
sumption that A is an alternative algebra:
X(YX)=(XY)X, (9.1)
(XX)Y = X(XY),
X(YY)=(XY)Y,
for every X,Y € A.

Then, letting X = > a;e; and Y = ) Bje;, we find the following
equalities from, respectively, (9.1), (9.2), and (9.3):

(ei,ej:ex)+ (ex,ej:e) = (e :ej,ex), (9.4)
(ei,ejep)+(ej,6e tep) = (e :ej,ex) + (€ : e, ex), (9.5)
(eiej er)+ (e e ej) = (e, €5t ep) + (e : e, e;5). (9.6)
From these equalities we can see the symmetry condition for elements and
conclude that our JNW-system is perfect. O

Proof of (T4). Here we only show that we can find elements of the sedenion
algebra S = R[1, ey, ..., e15] which do not satisfy the condition of composition
algebras. We choose two systems: (es,e1p,e2) and (e12,e14,€2). Choosing
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X =e3+e10 and Y = eg — e15, we can see that XY = 0. Here we have
chosen the following commutation relations:

€3€g = €5, €10€6 = €12, eszels = e12, €10€15 = €5. (9.7)

Thus, we can see that the condition may not be satisfied for non-self dual
perfect systems. In order to prove the assertion, we realize the system by use
of the realization theorem, reduce the problem to sedenions, and have to prove
it. The proof follows from the relations (9.7) and the table of Example 5. O
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