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Abstract The hepatitis C virus (HCV) is a major cause of

chronic liver disease globally. A chronic infection can

result in liver fibrosis, liver cirrhosis, hepatocellular car-

cinoma and liver failure in a significant ratio of the

patients. About 170 million people are currently infected

with HCV. Since 80 % of the infected patients develop a

chronic infection, HCV has evolved sophisticated escape

strategies to evade both the innate and the adaptive

immune system. Thus, chronic hepatitis C is characterized

by perturbations in the number, subset composition and/or

functionality of natural killer cells, natural killer T cells,

dendritic cells, macrophages and T cells. The balance

between HCV-induced immune evasion and the antiviral

immune response results in chronic liver inflammation and

consequent immune-mediated liver injury. This review

summarizes our current understanding of the HCV-medi-

ated interference with cellular immunity and of the factors

resulting in HCV persistence. A profound knowledge about

the intrinsic properties of HCV and its effects on intrahe-

patic immunity is essential to be able to design effective

immunotherapies against HCV such as therapeutic HCV

vaccines.
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Abbreviations

DAA Directly acting antiviral

DC Dendritic cell

HCV Hepatitis C virus

HLA Human leukocyte antigen

IFN Interferon

IL Interleukin

KIR Killer cell immunoglobulin-like receptor

MHC Major histocompatibility complex

NK cell Natural killer cell

NKT cell Natural killer T cell

NS Non-structural

PBMC Peripheral blood mononuclear cell

PD Programmed death

TCR T cell receptor

TGF Tumor growth factor

Th T-helper cell

TIM T cell immunoglobulin domain and mucin

domain protein

TLR Toll-like receptor

TNF Tumor necrosis factor

Treg Regulatory T cell

Introduction

With approximately 170 million people infected with

hepatitis C virus (HCV) globally, HCV represents a sig-

nificant health burden. An infection with HCV is

characterized by a probability of 70–80 % to develop a

chronic infection accompanied by liver inflammation

which causes liver fibrosis, cirrhosis and an increased risk

to develop hepatocellular carcinoma in 30 % of the cases

(Lauer and Walker 2001; Liang et al. 2000; Poynard et al.
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2003). Since the current treatment based on pegylated

interferon (IFN)-a and ribavirin can cure only about 55 %

of the treated patients and is associated with various side

effects, more efficient therapy options with fewer side

effects are necessary. The recently developed directly

acting antiviral (DAA) compounds for HCV will be able to

improve the treatment success especially for the difficult-

to-treat patients infected with the HCV genotype 1, but will

constitute in addition to the pegylated IFN-a and ribavirin-

based therapy in the first years. Thus, the development of

prophylactic and therapeutic vaccines is an urgent need. A

better understanding of the HCV-mediated modulation of

cellular immunity is a prerequisite for the design of an

effective vaccine.

HCV is an enveloped, positive-sense, single-stranded

RNA virus belonging to the genus Hepacivirus in the

Flaviviridae family. There are six HCV genotypes which

differ in their geographic distribution and their respon-

siveness to antiviral therapy. The 9.6-kb RNA genome of

HCV consists of a long open reading frame that is trans-

lated to a single polyprotein of approximately 3,000 amino

acids. This polyprotein is co- and posttranslationally

cleaved into ten structural and non-structural (NS) proteins

(core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A and

NS5B) (Bode et al. 2009). As a persistent virus, HCV has

evolved mechanisms both to utilize and control cellular

molecules or pathways required for the viral life cycle and

to evade elimination by innate and adaptive immunity. The

present review summarizes recent findings focusing on our

current understanding of the mechanisms allowing HCV to

interfere with host antiviral cellular immunity.

Antiviral Innate Immunity

The liver contains a large macrophage population named

Kupffer cells and an unusually high frequency of natural

killer (NK) and NK T (NKT) cells. In addition, several

types of dendritic cells (DCs) populate the liver. When

HCV infects the liver, infected hepatocytes and/or other

cells react by secreting type I IFNs. The source of type I

IFNs is currently unclear in vivo, but in vitro experiments

suggest that it may be produced by either hepatocytes or

plasmacytoid DCs (pDCs) (Shin et al. 2006; Takahashi

et al. 2010). Type I IFNs not only induce cell death of the

infected hepatocytes and an antiviral state in the neigh-

boring uninfected cells, but also activate innate immune

cells such as Kupffer cells, DCs, NK cells and NKT cells

(Bode et al. 2008). The activated innate immune cells

multiply the antiviral response by releasing pro-inflam-

matory cytokines and chemokines, thus inducing the

activation of liver-resident immune cells and the recruit-

ment of immune cells from the periphery. DCs have a key

function in bridging innate and adaptive immunity since

DCs are able to migrate from the site of infection to lym-

phoid tissues and to prime naı̈ve T cells by presentation of

the viral antigen. This finally results in the induction of

virus-specific T and B cell responses. Several lines of

evidence indicate that HCV can interfere with the activa-

tion and action of innate immune cells.

HCV-Mediated Effects on Innate Immune Cells

HCV-Mediated Modulation of the NK Cell Response

NK cells are characterized by their ability to kill virally

infected and tumor cells without major histocompatibility

complex (MHC) restriction or prior sensitization. Their

importance for liver immunology becomes evident by the

fact that their frequency in the liver (30–50 % of the

lymphocytes) is much higher than in the peripheral blood

(5–20 %) (Corado et al. 1997). There are two main NK cell

subsets, which are distinguished by the expression level of

the surface receptors CD56 and CD16: CD56dim CD16bright

and CD56bright CD16dim. CD56dim CD16bright NK cells are

regarded as the more mature subset and have a high

cytotoxic potential by both degranulation of cytotoxic

granules and activation of death receptors such as the Fas

receptor and the tumor necrosis factor (TNF)-related

apoptosis-inducing ligand receptor. The less mature

CD56bright CD16dim NK cells have an immunomodulatory

function and are able to secrete a variety of cytokines such

as granulocyte–macrophage colony-stimulating factor,

IFN-c, interleukin (IL)-10, IL-13, tumor growth factor

(TGF)-b and TNF-a (Andoniou et al. 2006).

NK cell function is regulated by the interplay of stim-

ulatory and inhibitory receptors such as the killer cell

immunoglobulin-like receptors (KIRs), lectin-like recep-

tors (NKG2A-F) and natural cytotoxicity receptors

(NKp30, NKp44 and NKp46). Interestingly, genetic studies

could show that the combination of the gene for the

inhibitory receptor KIR2DL3 and the gene for the group 1

human leukocyte antigen-C (HLA-C1) ligand are associ-

ated with both spontaneous HCV clearance and beneficial

response to IFN-a/ribavirin treatment (Khakoo et al. 2004;

Knapp et al. 2010; Vidal-Castineira et al. 2010). This gene

combination may cause protective effects by conferring to

NK cells the ability to respond faster to a viral infection

(Ahlenstiel et al. 2008). Furthermore, patients homozygous

for the HLA-E(R) allele were shown to be protected

against chronic infection with the HCV genotypes 2 and 3

(Schulte et al. 2009).

In acute HCV infection, NK cells show an activated

state characterized by increased expression of the activat-

ing receptor NKG2D and enhanced cytotoxicity with no
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evidence of a suppressive effect of HCV on NK cell

function (Amadei et al. 2010; Pelletier et al. 2010). In

chronic HCV infection however, perturbations in the

number, subset composition and functionality of NK cells

have been found (Fig. 1). The frequency of NK cells was

reduced in both the peripheral blood (Meier et al. 2005;

Morishima et al. 2006; Nattermann et al. 2006) and the

liver (Kawarabayashi et al. 2000) of chronic HCV patients.

Furthermore, skewing of NK cell subset distribution

toward increased numbers of the cytokine-producing

CD56bright CD16dim population, relative to the cytotoxic

CD56dim CD16bright subpopulation, was reported (Golden-

Mason et al. 2008b; Lin et al. 2004; Morishima et al. 2006).

This may be caused by defects in IL-15 production by DCs,

since IL-15 is critical for NK cell development and matu-

ration (Meier et al. 2005). HCV-induced interference with

NK cell functionality becomes evident by changes in the

cytokine profile of NK cells in chronic HCV patients.

While IFN-c release by NK cells is decreased (Ahlenstiel

et al. 2010; Oliviero et al. 2009), the production of IL-10

and TGF-b is increased (De Maria et al. 2007; Jinushi et al.

2004). Thus, cytokine production by NK cells in chronic

HCV infection is skewed toward secretion of Th2 type

cytokines promoting an environment, which is more per-

missive for HCV (Fig. 1).

The function of NK cells in chronic HCV infection may

be directly impaired by the binding of the HCV E2 protein

to CD81, which has an inhibitory function on NK cells

(Crotta et al. 2002; Tseng and Klimpel 2002). However,

reports analyzing this effect by using HCV viral particles

instead of recombinant E2 proteins have been contradictory

so far (Crotta et al. 2010; Yoon et al. 2009). Furthermore,

the HCV core protein is able to impair NK cell activity via

p53-dependent upregulation of TAP1 and consequently

MHC class I surface expression. Enhanced MHC class I

expression on infected hepatocytes confers them resistance

to NK cell-mediated killing (Herzer et al. 2003). Addi-

tionally, a peptide derived from HCV core (HCV core

35–44) stabilizes HLA-E surface expression by binding to

HLA-E and thereby impairing NK cell cytotoxicity. This

may be mediated by the interaction of HLA-E with the

inhibitory NK cell receptor CD94/NKG2A (Nattermann

et al. 2005).

Thus, dysfunction of NK cells is critically involved in

the establishment of chronic HCV infection. In particular,

when one takes into consideration that NK cells not only

have direct functions in the eradication of infected hepa-

tocytes but also influence the function of DCs and T cells.

Increased expression of the inhibitory receptor CD94/

NKG2A in combination with enhanced release of IL-10

and TGF-b by NK cells from HCV-infected patients results

in reduced capacity to activate DCs (Jinushi et al. 2004).

Furthermore, the increase in NK cell-mediated IL-10 and

TGF-b production is skewing the Th1/Th2 balance toward

a Th2 response favoring T cell exhaustion and HCV

chronicity (Fig. 1).

Role of NKT Cells in HCV Infection

NKT cells are a unique subset of T lymphocytes that co-

express T cell receptors (TCRs) and NK cell markers and

have both immunoregulatory and effector functions (Tan-

iguchi et al. 2003). They recognize glycolipids presented

by MHC class 1b molecules (CD1d in mice and multiple

CD1 isoforms in humans) and express either a highly

restricted TCR repertoire (invariant NKT cells) or a diverse

TCR repertoire (variant NKT cells). When stimulated, they

can secrete cytokines (IL-4, IFN-c and TNF-a), express

Fig. 1 NK cells in acute and chronic HCV infection. a In acute HCV

infection, NK cells are activated (increased NKG2D expression) and

are characterized by enhanced cytotoxicity and IFN-c production.

IFN-c and TNF-a produced by NK cells prime a Th1 response and

activate DCs which provide activating signals for NK cells by

secreting IL-2, IL-12, IL-15 and IL-18. b In chronic HCV patients,

NK cells are reduced in their frequency and functionality (reduced

cytotoxicity and IFN-c production, enhanced NKG2A expression).

Instead, they produce IL-10 and TGF-b resulting in the induction of

Th2 cells and Tregs in impaired DC activation and in further

production of immunosuppressive cytokines such as IL-10
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Fas ligand and activate other cell types such as dendritic

and NK cells, which suggest that they may be involved in

both clearance of virally infected cells and immune-med-

iated liver damage.

NKT cells are abundant in the liver comprising of about

30 % of the intrahepatic lymphocytes in mice and up to

50 % in humans (Geissmann et al. 2005; Norris et al.

1999). In chronic hepatitis C patients, decreased frequen-

cies of intrahepatic NKT cells have been reported (Deignan

et al. 2002; Kawarabayashi et al. 2000; Yamagiwa et al.

2008). Additionally, sustained response to IFN-a/ribavirin

treatment is paralleled by a significant increase in the

number of intrahepatic NKT cells (Yamagiwa et al. 2008).

Thus, NKT cells may play a beneficial role in HCV

clearance. In contrast, the number of activated NKT cells in

the liver of chronic hepatitis C patients was shown to

correlate with the degree of hepatocellular damage and the

onset of fibrosis suggesting that NKT cells are also

involved in the deleterious effects mediated by immune

cells during chronic liver inflammation (de Lalla et al.

2004; Nuti et al. 1998).

Alteration of DC Functions by HCV

DCs play an essential role in the initiation of virus-specific

T cell responses by taking up antigens, processing them

and presenting antigen-derived peptides to T cells. After

activation through antigen uptake and stimulation by

inflammatory cytokines, DCs secrete chemokines, cyto-

kines and IFNs resulting in the recruitment of inflammatory

infiltrates to the sites of infection. Furthermore, they

migrate to secondary lymphoid organs where they prime T

cells and initiate the virus-specific T cell response. There

are two major DC subsets in humans, the myeloid DCs

(mDCs) and the plasmacytoid DCs (pDCs). While mDCs

secrete mainly IL-10 and IL-12 and express Toll-like

receptor (TLR)3 and TLR8, pDCs are characterized by

IFN-a production and expression of TLR7 and TLR9.

Functional DCs seem to be of high importance to avoid

HCV chronicity. Only patients who are able to increase the

absolute number and percentage of circulating mDCs

during acute hepatitis C are capable of eradicating the

virus, while those who do not show any changes in mDCs

numbers or frequencies develop viral persistence (Perrella

et al. 2006a). Chronic HCV infection results in interference

with both the number and the functionality of mDCs and

pDCs (Fig. 2). The peripheral blood frequency of mDCs

and pDCs is reduced in chronic hepatitis C patients (Kanto

et al. 2004; Murakami et al. 2004; Wertheimer et al. 2004).

Furthermore, mDCs and pDCs from these patients seem to

be impaired in their maturation (Auffermann-Gretzinger

et al. 2001; Mengshol et al. 2009).

Moreover, mDCs from HCV-infected patients are

impaired in their abilities to stimulate allogeneic CD4? T

cells and to produce IL-12, while their capacity to secrete

IL-10 is increased, thus creating an immunosuppressive

environment (Averill et al. 2007; Kanto et al. 2004;

Murakami et al. 2004). Interestingly, mDCs from HCV-

infected patients are not only characterized by an increase in

their own IL-10 production but also by a profound ability to

prime IL-10-producing T cells (Kanto et al. 2004). Since

inhibitory receptors play an important role in the develop-

ment of exhausted HCV-specific T cells, the expression of

receptors with inhibitory function was also investigated on

DCs. And indeed, programmed death (PD)-L1 expression

on mDCs from chronic hepatitis C patients was shown to be

increased and inversely correlated with their allostimulatory

capacity (Dolganiuc et al. 2008; Shen et al. 2010) (Fig. 3).

Additionally, mDCs from these patients trigger the prolif-

eration of regulatory T cells (Tregs), which further leads to

an impairment of the HCV-specific T cell response (Dol-

ganiuc et al. 2008). The HCV core protein may be of main

importance for the described effects on mDCs, since stim-

ulation of mDCs with core resulted in inhibition of priming

of antigen-specific CD4? and CD8? T cells and develop-

ment of IL-10-producing Tregs (Zimmermann et al. 2008).

The inhibitory effect of cell culture-derived HCV on TLR

ligand-mediated mDC activation of naı̈ve CD4? T cells was

equally mediated mainly by core (Liang et al. 2009).

pDCs from HCV-infected patients have also been shown

to have a reduced allostimulatory capacity (Kanto et al.

Fig. 2 Plasmacytoid and mDCs in chronic HCV infection. a In

chronic HCV infection, plasmacytoid DCs are decreased in their

frequency, their maturation and their allostimulatory capacity.

Additionally, they are characterized by decreased production of

IFN-a and IL-29. b In chronic HCV infection, mDCs are reduced in

frequency, maturation and allostimulatory capacity. While their

expression of PD-L1 and their production of IL-10 are increased,

their secretion of IL-12 and IL-15 is impaired
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2004) (Fig. 3). In addition, their ability to produce IFN-a is

impaired (Dolganiuc et al. 2006; Kanto et al. 2004; Murakami

et al. 2004). The HCV proteins core and NS3/4A seem to play

a key role in the HCV-mediated modification of pDC function

and frequency. The number of intrahepatic pDCs is signifi-

cantly reduced in mice with liver-specific expression of NS3/

4A (Frelin et al. 2006). Furthermore, HCV core and NS3 are

able to activate monocytes to produce IL-10 and TNF-a,

which result in inhibition of IFN-a secretion by pDCs and

pDC apoptosis (Dolganiuc et al. 2003, 2006). Recently, it was

shown that the level of IL-29 (IFN-k1), which is mainly pro-

duced by DCs, was substantially lower in patients with chronic

hepatitis C as compared to both healthy controls and patients

with spontaneously resolved hepatitis. Interestingly, exposure

of DCs to NS3 resulted in reduced IL-29 secretion in response

to stimulation with poly I:C (Langhans et al. 2011). Besides,

both core and NS3 have been shown to inhibit differentiation

and allostimulatory capacity of immature DCs (Dolganiuc

et al. 2003).

Influence of HCV on Intrahepatic Macrophages

The liver contains a large macrophage population named

Kupffer cells, which act as both phagocytes and antigen-

presenting cells. Hence, they are involved in the clearance

of pathogen-derived particles and toxins and in the killing

of pathogens and tumor cells but also contribute to tissue

damage during chronic inflammation. In chronic HCV

infection, most Kupffer cells are activated and express high

levels of CD80, CD40 and MHC-II, thus acquiring the

phenotype of professional antigen-presenting cells. Fur-

thermore, activated Kupffer cells display a close contact

with CD4? T cells and form Kupffer cell–T cell clusters

(Burgio et al. 1998). Since they exhibit an activated phe-

notype, they fail to show homo- or hetero-tolerance to TLR

ligands as the ones from controls or patients with non-

alcoholic steatohepatitis (Dolganiuc et al. 2007). By

expressing a variety of TLRs, Kupffer cells can easily

sense viral pathogens and respond by secreting inflamma-

tory cytokines such as TNF-a. In the context of HCV, the

HCV proteins core and NS3 are able to induce TLR2/

MyD88-dependently the secretion of IL-10 and TNF-a by

monocytes/macrophages (Dolganiuc et al. 2003, 2004).

In vivo, it has been shown that mice with liver-specific

expression of NS3/4A are characterized by increased

intrahepatic levels of CCL2 and TNF-a, which is paralleled

by an enhanced intrahepatic number of macrophages. Thus,

NS3/4A may induce a CCL2-mediated recruitment of

macrophages to the liver resulting in increased TNF-a
levels (Brenndorfer et al. 2010).

Since the expression of inhibitory receptors plays an

important role in the induction of exhausted HCV-specific

T cells, the expression of ligands of these receptors has also

been investigated in Kupffer cells. Interestingly, galectin-9,

the natural ligand for the inhibitory receptor T cell

immunoglobulin domain and mucin domain protein (TIM)-3

Fig. 3 Factors resulting in the

exhaustion of HCV-specific T

cells. Factors contributing to the

development of HCV-specific T

cell exhaustion are: 1. inhibitory

cytokines (such as IL-10 and

TGF-b); 2. inhibitory T cell

receptors (such as PD-1, 2B4,

CD160, CTLA-4, KLRG1 and

TIM-3); 3. impaired

allostimulatory capacity of DCs;

4. loss of CD4? T cell help; 5.

inhibition by Treg cells
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is in the liver mainly expressed on Kupffer cells and its

expression is significantly increased in patients with chronic

HCV as compared to normal controls. Since galectin-9 has

been shown to be involved in the expansion of Tregs, the

contraction of CD4? effector T cells and the apoptosis of

HCV-specific CD8? cells, Kupffer cell-derived galectin-9

seems to be of high importance for the suppression of the

HCV-specific T cell response (Mengshol et al. 2010).

Besides T cells, the inhibitory receptors PD-1 and TIM-3 are

also expressed on macrophages. In chronic hepatitis C

patients, PD-1 and TIM-3 were found to be overexpressed

on monocytes/macrophages and to be associated with

impairment in the production of IL-12 (Zhang et al. 2011a,

b). Thus, Kupffer cells are involved in both the immuno-

pathology associated with HCV by secreting high amounts

of TNF-a and in the HCV-mediated interference with T cell

immunity.

Antiviral Adaptive Immunity

The adaptive immune response is characterized by cellular

and humoral effectors recognizing specific viral epitopes. T

lymphocytes require epitope presentation by MHC mole-

cules: CD8? cytotoxic T lymphocytes by MHC-I and

CD4? Th lymphocytes by MHC-II molecules. CD8? T

cells are responsible for the elimination of infected cells

through perforin-mediated cytolysis or activation of the

death receptor pathways. While Th1 cells activate CD8? T

cells by secreting IFN-c, IL-2 and TNF-a, Th2 cells are

crucial for B cell activation and antibody secretion through

the production of IL-4, IL-5, IL-6 and IL-13. When acti-

vated by antigen interaction and Th2 signals, B cells

release antibodies, which are able to bind free virus and

lyse infected cells. HCV infection of the liver results in

production of IFN-b and IFN-a, which induce Kupffer

cells to secrete MIP1a/CCL3, thereby recruiting NK cells.

The recruited NK cells induce DC activation by cell–cell

contact and production of IFN-c and TNF-a. Priming of B

and T cells in secondary lymphoid organs by activated

mature DCs is necessary to initiate an effective antigen-

specific adaptive immune response.

Humoral Immune Response During HCV Infection

Neutralizing antibodies produced by B cells are of impor-

tance for the control of many viral infections acting against

both free virus and infected cells (Parren and Burton 2001).

The binding of antibodies to free viral particles causes a

loss of viral infectivity by inhibiting viral attachment or

viral entry. Further, the Fc chain of antibodies mediates

complement activation leading to opsonization of the vir-

ion. Virus uptake by professional antigen-presenting cells

is also facilitated by Fc-dependent interactions resulting in

the presentation of viral antigens to B and T cells and

amplification of the antiviral response. The binding of

antibodies to infected cells can result in both cell lysis and

inhibition of viral replication, viral release or viral cell–cell

transmission (Dorner and Radbruch 2007).

The role of the humoral immune response during HCV

infection is still poorly understood. Acute HCV patients

often do not exhibit detectable neutralizing antibody titers.

Their development is significantly delayed and the existing

antibody response does not correlate with viral clearance

(Logvinoff et al. 2004). In contrast, most chronic HCV

patients possess reactive neutralizing antibodies in their

serum (Bartosch et al. 2003; Logvinoff et al. 2004). These

neutralizing antibodies recognize epitopes of the viral

envelope, mostly located in the hypervariable region of

HCV E2 protein (Bartosch et al. 2003). The fact that the

present antibodies are ineffective in terminating the

ongoing HCV infection can be explained by the rapid viral

evolution involving a selection of viral quasispecies, which

escape the reactive HCV-specific antibodies.

Interestingly, many extrahepatic manifestations of HCV

infection, e.g., cryoglobulinemia, vasculitis, non-Hodgkin

lymphoma and Sjögren syndrome are related to B cells

(Mayo 2003). Chronic antigen stimulation by HCV was

discussed as a mechanism causing HCV-associated B cell

lymphoma (de Re et al. 2007). HCV proteins involved in

the promotion of B cell proliferation are HCV E2 and NS3.

Clonal B cell proliferation may be initiated by HCV E2/

CD81 interaction (Curry et al. 2003) and by binding of

HCV NS3/IgG antigen to the B cell receptor (De Re et al.

2006). HCV possibly exerts its effects on B cells by

infecting them. HCV RNA was detected in B cells from

HCV-infected patients but the number of RNA copies per

cell seems to be rather low (Pal et al. 2006; Radkowski

et al. 2005). Furthermore, while there may be B cell-spe-

cific HCV strains, cell culture-derived HCV particles could

not infect peripheral blood mononuclear cells (PBMCs)

including B cells (Marukian et al. 2008).

T Cell Response in Acute HCV Infection

An acute HCV infection is usually asymptomatic. Studies

in experimentally HCV-infected chimpanzees demonstrate

that the viral load in the serum increases exponentially

during the first weeks of infection. 4–8 weeks after the

initial infection, HCV-specific T cells can be detected for

the first time paralleled with an increase in alanine ami-

notransferase levels indicating immune-associated liver

injury (Cox et al. 2005; Thimme et al. 2001; Woollard et al.

2003). The rate of spontaneous HCV clearance is estimated

to be 20–25 % (Gerlach et al. 2003) and is associated with

a robust, sustained and multi-specific CD4? and CD8? T

320 Arch. Immunol. Ther. Exp. (2012) 60:315–329

123



cell response (Cooper et al. 1999; Lechner et al. 2000).

That a robust CD8? T cell response is important for viral

clearance has been shown convincingly in the chimpanzee

model where an early, multi-specific, intrahepatic CD8? T

cell response to HCV was detected in 2/2 chimpanzees that

cleared the virus and also in 1/4 chimpanzees that became

chronically infected (Cooper et al. 1999).

Depletion of CD4? T cells and reinfection of two afore

immune chimpanzees with HCV resulted in a persistent

low-level viremia despite a functional intrahepatic CD8? T

cell response, indicating that CD4? T cells are also indis-

pensable for sufficient HCV clearance (Grakoui et al.

2003). In humans with controlled HCV infection, the

diversity of virus-specific epitopes recognized by CD4? T

cells was much higher than in those who failed to control

the infection (Day et al. 2002). Thus, a robust, sustained

and multi-specific CD4? and CD8? T cell response seems

to be required for viral clearance. Analysis of the cytokine

profile in PBMCs and CD4? T cells from acutely infected

HCV patients further indicated that viral clearance was

largely correlated to a predominant Th1 CD4? T cell

profile (production of IFN-c and IL-2), while patients

exhibiting a Th2 profile (production of IL-4 and IL-10)

develop a chronic HCV infection (Tsai et al. 1997).

T Cell Response in Chronic HCV Infection

Virus-specific CD4? and CD8? T cells derived from

patients with chronic HCV infection showed impaired

effector function with reduced proliferative response,

diminished peptide-specific cytotoxicity and decreased

IFN-c production (Gruener et al. 2001; Wedemeyer et al.

2002). The frequency of virus-specific CD8? T cells from

chronically infected HCV individuals was found to be

about 30-fold higher in the liver as compared to the

peripheral blood (He et al. 1999). However, the majority of

these T cells exhibit phenotypic characteristics consistent

with an incomplete differentiation (Appay et al. 2002). The

question is which mechanisms are responsible for the

failure of the HCV-specific T cell response to eradicate the

virus and how HCV is inducing these mechanisms. We will

describe the recent achievements in answering these

questions in the following part of the review.

HCV-Mediated Effects on Adaptive Immunity

Viral Escape

The virally encoded HCV polymerase lacks a proofreading

function so that HCV exists in each infected host as a swarm

of genetically different variants called quasispecies. Pairing

with a high replication rate of about 1012 virions per day

(Neumann et al. 1998) allows the virus to rapidly adapt to

immune pressure by selecting beneficial mutations from the

pre-existing quasispecies reservoir. Selection pressure is

exerted by both antibodies (Farci et al. 2000; Shimizu et al.

1994) and T cells (Chang et al. 1997; Erickson et al. 2001;

Frasca et al. 1999; Seifert et al. 2004; Timm et al. 2004; Tsai

et al. 1998). Regarding T cells, HCV escape has been shown

to affect epitope processing (Seifert et al. 2004; Timm et al.

2004), MHC binding (Chang et al. 1997) and TCR stimu-

lation (Chang et al. 1997; Erickson et al. 2001; Frasca et al.

1999; Tsai et al. 1998). Thus, effective T cell responses

target epitopes that do not allow sequence changes because

of high viral fitness costs (Uebelhoer et al. 2008).

HCV-Induced T Cell Chemotaxis

To be able to control HCV infection, the infected liver

produces chemokines resulting in the recruitment of HCV-

specific T cells. Chemokine receptors associated with T

cell homing in the liver are CCR4, CCR5 and CXCR3.

While Th1 cells express mainly CCR5 and CXCR3, Th2

cells express preferentially CCR4.

Recently, it has been shown that the expression of the

CCR4 ligands, CCL17 and CCL22, is enhanced in chronic

hepatitis C patients (Brenndorfer et al. 2012; Riezu-Boj et al.

2011). This results in the attraction of CCR4-expressing Th2

and Treg cells thus contributing to HCV persistence.

A variety of studies have also shown that the expression

of CXCR3 ligands (CXCL9, 10 and 11) and CCR5 ligands

(CCL3, 4 and 5) is increased in the liver of chronically

HCV-infected patients (Zeremski et al. 2007). However,

although HCV-specific effector T cells may promote HCV

clearance in an early phase of the infection, they cause

collateral tissue damage when the infection persists. A

potential survival strategy for HCV would be to decrease the

number of cytotoxic T cells in the liver to both diminish

antiviral immunity and extend host survival as much as

possible, thus assuring its own viability. One way to achieve

this is by reducing the expression of Th1-associated che-

mokine receptors on CD8? T cells (Lichterfeld et al. 2002).

This mechanism is also supported by a gene association

study showing the importance of CCR5 gene polymor-

phisms for HCV pathogenesis. Patients bearing the mutation

CCR5-D32 that abrogates CCR5 expression are character-

ized by a higher HCV prevalence and when infected by a

higher viral load (Woitas et al. 2002). In addition, an

attenuation of intrahepatic T cell immunity is also achieved

by the recruitment of CXCR3-expressing Treg cells.

Apoptosis of HCV-Specific T Cells

The liver is a unique organ due to the fact that it receives blood

from both the systemic circulation and the intestine. Thus, the
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liver is continuously exposed to food-derived antigens and to

endotoxin derived from the intestinal bacteria. To avoid

constant immune activation in the liver, intrahepatic immune

cells exist in a state of active tolerance, meaning that in most

cases, T cell stimulation in the liver leads to Fas-mediated T

cell apoptosis (Huang et al. 1994). Furthermore, it has been

shown that hepatocyte-activated T cells are characterized by

low expression of CD25 resulting in low production of IL-2.

This causes T cell death by cytokine deprivation in a Bim-

dependent manner (Holz et al. 2008).

This is of particular importance in hepatitis C, where

hepatocytes are regarded as the primary site of infection.

Premature death of hepatocyte-activated HCV-specific T

cells diminishes the antiviral T cell repertoire and hence

favors T cell tolerance and HCV persistence.

HCV-Induced T Cell Exhaustion

Chronic Hepatitis C is characterized by continuous expo-

sure of T cells to high levels of HCV antigens resulting in

chronic T cell activation and more or less dysfunctional

HCV-specific T cells (Gruener et al. 2001; Lechner et al.

2000). Functions like IL-2 production and proliferative

capacity are lost first, followed by TNF-a production and at

the end by degranulation and IFN-c production (Gruener

et al. 2001; Lechner et al. 2000; Thimme et al. 2001;

Urbani et al. 2006a; Wedemeyer et al. 2002). Interestingly,

the HCV core protein can inhibit T cell proliferation

through interaction with the complement receptor gC1qR

(Kittlesen et al. 2000; Yao et al. 2001). Since gC1qR is

expressed at higher levels on CD8? than on CD4? T cells,

the suppressive effects of core are stronger on CD8? T

cells than on CD4? T cells (Yao et al. 2004). The question

is, which factors are contributing to which extend to the

development of HCV-specific T cell exhaustion and how

these exhausted T cells are characterized (Fig. 3).

Deficient CD4? T Cell Help

In the setting of a chronic viral infection, CD4? T cell

function is critical and plays an important role in sustaining

virus-specific CD8? T cells during a chronic viral infection

(Matloubian et al. 1994). Absence of functionally deficient

CD4? T cells leads to T cell exhaustion and ultimately

chronic infection (Kalams and Walker 1998; Ulsenheimer

et al. 2003). In chronic HCV infection, CD4? T cell

responses are often weak (Day et al. 2003) and characterized

by reduced IL-2 production (Semmo et al. 2005) (Fig. 3).

Inhibitory Cytokine Milieu

Immunoregulatory cytokines are centrally involved in the

functional inactivation of antiviral T cells. Especially IL-10

and TGF-b have been linked to T cell exhaustion. During

chronic HCV infection, HCV-specific CD8? T cells produc-

ing IL-10 and TGF-b with regulatory capacity occur (Abel

et al. 2006; Alatrakchi et al. 2007). Furthermore, IL-10-pro-

ducing (Tr1) and TGF-b-producing (Th3) CD4? Treg cells

have been described in chronic HCV patients (Cabrera et al.

2004; Ulsenheimer et al. 2003). In addition to being produced

by T cells, IL-10 can also be secreted by other cell types such

as macrophages, DCs, B cells and NK cells.

Persistent viral infection in mice has been shown to sig-

nificantly upregulate IL-10 production by antigen-presenting

cells, leading to impaired T cell responses. Blocking of the IL-

10/IL-10 receptor pathway by genetic deletion or antibody

treatment restored T cell function and eliminated viral infec-

tion (Brooks et al. 2006; Ejrnaes et al. 2006). IL-10 levels are

also increased in patients with chronic HCV infection

(Cacciarelli et al. 1996; Reiser et al. 1997). HCV-specific T

cell responses in PBMCs from chronically infected patients

were restored by blocking IL-10, resulting in increased IFN-c
production (Kaplan et al. 2008; Piazzolla et al. 2000). More-

over, polymorphisms of the IL-10 promotor, which are

associated with increased IL-10 production, correlated with an

increased susceptibility to develop chronic HCV infection

(Knapp et al. 2003; Paladino et al. 2006; Persico et al. 2006).

As outlined above, IL-10 plays a crucial role for

impaired DC differentiation and subsequent T cell activa-

tion in HCV-infected individuals (Auffermann-Gretzinger

et al. 2001; Bain et al. 2001; Della Bella et al. 2007;

Dolganiuc et al. 2003; Kanto et al. 1999). This results in

suppression of CD4? T cell response (Kanto et al. 2004,

2006), an effect which could be also mimicked by the core

and NS4 protein of HCV (Brady et al. 2003; Zimmermann

et al. 2008). This suppression of CD4? T cell responses by

HCV can be successfully reversed by an antibody blocking

the IL-10 receptor (Rigopoulou et al. 2005).

Additionally to IL-10, HCV infection is also associated

with a significant increase in TGF-b1 expression in both

serum and liver (Blackard et al. 2006). Furthermore,

polymorphisms of the TGF-b1 promotor were significantly

associated with the HCV clearance rate (Kimura et al.

2006). HCV increases hepatocyte TGF-b1 expression

through the generation of reactive oxygen species in a

nuclear factor-jB-dependent manner, while HCV core and

NS3–NS5 proteins seem to be involved (Bataller et al.

2004; Lin et al. 2010). Besides being a key factor in hepatic

fibrosis development, TGF-b is also involved in the gen-

eration of inducible Tregs and maintenance of Treg

function (Marie et al. 2005; Yamagiwa et al. 2001). Similar

to IL-10, functional blockade of TGF-b enhances periph-

eral HCV-specific T cell responses (Alatrakchi et al. 2007).

These data suggest that both IL-10 and TGF-b play an

important role for the development of HCV persistence

(Fig. 3).
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Inhibitory TCRs

Prolonged and/or high expression of multiple inhibitory

receptors is a key feature of T cell exhaustion in both

animal models and humans. Increased expression of PD-1

is a major mechanism by which virus-specific CD8? T

cells become functionally impaired and PD-1 is up-regu-

lated by exhausted T cells during chronic HCV infections

(Golden-Mason et al. 2007; Radziewicz et al. 2007).

Interaction of PD-1 with PD-L1, which is expressed by

liver sinusoidal cells, Kupffer cells, hepatic stellate cells

and DCs (Chen et al. 2006; Iwai et al. 2003) and is IFN-a-

and IFN-c-dependently upregulated on hepatocytes (Muh-

lbauer et al. 2006), induces T cell apoptosis and inhibits T

cell functionality (Iwai et al. 2003; Radziewicz et al. 2007).

Of note, blockade of PD-L1/PD-1 interaction resulted in

the functional restoration of blood-derived HCV-specific

CD8? T cell responses in chronic HCV infection (Golden-

Mason et al. 2007, 2008a; Penna et al. 2007; Radziewicz

et al. 2007; Urbani et al. 2006b).

Besides PD-1, many other inhibitory TCRs co-regulate

T cell exhaustion. In chronic hepatitis C, HCV-specific

CD8? T cells have been reported to express inhibitory

receptors such as 2B4 (CD244), CD160, CTLA-4, KLRG1

or TIM-3 (Bengsch et al. 2010; Golden-Mason et al. 2009;

Nakamoto et al. 2008; Schlaphoff et al. 2011) (Fig. 3). The

importance of these receptors became evident, when it was

shown that PD-1 blockade alone was unable to restore the

function of liver-derived HCV-specific CD8? T cells

(Nakamoto et al. 2008) but that additional blockade of

CTLA-4 reinvigorated the antiviral T cell functions (Na-

kamoto et al. 2009). Additional studies are needed to better

understand the interaction of these receptors and their role

in the various stages of T cell exhaustion.

Induction of Tregs

Furthermore, HCV also interferes with Treg function,

thereby contributing to dysregulation of the antiviral

adaptive immune response (Fig. 3). Several reports indi-

cate that the frequency of CD4?/CD25? Tregs is increased

in chronic HCV patients (Boettler et al. 2005; Cabrera et al.

2004; Rushbrook et al. 2005). It was shown that Tregs

expand during the acute phase of HCV infection (Perrella

et al. 2006b; Ulsenheimer et al. 2003), maintain their

number during the chronic phase (Boettler et al. 2005;

Cabrera et al. 2004; Sugimoto et al. 2003) and decrease

their number to the level of healthy controls when the

patients cure the HCV infection (Boettler et al. 2005;

Sugimoto et al. 2003). Depletion of these cells resulted in

an enhanced HCV-specific T cell response indicating that

these cells are also involved in the suppression of HCV-

specific T cell responses (Boettler et al. 2005; Cabrera et al.

2004; Rushbrook et al. 2005). HCV-specific Tregs use both

direct and indirect mechanisms for their inhibitory func-

tions. Cell-to-cell contact was shown to be indispensable

for suppression by Tregs (Boettler et al. 2005; Cabrera

et al. 2004). Furthermore, IL-10 and TGF-b secretion are

important for HCV-specific Treg functions (Alatrakchi

et al. 2007; Cabrera et al. 2004).

However, the mechanisms by which HCV might induce

the recruitment of Tregs to the infected liver are not

known. The recruitment of immune cells in the liver is

mainly dependent on the release of specific chemokines.

Thus, the recently reported increase of CCL17 and CCL22

expression found in the liver of HCV-infected patients may

be of importance (Brenndorfer et al. 2012; Riezu-Boj et al.

2011). Contact of DCs with HCV-infected Huh7 cells

strongly stimulates the expression of CCL17 and CCL22,

which act as attractants for Tregs (Riezu-Boj et al. 2011).

NS3/4A may be the HCV protein mediating the described

effects since mice with liver-specific expression of NS3/4A

are characterized by enhanced intrahepatic levels of

CCL17 and CCL22 resulting in increased numbers of

CCR4? CD4? T cells in the livers of NS3/4A-transgenic

mice (Brenndorfer et al. 2012).

Immunotherapy for HCV Infection

In the last years, a substantial progress has been made in

the understanding of the HCV life cycle and the mecha-

nisms used by HCV to evade host immunity. This resulted

in the discovery of various new therapy options, which may

lead to the development of better immunotherapies or

efficient vaccines in the future.

The current standard of care therapy for HCV-infected

patients is based on pegylated IFN-a and ribavirin, which

are both immunomodulatory agents. IFN-a has not only

direct antiviral actions by inducing the expression of pro-

tein kinase R or 20,50-oligoadenylate synthetase but also

effects on cellular immunity. IFN-a is known to stimulate

the activation of NK cells, the maturation of DCs, the

proliferation of memory T cells, the expression of MHC

molecules and the promotion of Th1 cells (Maher et al.

2007). The treatment with pegylated IFN-a is thought to

boost the actions of endogenous IFN-a causing a

strengthening of antiviral immunity.

For ribavirin, several antiviral mechanisms have been

proposed. Besides direct mechanisms resulting in the

blockade of HCV replication, ribavirin is thought to

increase the expression of IFN-stimulated genes (Thomas

et al. 2011), modulate cytokine production by macrophages

(Ning et al. 1998) and stimulate a Th1-dominated antiviral

response which favors viral clearance (Hultgren et al.

1998).
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HCV proteins such as NS3/4A and NS5A have not only

essential functions for the viral life cycle but are also

known to modulate intrahepatic immunity. NS3/4A is

blocking signaling pathways in HCV-infected cells by

cleaving mitochondrial antiviral signaling protein (Li et al.

2005b; Meylan et al. 2005), Toll/IL-1 receptor domain-

containing adaptor inducing IFN-b (Li et al. 2005a) and T

cell protein tyrosine phosphatase (Brenndorfer et al. 2009).

Furthermore, it is influencing macrophage and T cell

recruitment and functionality by modulating cytokine and

chemokine levels in the liver (Brenndorfer et al. 2010,

2012). NS5A was also shown to impair both the innate and

adaptive hepatic immune response (Kriegs et al. 2009).

Thus, future HCV therapies based on NS3/4A protease and

NS5A inhibitors may exert effects beyond the viral repli-

cation by reversing HCV-mediated effects on host

immunity as well.

Although the development of HCV vaccines in the last

years was promising, there is still no prophylactic or

therapeutic vaccine for HCV available. Vaccination

experiments in chimpanzees have shown that protective

immunity to both homologous and heterologous HCV

strains exists (Bassett et al. 2001; Lanford et al. 2004;

Weiner et al. 2001) indicating the presence of epitopes,

which are conserved between genotypes. Patient studies

analyzing the immune response in acute HCV infection

revealed that a strong and sustained HCV-specific T cell

response targeting multiple epitopes is associated with a

self-limited course of infection (Rehermann 2009). Thus, a

successful HCV vaccine should be able to raise these T cell

responses. Since HCV NS antigens contain both highly

conserved gene regions and multiple CD4? and CD8? T

cell epitopes, most new HCV vaccine approaches have

focused on inducing T cell responses to HCV NS antigens.

By using an NS3/4A-transgenic mouse model that some-

what mimics the human infection with respect to a

dysfunctional T cell response, it was shown that modula-

tion of PD-1 and Tregs can restore T cell responsiveness

(Chen et al. 2011). In the same model, it was shown that

the recruitment of heterologous T cells to the site of T cell

activation had the same effect (Chen et al. 2011). The

immunogen itself and the administration routes have a

central role in what type of T cells becomes activated (Gill

et al. 2010; Lazdina et al. 2001; Nystrom et al. 2010).

Several HCV vaccine approaches based on peptides,

DNA, vectors and recombinant proteins have recently

reached phase I/II human clinical trials. A therapeutic

peptide vaccine currently in clinical development is IC41

consisting of five synthetic peptides from the proteins core,

NS3 and NS4 proteins which are conserved across the

HCV genotypes 1 and 2 and are combined with the adju-

vant poly-L-arginine (Firbas et al. 2010; Klade et al. 2008).

A therapeutic DNA vaccine based on NS3/4A given in

combination with in vivo electroporation is currently in a

phase I/IIa clinical trial (Sallberg et al. 2009). Vector-based

vaccines use the modified vaccinia Ankara (MVA) virus or

adenovirus for gene delivery. A phase I clinical trial

assessing the therapeutic vaccine TG4040 which is a

MVA-based vaccine expressing NS3, NS4 and NS5B was

recently completed (Habersetzer et al. 2011). In a further

phase I clinical trial, healthy volunteers have been vacci-

nated with adenovirus vectors expressing NS3–NS5B

(Barnes et al. 2012). To avoid preexisting immunity, rare

serotype adenoviral vectors have been used. Interestingly,

sustained HCV-specific immune responses responding to

multiple HCV epitopes and HCV strains could be induced.

Thus, this strategy may be suitable for both the use as

prophylactic and therapeutic HCV vaccine. A further

candidate for a prophylactic HCV vaccine based on a

recombinant E1/E2 heterodimer adjuvanted with MF59C

was also tested recently in a phase I trial (Frey et al. 2010).

In addition, cell-based immunotherapies using HCV

antigen-presenting DCs or HCV-specific T cells have been

used as vaccine approaches. In a phase I trial, DCs were

harvested and then loaded and activated with HCV-specific

cytotoxic T cell epitopes before they were reinjected in

HCV-infected patients (Gowans et al. 2010). In a preclin-

ical study, mice have been vaccinated against HCV with

DCs transduced with an adenovirus encoding NS3 protein

(Echeverria et al. 2011). Additionally, HCV TCR-trans-

duced T cells, which have only been tested in preclinical

studies till now, may be promising for the treatment of

patients with chronic HCV infection (Pasetto et al. 2012;

Zhang et al. 2010).

Thus, several promising vaccine trials have been com-

pleted recently and are also planned for the near future.

However, since the described therapeutic HCV vaccine

studies have been characterized by an induction of strong T

cell responses but only a weak and transient drop of the

viral load, therapeutic vaccines may be used in the next

years in combination with the standard HCV therapy or

future DAA regimens rather than isolated.

Conclusions

An effective cellular immune response is critical for HCV

eradication during the acute phase of the infection. However,

HCV has developed a big variety of mechanisms interfering

with antiviral immunity so that in the majority of patients

infected with HCV a chronic infection is established. In the

chronic phase of the infection, persistent activation of cel-

lular immunity without successful elimination of the virus

results in chronic inflammation leading to liver injury and

liver cirrhosis. HCV is preventing a higher degree of liver

damage by simultaneously attenuating innate and adaptive
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immune responses allowing coexistence of both virus and

host. Blocking the HCV-mediated impairment of cellular

immunity paralleled by an effective stimulation of the HCV-

specific immune response is necessary to be able to clear the

virus. Since in the last years fantastic efforts have been made

in the characterization of the HCV-mediated mechanisms

responsible for HCV persistence, we hope that these efforts

will make it possible to develop effective immunotherapies

or therapeutic vaccines against HCV.
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