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Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play an important role in antitumor immunity. Induction of tumor-specific CTLs is
one major strategy for tumor immunotherapy. However, therapeutic vaccinations used to treat firmly established tumors are
generally ineffective. A thorough understanding of the mechanisms underlying tumor resistance to CTL-based therapeutic
vaccination is very important in the tumor immunology field. There are two main mechanisms by which tumors develop resis-
tance to CTL-based therapeutic vaccinations. One is that tumors induce peripheral tolerance of tumor-specific CD8+ T cells.
The other is that tumor cells themselves develop immune evasion mechanisms to prevent recognition and killing by CTLs.
This review focuses on recently reported cellular and molecular mechanisms of CD8+ T cell tolerance and immune evasion
in tumors and discusses about the possibilities to improve tumor immunotherapy.
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REVIEW

INTRODUCTION

CD8+ cytotoxic T lymphocytes (CTLs) can recognize
tumor-associated antigens (TAAs) [56, 139, 152] and
adoptive transfer of tumor-specific CD8+ T cells can
eradicate the tumors in certain situations [45]. This sug-
gests that CD8+ T cells play an important role in antitu-
mor immunity. Therefore, induction of tumor-specific
CTLs is one major strategy for the development of
tumor vaccines. Preventive (prophylactic) vaccinations
are used to provide protection against subsequent
tumor challenges, whereas therapeutic vaccinations are
used to induce immune responses to treat preexisting
tumors [111]. Preventive vaccinations or vaccinations
early after tumor cell inoculation can be effective in the
elimination of inoculated tumor cells; in contrast, thera-
peutic vaccinations used to treat firmly established
tumors are generally ineffective [45, 99, 105, 129].
Therefore, a thorough understanding of the mecha-
nisms underlying tumor resistance to CTL-based thera-
peutic vaccination is crucial for the design of effective
approaches to eliminate tumors. 

ACTIVATION OF CD8+ T CELLS 
AND CTL−BASED TUMOR IMMUNOTHERAPY

Dendritic cells (DCs) capture antigens in peripheral
tissues, migrate to local lymphoid organs, and present
antigens to naïve CD8+ T cells in the secondary lym-
phoid organs [163]. Most DCs in peripheral tissues are
immature. They can efficiently take up antigen, but can-
not productively present antigens to naïve T cells. After
stimulation by products of bacterial or viral pathogens
through Toll-like receptors (TLRs) [57], proinflamma-
tory cytokines, or ligation of surface CD40 by CD40 lig-
and (CD40L) on CD4+ T helper cells [117], DCs
become mature and the expression of costimulatory
molecules such as CD80 (B7-1) and CD86 (B7-2) is
upregulated [8]. Mature DCs provide naïve CD8+

T cells with two signals for efficient activation. With
these proper stimulations, CD8+ T cells undergo prolif-
eration and differentiate into CTLs [70, 73]. Activated
CTLs can migrate to peripheral tissues and exert effec-
tor function by releasing cytokines, such as interferon
(IFN)-γ and tumor necrosis factor (TNF)-α to mediate



local inflammation [123], and killing target cells through
apoptosis induction [33, 136]. CTLs can recognize virus-
-infected cells and tumor cells which display MHC class
I peptide complexes through “direct presentation” of
endogenous antigens. Two major mechanisms underlie
CTL cytotoxicity: the perforin-dependent granule exo-
cytosis pathway [59] and the FasL-Fas pathway [60]. 

A variety of TAAs have been identified to discrimi-
nate between normal and malignant tissue [83]. Some
TAAs are self proteins overexpressed by tumor cells [87];
other TAAs are encoded by viral genes or by mutated cel-
lular genes [83]. TAAs can be processed and presented as
peptides through the MHC class I pathway in tumor cells.
Antigen-specific CD8+ CTLs can recognize these pep-
tide/MHC class I complexes and kill tumor cells. By a vari-
ety of approaches, such as vaccinations, cytokine adminis-
tration, and adoptive cell transfer, the immune system has
been manipulated to induce tumor-specific CTLs that can
effectively recognize and kill tumor cells [110].

DNA tumor vaccines are bacterial plasmid vehicles
encoding TAA genes, which are used for in vivo trans-
fection and antigen expression [130]. Following DNA
vaccinations, CD8+ T cells are activated by direct prim-
ing by transfection of DCs and/or by cross-presentation
by DCs through acquiring antigens from other cells,
such as myocytes or keratinocytes [44]. Furthermore,
similarly to DNA vaccines, recombinant viruses or bac-
teria were used as vectors to deliver TAA genes to
induce tumor-specific CTLs. For instance, in human
colon cancer vaccines the recombinant poxvirus encod-
ing carcinoembryonic antigen (CEA) [1, 40, 50, 62, 63],
papillomavirus pseudoviruses encoding CEA [53], and
attenuated bacteria encoding CEA [90, 155, 156] were
used to induce CEA-specific CTL responses and anti-
-tumor immunity. 

Since DCs play a pivotal role in the activation of
T cells, DCs have also been manipulated to induce effec-
tive antigen-specific CTL responses for tumor
immunotherapy. Ex vivo antigen-pulsed DCs were used
to activate tumor-specific T cells [8, 135]. RNA-trans-
fected DCs [84, 85], heat shock protein-peptide complex
[12], or DC-derived exosomes [164] were also used to
induce tumor-specific CTLs. In a similar strategy, irradi-
ated tumor cells engineered to express granulocyte-
macrophage colony-stimulating factor were used for
immunization to activate DCs and enhance tumor-spe-
cific CTL responses [31]. Because ligation of CD40 on
DCs by CD40L provides DC maturation signals, an ago-
nistic anti-CD40 antibody was combined with intra-
venous administration of tumor-derived peptide to elicit
a potent CTL-mediated antitumor response [89].
Altered peptide ligands with higher affinities have been
used to improve the reactivity of T cells specific for
self/tumor antigens [99, 112, 128]. It has been demon-
strated that a combination of adoptive transfer of tumor-
-specific CD8+ T cells, T cells stimulation through anti-
gen-specific vaccinations using an altered peptide ligand,
and co-administration of interleukin (IL)-2 could induce
the regression of large established tumors [99]. 

PERIPHERAL TOLERANCE OF CD8+ T CELLS

Central tolerance of CD8+ T cells occurs in the thy-
mus, where self-reactive CD8+ T cells with very high
affinities are deleted by negative selection [13, 36, 92].
Some self-reactive CD8+ T cells can escape negative
selection. Thus, peripheral tolerance is required for
mature self-reactive T cells to avoid autoimmunity
[140]. In addition, non-self-reactive T cells can also
undergo peripheral tolerance. Peripheral tolerance of
CD8+ T cells may occur through immunological igno-
rance [94], clonal deletion [2], or peripheral anergy
[124, 140]. In certain situation, antigen-specific CD8+

T cells can maintain a naïve phenotype even in the pres-
ence of antigens. This phenomenon in which the anti-
gen neither activates nor anergizes these CD8+ T cells
is called immunological ignorance [48, 93, 147, 148]. In
some tumor models, the immunogical ignorance was
explained by none or too few tumor cells reaching
draining lymph nodes during early tumor development
[93], expression levels of the ignored antigen, or the
anatomic site in which the antigen is expressed [68, 80].
Mature CD8+ T cells can also be deleted in the periph-
ery, which is called clonal deletion. Repetitive, systemic
administration of antigenic peptides can result in
peripheral deletion of naive CD8+ T cells in vivo [2, 69].
Clonal deletion by multiple peptide injections can pre-
vent a virus-induced T cell-mediated autoimmune dia-
betes in a transgenic mouse model [3]. Peripheral aner-
gy of T cells is defined as a complete unresponsiveness
on re-encounter with antigen. T cell anergy can be
induced when T cells encounter antigens on immature
or resting antigen-presenting cells (APCs), while effec-
tive T cell activation is induced through antigen-specif-
ic interactions with activated, mature APCs [8, 27, 37,
46, 47, 118]. 

In T cell anergy models, tolerant T cells often
become only partially anergized [74]. Otten and
Germain demonstrated that a CTL clone was unable to
secrete IL-2, but retained cytolytic activity in the
absence of costimulation, which was described as “split
anergy” [98]. Vezys et al. showed that chronic encounter
of antigen by intestinal CD8+ T cells resulted in a loss of
IFN-γ secretion function, but cytolytic activity was
retained [141]. In our tumor model, we also found “split
tolerance” of tumor-specific CD8+ T cells at a late stage
of tumor growth. Those tumor-specific CD8+ T cells lost
cytolytic activity, but retained IFN-γ production func-
tion [54]. Hernandez et al. [49] showed that prolifera-
tion potential and gain of effector function were separa-
ble events in the differentiation program of CD8+

T cells. It was reported that during chronic lymphocytic
choriomeningitis virus (LCMV) infection, LCMV-spe-
cific CD8+ T cells lose cytotoxic activity or the ability to
secret cytokines, but those tolerant cells are capable of
proliferating in vivo, as shown by uptake of bromod-
eoxyuridine [161]. The “split tolerance” of CD8+ T cells
suggests that cell proliferation, cytokine production, and
cytolytic activity can be triggered through independent
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mechanisms. Therefore, tolerized CD8+ T cells might
become partially dysfunctional in different situations. 

Overall, mature CD8+ T cells can undergo peripher-
al tolerance through different mechanisms. Therefore,
in tumor-bearing hosts, peripheral tolerance of tumor-
specific CD8+ T cells may cause the failure of CTL-
-based therapeutic vaccinations. 

ACTIVATION AND TOLERANCE 
INDUCTION OF TUMOR−SPECIFIC CTLs
DURING PROGRESSIVE TUMOR GROWTH

In tumor-bearing hosts, tumor-specific CD8+ T cells
have different fates in different tumor models. Tumor-
-specific CD8+ T cell tolerance has been frequently
reported in tumor-bearing hosts [149]. Most TAAs are
self proteins overexpressed in tumor cells. Therefore,
these self-reactive tumor-specific CD8+ T cells are
maintained in a tolerant state in the periphery [95]. In
melanoma patients, systemic tumor-specific CD8+

T cells developed in the periphery could not directly lyse
melanoma target cells or produce cytokines in response
to a mitogen [72]. Using a non-self tumor-antigen
model, Shrikant et al. [126, 127] showed that tumor
expressing ovalbumin (OVA) tolerized adoptively trans-
ferred OVA-specific CD8+ T cells by inhibiting CD8+

T cell proliferation. In a sporadic tumor model, sponta-
neous tumors avoided destruction by inducing tumor-
-specific CD8+ T cell tolerance [150]. In contrast, some
reports showed that tumor-specific CD8+ T cells were
not tolerized in the presence of tumors. In the non-self
tumor-antigen models, LCMV-specific CD8+ T cells in
the spleen and tumor-infiltrating lymphocytes (TILs)
were not tolerized by tumor expressing the LCMV anti-
gen [93, 105]. In a self-antigen model, the LCMV anti-
gen is expressed as a self tumor antigen in endogenous
tumors. The tumor growth enhanced cross-presentation
and led to CD8+ T cell activation without tolerance, and
these CD8+ T cells have effector functions [89].

Most tumor cells are not professional APCs.
Therefore, it was proposed that tumor cells could
induce the tolerance of tumor-specific CD8+ T cells
due to the lack of immunologically costimulatory mol-
ecules [20]. However, it was also reported that tumors
could activate tumor-specific CD8+ T cells through
cross-presentation by professional APCs that acquire
tumor antigens from tumor cells [91, 129, 153].
Uncontrolled cell growth is a key feature of a tumor
which disrupts the local tissue architecture and conse-
quently provides proinflammatory signals [101]. These
“danger” signals will induce inflammation, activate
innate immune cells with antitumor activity, and stim-
ulate professional APCs to uptake tumor-derived anti-
gens and migrate to draining lymph nodes to trigger
an adaptive T cell immunity [14]. The different func-
tional states of tumor-specific CD8+ T cells in differ-
ent tumor models might be due to different growth
behaviors of tumor cells, different host immunity in

different animal strains, or different time points dur-
ing tumor growth. 

As shown in Fig. 1, we investigated the status of
HPV-16 E7-specific CD8+ T cells at different time
points in response to E7+ tumors and/or vaccinations
[54]. In tumor-bearing mice, a weak CTL response is
normally induced at the early stage, most likely through
cross-presentation. Subsequent therapeutic vaccination
amplifies CTL response and efficiently eliminates tumor
cells, which delays tumor growth, whereas without ther-
apeutic vaccination, the low level of CTL response in
tumor-bearing mice cannot efficiently delay tumor
growth. When the tumor grows progressively, the
increased tumor antigen load induces more tumor-spe-
cific CTLs, probably through cross-presentation, and the
CTL response reaches a very high level, even in the
absence of therapeutic vaccinations. At the late stage,
tumor-specific CD8+ T cells are tolerized and lose
cytolytic activity, and further vaccination cannot induce
effective CTL response. In general, tumor-specific
CD8+ T cells enter the activation phase at the early
stage, tumor-specific CTL response reaches a maximal
level in the middle stage, and then tumor-specific CD8+

T cells lose cytolytic function at the late stage.

PERSISTENT ANTIGENS 
INDUCE PERIPHERAL TOLERANCE 
OF TUMOR−SPECIFIC CD8+ T CELLS

The mechanisms underlying peripheral tolerance of
tumor-specific CD8+ T cells remain unclear. We
demonstrate that tumor-specific CD8+ T cells are par-
tially dysfunctional at the late stage in tumor-bearing
mice: they lose cytolytic activity while keeping IFN-γ
production function [54]. In chronic viral infection, the
fate of virus-specific CD8+ T cells is similar to our find-
ings in tumor-specific CD8+ T cells. In HIV-infected
patients, HIV-specific CD8+ T cells produce IFN-γ, but
are impaired in cytolytic function [5]. In murine chronic
LCMV infection, viral persistence results in functional
impairment of CD8+ T cells. Production of IL-2 and in
vitro cytolytic capacity are the first functions compro-
mised, followed by the ability to make TNF-α, whereas
IFN-γ production is most resistant to functional exhaus-
tion [146]. “Functional exhaustion” was used to describe
antigen-specific CD8+ T cells during chronic HIV infec-
tion [39, 67, 74, 122], simian immunodeficiency virus
infection [143, 157], and hepatitis C virus infection [42]. 

Tumor growth is comparable to chronic viral infec-
tions because antigens are persistently presented to
CD8+ T cells and T cells have to respond to continuous
antigenic stimulus. It is speculated that persistent
tumor-antigen stimulation causes tolerance of tumor-
specific CD8+ T cells during tumor growth [54, 107].
Using adoptive transfer of transgenic CD8+ T cells for
the male antigen and different amounts of male bone
marrow cells into female mice, Tanchot et al. [134]
showed that a lower amount of male bone marrow cells
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was eliminated by activation of CD8+ T cells; a higher
amount of male bone marrow cells induced CD8+ T cell
tolerance, and both CD8+ T cells and male cells persist-
ed in the periphery. It was proposed that tolerance is
a consequence of antigen persistence and an excessive
antigen load [134]. It has been speculated that antigen-
induced unresponsiveness [11, 26, 58] might be a gener-
ic consequence for T cells after prolonged antigenic
stimulation in different experimental systems. During
HIV infection, HIV-specific CD8+ T cells in the periph-
ery can produce antiviral cytokines, but are impaired in
cytolytic function. Since the perforin level is impaired in
these CD8+ T cells, chronic stimulation of HIV-specific
CD8+ T cells in the infected patient might cause the low
perforin level by repeated contact with virus-infected
cells and subsequent degranulation [5]. 

THE ROLE OF CD4+ T REGULATORY CELLS
IN PERIPHERAL TOLERANCE 
OF TUMOR−SPECIFIC CD8+ T CELLS

Naturally occurring CD4+CD25+ T regulatory (Treg)
cells are selected in the thymus and comprise about

5–10% of peripheral CD4+ T cells in mice [114]. The
development of effective antiviral or tumor immunity
can be compromised by Treg cells [15, 77, 113, 124].
These CD4+ Treg cells express high levels of cytotoxic
T lymphocyte-associated antigen (CTLA)-4, the gluco-
corticoid-induced TNF-related receptor (GITR), and
the forkhead transcription factor Foxp3 [52]. In the
Friend leukemia virus chronic infection model, effector
functions of CD8+ T cells are impaired due to
CD4+CD25+ Treg cells [29]. Tumor-specific CD4+ Treg
cells frequently localize within the tumor stroma [24,
145] and tumor-specific CD8+ T cells often become tol-
erant in the presence of tumors. By adoptive transfer of
tumor-specific CD8+ T cells and CD4+ Treg cells into
tumor-bearing mice, Chen et al. [21] showed that HA-
-specific CD4+ Treg did not inhibit the proliferation of
HA-specific CD8+ T cells but suppressed their cytolytic
activity in the presence of HA+ tumor in vivo. Further,
the suppression of cytolytic activity depends on signaling
through the transforming growth factor β receptor on
CD8+ T cells [21]. It has been reported that the propor-
tions of CD4+CD25+ Treg cells were increased in tumor
sites [154], metastatic melanoma lymph nodes [142], and
even in the peripheral blood [55, 75, 97, 116, 151]. In
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Fig. 1. A model of the effects that a progressively growing tumor has on functional states of tumor-specific CD8+ T cells and therapeutic vac-
cinations. The solid blue line indicates tumor-specific cytolytic activity of CD8+ T cells and the dashed blue line indicates tumor growth in
tumor-bearing mice. The solid red line indicates tumor-specific cytolytic activity of CD8+ T cells and the dashed red line indicates the tumor
growth in tumor-bearing mice with therapeutic vaccinations. The green arrows indicate the time points for vaccinations. In tumor-bearing mice,
a weak CTL response is normally induced at the early stage, which is not sufficient to lead to tumor rejection. Subsequent therapeutic vacci-
nation induces a more rapid and greater CTL response and eliminates more tumor cells, which slows down tumor growth, whereas in the
absence of therapeutic vaccination, the low level of CTL response by tumor-primed CD8+ T cells cannot efficiently delay tumor growth. During
progressive tumor growth, the increase in tumor antigen load induces more tumor-specific CTLs through cross-presentation, and tumor-spe-
cific CTL response reaches a maximal level even without therapeutic vaccinations. At the late stage, tumor-specific CD8+ T cells are tolerized
and further vaccination cannot induce tumor-specific CTL response. Therefore, tumor-induced tolerance of CD8+ T cells at the late stage con-
tributes to a gradual invalidation of therapeutic vaccinations during progressive tumor growth. Tumor-specific CD8+ T cells enter the activa-
tion phase at the early stage, tumor-specific CTL response reaches a maximal level in the middle stage, and then tumor-specific CD8+ T cells
enter the tolerance-induction phase at the late stage, which depends on both the persistent tumor burden and the time course.
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tumor immunotherapy, prior to vaccinations, treatment
of tumor-bearing mice with anti-CD25 significantly
enhanced the antitumor effect, which might be due to
depletion of Treg cells [131]. 

MOLECULAR MECHANISMS UNDERLYING
PERIPHERAL TOLERANCE OF CD8+ T CELLS

The T cell receptor (TCR) is composed of the αβ
dimer for antigen binding and the signal-transducing
CD3 δ, ε, γ, and ζ chains. These chains contain one (δ, ε,
γ) to three (ζ) immunoreceptor tyrosine-based activa-
tion motifs that transduce the activation signal into the
cell [106]. Upon CD8+ T cell binding to target cells,
CD8 is recruited to the TCR complex to stabilize the
antigen-specific binding [162]. CD8 association with the
TCR recruits Src-related kinase p56lck into close prox-
imity with CD3ζ [6]. Following TCR stimulation, phos-
phorylated CD3ζ recruits ZAP70, which in turn phos-
phorylates linker for activation of T cells (LAT), fol-
lowed by the recruitment of additional proteins and the
activation of phospholipase Cγ-1. Then, calcium flux is
initiated, resulting in the coordinated activation of addi-
tional downstream signaling pathways [34, 88, 106].
Alterations in the signal-transduction pathway may
cause peripheral tolerance of CD8+ T cells [81, 86].

In the male antigen model mentioned above, at rel-
atively low antigen doses, efficient memory T cells can
be generated, while high antigen doses lead to peripher-
al tolerance of CD8+ T cells [108, 134]. By comparing
functional memory and dysfunctional tolerant antigen-
-specific CD8+ T cells, Tanchot et al. characterized the
signaling modifications that were associated with toler-
ant CD8+ T cells. They found tolerant CD8+ T cells did
not mobilize Ca2+ after anti-CD3 stimulation, but con-
stitutively produced large amounts of IL-10. The defect
was overcome by stimulation with phorbol myristate
acetate (PMA)/ionomycin. This indicated a proximal
defect in the TCR signaling pathway that blocks TCR-
-mediated stimulatory events in tolerant T cells [134].
They further compared the proximal TCR signal trans-
duction and found that in vivo TCR stimulation led to
constitutive phosphorylation of CD3ε, recruiting Zap70,
in both memory and tolerant cells. However, in tolerant
cells the phosphorylation was much more significant,
the CD3ε and ζ chains were disassociated, the Src kinas-
es p56Lck and p59Fyn were inactive, and the phospho-
rylation of ζ chain was defective [43]. This suggests that
when the antigen load is too high, signal transduction
might be altered by mechanisms such as the recruitment
of Zap70 to CD3ε becoming excessive, leading to TCR
complex destabilization, Src kinase dysfunction, and sig-
nal arrest [43].

CD3ζ chain is essential in TCR assembly and expres-
sion [61, 81]. The immunological dysfunction of T cells
isolated from tumor-bearing hosts or in infectious dis-
eases often correlates with CD3ζ deficiency [16]. It was
hypothesized that sustained exposure to antigen and

chronic inflammation may be responsible for the down-
regulation of CD3ζ and impairment of T cell function.
In a bacterial antigen-stimulation model, sustained
exposure to bacterial antigen P. gingivalis resulted in
IFN-γ-dependent CD3ζ downregulation and impaired
T cell function in both CD4+ and CD8+ T cells.
CD3ζ downregulation was caused mainly by enhanced
lysosomal degradation [16]. During chronic HIV infec-
tion, HIV-specific CD8 T cells down-modulated not
only CD3, but also the costimulatory receptor CD28
[137]. Downregulation of CD3ζ and CD28 on tolerant
CD8+ T cells might increase the activation threshold for
full effector functions. 

CD8+ T cells in the TILs can lose ex vivo cytolytic
function, which can be recovered after short-term culture
in vitro [66]. By comparing the signaling molecules in
nonlytic and lytic CD8+ TILs, a defective TCR signaling
was identified in nonlytic (tolerant) CD8+ TILs. Upon
cognate antigen recognition, nonlytic CD8+ TILs were
defective in F-actin localization and unable to recruit
molecules required for the release of cytolytic granules.
These TILs were blocked at a proximal step because
LAT was not phosphorylated and ZAP70 was only weak-
ly phosphorylated. Upon conjugation with cognate
tumor cells, immunological synapses were formed, but
CD2, the CD3 complex, and CD8 disassociated from the
TCR and were excluded from the synapse in TILs. These
nonlytic CD8+ TILs did not flux calcium and ultimately
prevented exocytosis of cytolytic granules. These results
suggest that defective proximal TCR signaling inhibits
CD8+ TIL cytolytic function [66]. Signaling events fur-
ther downstream can also be impaired in tolerant CD8+

T cells. In certain CD8+ T cell tolerance models,
PMA/ionomycin stimulation of dysfunctional LCMV-
-specific or tumor-specific CD8+ T cells does not fully
restore cytokine production [72, 161].

CAN PERIPHERAL TOLERANCE 
OF TUMOR−SPECIFIC CD8+ T CELLS 
BE REVERSED TO EFFICIENTLY ELIMINATE
TUMOR CELLS?

Curtsinger et al. [25] showed CD8+ T cells could be
rendered “permanently tolerant” during an initial prim-
ing and unresponsive to even a potent secondary stimu-
lation with antigen and adjuvant. Therefore, a key ques-
tion for therapeutic vaccinations is whether tolerant
tumor-specific T cells can regain functional properties by
specific interventions. If so, we can develop some strate-
gies to reverse peripheral tolerance of tumor-specific
CD8+ T cells and elicit effective antitumor immunity. 

CTLA-4 is expressed by activated CD8+ T cells [144]
and is a potent negative regulator of T cell activation
[19, 104]. Attenuation of T cell activation by CTLA-4
limits the potency of tumor immunity. Administration of
blocking antibodies to CTLA-4 has had marked effects
on enhancing antitumor immunity in murine models
and recent clinical trials [14]. The administration of
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antibodies that block CTLA-4 function inhibits the
growth of moderately immunogenic tumors and, in com-
bination with tumor vaccines, increases the rejection of
poorly immunogenic tumors [51]. 

Some vaccination strategies should have more advan-
tages in breaking CD8+ T cell tolerance than others,
although the efficacies may be comparable in activating
non-tolerant CD8+ T cells. Yang et al. [158] compared
the efficacy of two different vaccination strategies: virus-
and DC-based vaccines encoding HA antigen. In a non-
tolerant environment, both vaccines were comparable in
activating naïve HA-specific CD8+ T cells; however, in
a tolerant environment, in mice expressing “self” HA
antigen, virus-based vaccine reversed tolerant HA-spe-
cific CD8+ T cells, whereas DC-based vaccine reversed
the tolerance only after removal of Treg cells or the co-
-administration of TLR ligand or an irrelevant virus
[158]. It was speculated that TLR signals might help
reverse the Treg cell-mediated CD8+ T cell tolerance
[158] because ligation of TLRs on DCs can block Treg
cell-mediated suppression [102, 103]. 

GITR is constitutively expressed on the cell surface
of CD4+ Treg cells. Anti-GITR monoclonal antibody
treatment can diminish the suppressive function of
CD4+ Treg cells in vivo. This antibody treatment in vivo
does not deplete Treg cells, but provides an agonistic sig-
nal to GITR on Treg cells [125]. In a tumor model,
Sakaguchi and his colleagues showed that a single
administration of agonistic anti-GITR monoclonal anti-
body to tumor-bearing mice intravenously or directly
into tumors provoked potent tumor-specific immunity
and eradicated established tumors without eliciting overt
autoimmune disease [65]. Yu et al. [160] showed that
CD4+CD25+ Treg cells accumulated inside tumors and
suppressed CD8+ T cells at the local tumor site. After
intratumor depletion of CD4+ suppressive cells, the well-
-established tumors were rejected [160]. Therefore,
removal of Treg cells or blockade of suppression by Treg
cells can be a major contribution to the reversal of CD8+

T cell tolerance. However, Dittmer et al. [29] showed
that during persistent retroviral infection, effector func-
tions of CD8+ T cells could be suppressed by CD4+ Treg
cells. Blocking the suppression with anti-GITR antibody
from Treg cells was ineffective in overcoming the toler-
ance of endogenous virus-specific CD8+ T cells. This
suggests that functional impairment of CD8+ T cell by
Treg cells could be long-lived or even irreversible [29].

Cytokines are often used to enhance the efficacy of
tumor immunotherapy. It was reported that established
tumors were eradicated by adoptive transfer of tumor-
specific CD8+ T cells in the combination of vaccinations
and in exogenous administration of IL-2 or IL-15 [64,
99]. Shrikant and Mescher [127] showed that systemic
injection of IL-2 reversed tumor-induced anergy of
CD8+ T cells by stimulating their proliferation.
Overwijk et al. [99] showed that strong vaccination
induced the proliferation and tumor localization of anti-
gen-specific T cells, but that these T cells did not effec-
tively destroy the tumor unless provided with exogenous

IL-2. Thus, IL-2 can act as a costimulatory/activation
factor to T cells for full effector functions.

TUMOR IMMUNE EVASION OF RECOGNITION
AND KILLING BY CTLs

In addition to tumor-induced peripheral tolerance of
CD8+ T cells, tumor cells themselves develop many
immune evasive strategies to escape recognition and
killing by tumor-specific CTLs. Genetic alteration is often
associated with tumor development, which provides
tumor cells with mechanisms for immune evasion [71]. 

CD8+ CTLs recognize peptides presented by MHC
class I molecules on tumor cell surfaces. The antigen pro-
cessing in the MHC class I pathway starts with endoge-
nous proteins being ubiquitinated and subsequently
degraded by the proteasome into antigenic peptide frag-
ments. The peptides are translocated across the endoplas-
mic reticulum (ER) membrane via the transporter associ-
ated with antigen processing (TAP) subunits TAP-1 and
TAP-2. Within the ER, MHC class I heavy chain is syn-
thesized and associates with β2-microglobulin (β2m) with
the help of chaperone proteins (BiP, calnexin, calreticulin,
and ERp57). The MHC class I/β2m complex then associ-
ates with tapasin, which allows the dimeric complex to
interact with TAP and ensures peptide loading into the
complex. Then, the trimeric MHC class I/β2m/peptide
complex is transported to the plasma membrane [22, 38,
100, 109]. A variety of mechanisms underlying the down-
regulation of the antigen-processing machinery (APM)
contributes to the immune evasion by tumor cells [120]. 

The proteasome is composed of a proteolytic core
(20S) and regulatory caps (19S) which assemble into
a 26S complex. The core 20S proteasome consists of 4
rings. The two outer rings are identical and each is com-
posed of 7 different α subunits. The two inner rings are
also identical and each contains 7 different β subunits
which surround a central chamber where proteolysis
occurs [132, 133]. Two proteasome-inducible β subunits,
low-molecular protein (LMP)2 and LMP7, are induced
by IFN-γ and replace two constitutive β subunits in the
standard proteasome to form an “immunoproteasome”
[41]. This replacement can alter the cleavage specificity
of the proteasome [17, 32, 35]. The immunoproteasome
expressing inducible LMP2 and LMP7 decreases the
presentation of an RU1-derived tumor peptide epitope
in renal cell carcinoma cells [82]. The melanoma-associ-
ated antigen Melan-A/MART-1 also cannot be cleaved
by the immunoproteasome, despite being efficiently
cleaved by the standard proteasome. Consequently,
MART-1-specific CTLs cannot recognize the LMP2-
and LMP7-expressing melanoma cells [82]. Therefore,
expression of the immunoproteasome subunits may
alter the cleavage specificity of tumor cells as an
immune-escape mechanism [28]. 

Deficiencies in TAP, and the chaperone proteins, can
also downmodulate antigen processing and contribute to
the immune escape of tumor cells from killing by CTLs
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[120]. TAP expression is downregulated in many tumor
cells [4, 23, 119], which may be due to a decrease in the
activity/expression of trans-acting factors regulating TAP-1
promoter activity and/or a decrease in TAP-1 mRNA sta-
bility [121]. Restoration of TAP expression in lung carci-
noma increases tumor-specific immune responses [76].

Downregulation of MHC class I molecules has been
found in a variety of tumors [78]. It can be caused by
impairments in the expression and/or function of com-
ponents of the class I APM, as mentioned above [120].
β2-Microglobulin gene mutations in tumor cells can also
result in a lack of MHC I molecule expression [9, 10].
Reduced transcription or translation of MHC class
I genes has also been reported in tumor cells [30]. 

The loss of TAA expression is also a common
immune-escape mechanism [138]. There is a loss of cog-
nate melanoma antigens in the tumor cells of melanoma
patients with peptide vaccinations or treated with adop-
tive transfer of antigen-specific CD8+ T cells, [96, 159].
In a murine melanoma model, tumor vaccinations also
led to the immunoselection of tumor cell variants that
have lost the expression of these target antigens [115]. It
was demonstrated that “antigenic drift”, mutations in
CTL epitopes, was one of the mechanisms for tumor
evasion of destruction by CTLs [7]. 

Another mechanism of tumor escape from immune
surveillance is through the expression of antiapoptotic
signals and the suppression of apoptosis in tumor cells.
Human U266 myeloma cells are inherently resistant to
Fas-mediated apoptosis and express high levels of the
antiapoptotic protein Bcl-xL [18]. It was reported that
a metastatic variant of a human prostate carcinoma line
was more apoptosis-resistant than a nonmetastatic vari-
ant. The apoptosis resistance was associated with higher
levels of expression of the antiapoptotic BCL-2 and
lower levels of the proapoptotic BAX and BAK [79]. 

CONCLUDING REMARKS

Tumors can induce peripheral tolerance of tumor-
-specific CD8+ T cells through a variety of mechanisms.
Furthermore, even when functional tumor-specific
CTLs exist, tumor cells themselves develop immune-
evasion mechanisms to prevent recognition and killing
by those CTLs. Uncovering the mechanisms underlying
tumor resistance to therapeutic vaccinations will help
develop reasonable treatment regimes for tumors: when
to give therapy and how to enhance efficacy. Surgical
removal of the tumor mass will drastically reduce the
tumor cell load. It should be promising to eliminate the
remaining tumor cells if an effective tumor-specific CTL
response can be induced timely and strongly.
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