
Vol.:(0123456789)

Nexus Network Journal (2021) 23:855–878
https://doi.org/10.1007/s00004-021-00556-x

RESEARCH

Graphical Modelling of Hoop Force Distribution 
for Equilibrium Analysis of Masonry Domes

Vittorio Paris1 · Giuseppe Ruscica1 · Giulio Mirabella Roberti1

Accepted: 26 April 2021 / Published online: 21 June 2021 
© The Author(s) 2021

Abstract
The behaviour of axisymmetric masonry shells can be simulated by a system of 
forces constituted by meridian forces acting in the vertical planes, and by hoop 
forces acting circumferentially. A crucial component for the assessment of these 
structures using the Modified Thrust Line Method (MTLM) is the determination of 
hoop forces, whose computation is strenuous, limiting the practical application of 
MTLM. Working around this limitation, the current research introduces a strategy 
to manipulate the hoop forces by graphically implementing a function describing 
their distribution. The adaptiveness of this distribution function not only allows the 
application of MTLM for the analysis of a range of geometries, but also enables 
the simulation of membrane behaviour, arch behaviour and their combination, for 
considering partially cracked structures. Taking this into account, the approach is 
applied in the case studies illustrated within the current research.
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Introduction

Avant-garde structures built during recent decades, such as Ambika P3 (Parascho 
et al. 2020) or Armadillo Vault pavilion (Block et al. 2018), testify to the progress 
and the new focus on the research in the field of masonry. Although the roots of 
the theory of plasticity were laid by Drucker (1950) and Kooharian (1952), only 
Heyman (1966) applied the limit analyses for masonry structures. Three assumptions 
are at the base of his theory: (i) masonry has no tensile strength, (ii) stresses are 
so low that masonry has effectively an unlimited compressive strength and (iii) 
sliding failure does not occur. According to Heyman’s work, the geometry assumes 
a crucial role in guaranteeing the equilibrium for masonry structures, and indeed his 
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formulation provided the roots for thriving research (Varma and Ghosh 2016; De 
Chiara et al. 2019; Iannuzzo et al. 2019; Fraddosio et al. 2020).

The relation between geometry and structural behaviour of a masonry arch 
has been recognised starting from the works of Robert Hooke in 1670 (Huerta 
2008) (Fig. 1a) but the first exhaustive formulation of the curve of pressure which 
correlates form and force was published by Thomas Young in 1817 (Huerta 2010a). 
The curve of pressure is the locus of the application points of the resultant internal 
forces. It is uniquely defined and describes the actual state of the investigated 
structure. Moreover, to guarantee the balance, the curve of pressure must be entirely 
contained within the arch’s thickness (Mosley 1833) (Fig. 1).

Although the concept of the curve of pressures was known since the early French 
studies on arches (De La Hire 1729), its derivation remained unknown through the 
nineteenth century (Mosley 1833). Following this, during the twentieth century, 
the spreading of elasticity theory (Timoshenko and Goodier 1951) led to the 
abandonment of methods of assessment involving the pressure curve.

Only after Heyman’s work (1966) were the approaches relying on the curve 
of pressure re-discovered, and the focus posed on determining the line of thrust, 
i.e., one of the possible paths on which internal forces in a structure transport 
external loads to the supports. The ‘line of thrust’ does not describe the actual 
state of the structure as the curve of pressure does, but only one among the 
infinite possibilities. Despite this, the state of masonry structures can be 

Fig. 1   Structural behaviour of an Arch. a Hooke’s analogy between an arch and a hanging chain; b 
Superposition of the Catenary and the arch by R. Pedreschi and Hooke’s analogy (Hensel and Menges 
2008)
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assessed through the Safe Theorem (Heyman 1966); e.g., referring to an arch, 
if at least one line of thrust lies entirely within the section of the structure, then 
that structure is in equilibrium. In recent decades, inspired by the membrane 
formulation, researchers have extended the idea of the line of thrust, adapting it 
to double-curved structures (Angelillo et al. 2014; Block and Ochsendorf 2007) 
and developing the historical graphic statics (GS) methods. This adaptation 
is seen in the case of the slicing technique formulated by Frézier (1737), today 
widely adopted by several researchers (Huerta 2007; Cennamo et al. 2019), thrust 
network analysis (Block and Ochsendorf 2007) whose roots can be found in 
Maxwell’s structural reciprocity idea of 1864 (Baker et al. 2013), or the research 
conducted on the Durand-Claye method (Aita et al. 2017).

The GS method investigated here is derived from Eddy’s work (1878). His 
formulation was the first dedicated to the analysis of masonry spherical domes. 
Indeed, the method allows the simulations of these structures through a system 
of forces constituted by meridian forces acting in the vertical planes and by hoop 
forces acting circumferentially.

A development of Eddy’s method was published by Wolfe (1921), in which, 
as shown in Fig.  2b), a larger variety of geometry can be analysed. Both 
approaches are extremely conservative; they evaluate the line of thrust located in 
correspondence to the median radius of domes. Recently Eddy’s work has been 
described analytically in (Galassi et  al. 2017), but the first review of the work 
of Eddy and Wolfe is provided by Cipriani and Lau (2006), who developed the 
Modified Thrust Line Method (MTLM).

MTLM allows assessing the state of axisymmetric structures by tracing the line 
of thrust within the entire thickness of the structure investigated. Here, Wolfe’s 
and Eddy’s conservative constraints have been removed, and for solving the static 
indeterminacy of domes, the hoop forces are estimated through an optimisation 
algorithm (Lau 2006).

Fig. 2   MTLM in historical formulations. a Eddy’s method (1878) relative to a hemispherical dome; b 
Wolfe’s method (1921), which considers the lack of tensile strength of masonry
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This present research presents the development of the MTLM. Here 
considerations on the hoop forces are exposed and, through adoption of a 
distribution function for hoop forces, they are estimated. The formulation does not 
violate Heyman’s hypotheses (i) (ii) (iii); and relies on the observation of the visible 
crack patterns seen on existing masonry domes, such as the dome of the Pantheon 
in Rome (Terenzio 1933). Similar to the curve of pressure, the actual distribution of 
hoop forces cannot be determined, but to counter this, a restricted domain in which 
searching for the distribution of hoop forces is proposed. Therefore, through the 
distribution function and the bounded domain, the hoop forces can be determined 
graphically and a line of thrust traced for assessing the state of the structure. The 
authors do not aim to propose a new GS tool but rather to increase the efficiency of 
the existing MTLM; indeed, one reason why this method is not widely applied is the 
difficulty of determining the hoop forces (Lau 2006), which is addressed through the 
present research.

An exhaustive formulation is provided in Sect.  2, where the process on which 
MTLM is based is described. In particular, the equilibrium of blocks is set forth in 
Sect. 2.1, while considerations on hoop forces and the definition of the distribution 
function are addressed in Sect.  2.2. In Sect.  3, two different case studies are 
illustrated. The purpose of these sections is to provide two examples of how to apply 
the formulation proposed and also highlight the unconventional applications. The 
conclusions are discussed in the last Sect. 4 (Fig. 2).

Modified Thrust Line Method

The slicing technique is a powerful GS method for estimating the structural state 
of domes, which Poleni (1748) applied to investigate the equilibrium of St. Peter’s 
dome in Rome (Heyman and Poleni 1988). The slicing technique makes it possible 
to evaluate the state of the dome by dividing the structure into equal slices; however, 
it neglects the action of the hoop forces and for that reason, it is an extremely 
conservative method.

Due to spatial geometries, vaults, domes, and shells exhibit quite different 
behaviour compared to one-dimensional structures such as arches. According to the 
membrane theory, the three-dimensional geometries provide additional resources to 
withstand loads, thus slicing techniques cannot simulate their structural behaviour. 
In contrast, MTLM and thrust network analysis can describe the mechanics of 
doubly-curved structures. In particular, with thrust network analysis, the state of 
doubly-curved shells is examined exploiting the advantages of reciprocal polygons 
(force polygon and form polygon) (Maxwell 1870); thus, accounting for hoop forces. 
Due to the possibility of graphically manipulating the form and the force polygons, 
thrust network analysis is widely used for the design of masonry structures (Davis 
et al. 2012).

MTLM combines membrane theory and slicing technique; it recognises the 
influence of the hoop forces but relies on a fixed form polygon. In addition to 
Heyman’s hypotheses (i), (ii) and (iii), MTLM requires one more assumption: 
(iv) loads and geometry analysed must be axisymmetric. Due to this additional 
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assumption (iv), the set of structures that can be analysed through MTLM is 
limited, and for this reason, it is scarcely applied for the design of new shells. 
Despite that, as Sect. 3 points out, the method is suitable for estimating the state 
of historical domes (Zessin et al. 2010).

MTLM relies on an iterative procedure, analogous to the slicing technique. 
Indeed, as in the slicing technique, the shell that is the object of the investigation 
is cut radially into equal portions called lunes; due to the symmetry, only one 
lune needs to be analysed (Fig. 3a). Then, the representative section of the lune 
(section A–A) is examined by the estimation of the line of thrust. Due to Safe 
Theorem and symmetry of the structure analysed, the balanced state of the whole 
structure is guaranteed if a line of thrust can be traced that lies entirely within the 
cross-section of the lune (Heyman 1967).

For the purpose of tracing the line of thrust, the investigated lune is divided 
into rigid bodies, also called blocks. These are enumerated starting from the 
bottom to the crown of the shell; that is, blocks index i = 0 corresponds to the one 
placed at the spring, and the i = n to the uppermost one (Fig. 3b). Then, relying 
on the lune’s actual geometry, centroids Ci =

(
xci, zci

)
 and relative weights wi for 

each block are defined (Fig. 3).
The shape of the line of thrust is traced by the interpolation of the points 

Pi =
(
xi, zi

)
 , whose individuation involves geometrical and physical entities. 

All points Pi belong to the plane of the section analysed, and are determined as 
expressed by the condition in Eq. 1, i.e., referring to a ith block, the position of 
point Pi is the intersection of the vertical line passing the centroid Ci and the line 
of action of the thrust on the ith block passing through the point Pi+1.

Fig. 3   Representation of an axisymmetric masonry structure. a Sectional view: representative section of 
a lune (top); plan view: structure divided into lunes (bottom). b Representation of the section A–A, the 
rigid bodies (blocks) and relative centroids enumerated
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In Eq. 1 the angle �i+1 represents the inclination of the thrust acting on the ith 
block, and the distance zi+1 the ordinate of Pi+1 , thus the position of all points Pi are 
defined knowing the angle �i+1 of the thrust and by solving Eq. 1 starting from the 
point whose index i = n , i.e., the one relative to uppermost block. Unlike all other 
points Pi , the position of the last point Pn is arbitrarily imposed (Fig. 4).

As already mentioned, the line of thrust is traced by interpolating the set of points 
Pi and to be acceptable, this curve must lie within the thickness of the dome. To 
accomplish this the condition in Eq. 1 alone is not sufficient. Therefore, denoting 
the entire surface of the section by Σ (Fig.  3a), an additional condition is placed. 
Equation 2 constrains the position of Pi within the section analysed:

Equations 1 and 2 together determine the restricted set in which points Pi must be 
included to achieve the balanced state. These two equations do not involve the forces 
directly, but only entities associated to them, such as the inclination �i+1 . Thus, for 
determining the set of points Pi , equilibrium equations must be written and solved.

(1)Pi ∶= Pi ∈

{
z = xci ∧ z = tan

(
�i+1

)(x − xci+1

zi+1

)}

(2)∀Pi ∈ Σ

Fig. 4   Determination of point P
n
 . The point P

i
 has the same abscissa of centroid Ci and is determined by 

the intersection of the line ti and the vertical line si
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Equilibrium of Blocks

Referring to the ith block drawn in Fig. 5b, the nodal equations of equilibrium involve 
all the forces acting on it: the thrust Ti+1 , which is the resultant of the upper portion of 
the lune, the reaction −Ti , the weight wi , and the hoop forces �Hi . The equilibrium 
along the z-direction is expressed by Eq. 3: the reaction −Ti balances the weight wi 
and the thrust Ti+1 . In this direction, there is no contribution to the hoop forces �Hi ; in 
fact, they act on a plane horizontal and parallel to the normal of the lateral face of the 
block (Fig. 5a), thus, as Eq. 4 states, they affect the balance in the x-direction. In the last 
direction, the one perpendicular to the section plane, the only forces involved are the 
hoop forces �Hi Nevertheless, since the sail is symmetrical and symmetrically loaded, 
their sum is always null, given by the Eq. 5 (Fig. 5).

(3)Tz

i+1
+ wi = Tz

i

(4)Tx
i+1

+ 2ΔHx
i
= Tx

i

(5)ΔH
y

i
= ΔH

y

i

Fig. 5   Equilibrium of block. a Equilibrium of the ith block, plan view, x–y plane (top) and elevation, z-x 
plane (bottom) and relative polygon of forces. The forces applied to the point P

i
 are: the thrusts (red), the 

weight of the block (blue) and the hoop forces (green); b Spatial representation of the forces acting on 
the ith block; c Equilibrium of the nth block, the abscissa of the point P

n
 is arbitrarily chosen respecting 

Eq. 2 (Color figure online)
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Equations 3, 4 and 5 describe the balanced state of point Pi along the X, Y and 
Z directions. In these equations, all forces involved are decomposed into their 
components by the relations given by Eqs. 6, 7, 8 and 9.

The angle ϑ indicates the inclination of the hoop forces �Hi with respect to the 
axis X. For each point Pi Eqs. 3 and 4 allow the calculation of the inclination of the 
thrust γi by Eq. 10. Thus, their resolution allows the determination of the points Pi 
by Eq. 1.

However, due to the static indeterminacy, to solve the nodal equation of 
equilibrium other hypotheses are needed. Referring to the i = nth block, the balance 
equations Eqs. 3 and 4 become:

The z-component of thrust Ti is obtained by Eq. 11, but neither the inclination 
of the thrust γn nor the x-component of the thrust Ti are defined, hence Eq. 12 can 
be only solved by estimating the hoop force �Hn . The assumption of these two 
entities ( �Hn and γn) permits individuating the point Pi=n−1 and proceeds towards 
the following iteration i = n − 1 , where, again, Eq.  4 can be solved only after the 
estimation of �Hn−1.

On Hoop Forces

As detailed in Sect.  2.1, the knowledge of the hoop forces is necessary to find 
the position of points Pi , and therefore it is needed for evaluating the state of the 
lune. Due to the assumption (iv), the direction of hoop forces is known; they act 
normally about each block’s lateral face, as seen in Fig.  5a. Further, consistent 
with Heyman’s hypothesis (i), they induce only compressive stresses. Here, only 
their magnitude ‖�Hi‖ unknown, but due to the static indeterminacy it is not 
possible to identify the actual value. In fact, as long as no kinematic mechanism 

(6)Tx
i
= ‖‖Ti

‖‖ cos �i

(7)Tz

i
= ‖‖Ti

‖‖ sin �i

(8)ΔHx
i
= ‖‖ΔHi

‖‖ sin �

(9)ΔH
y

i
= ‖‖ΔHi

‖‖ cos �

(10)�i = arctan
T
y

i

Tx
i

(11)+wn = Tz
n

(12)2ΔHx
n
= Tx

n
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appears, infinite lines of thrust states are admissible. Despite that, by examining 
the crack patterns of existing domes, it is plausible to state a few observations on 
the hoop forces.

The cause of cracks could depend on several factors: excessive load, thermal 
alteration, etc. Among the several causes, the increasing of the span due to 
settling of the supports is one of the most common phenomena that leads to cracks 
(Masi et  al. 2018; Pavlovic et  al. 2016). Under these conditions, hemispherical 
or axisymmetric domes manifest cracks which start from the base, open along 
the meridian direction, and stop near the crown of the dome (Heyman 1967). 
This crack pattern is illustrated in Fig. 6a, and can be observed in the dome of 
Pantheon in Rome (Mark and Hutchinson 1986), in the dome of San Pietro in 
Rome (Como 2018), and even in that of Santa Maria del Fiore in Florence (Ottoni 
et al. 2010).

Whatever the cause, for ordinary structures the cracks appear in correlation 
to the tensile stresses. Furthermore, according to membrane theory, tensile 
stresses manifest in the lower portions of axisymmetric shells (Timoshenko 
and Woinowsky-Krieger 1959). Thus, in general terms, at the base of domes, 
meridian cracks open and no compressive hoop forces exist. Similarly to a set 

Fig. 6   Crack patterns of historic domes. a Heyman’s (1966) scheme of a dome’s crack pattern due to the 
increase of span; b Terenzio’s (1933) survey of the crack pattern of the Pantheon; c Possible distribution 
of the Pantheon’s hoop forces (green lines) based on Terenzio’s survey; d Crack pattern of the octagonal 
dome of Santa Maria del Fiore Cathedral (Ottoni et  al. 2010); e Crack pattern of the hemispherical 
dome of San Pietro Cathedral (Rome, 1748 survey by Poleni); f Crack pattern of the ellipsoidal dome 
of Santuario della Natività di Maria Basilica (Cuneo, 1962 survey by Garro); g Crack pattern of 
the hemispherical dome of Santa Maria Assunta in Carignano (Genoa, 1907 survey by De Gaspari) 
(Bacigalupo et al. 2013)
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of juxtaposed arches, shells display a one-dimensional behaviour, at least in the 
cracked portion. Near the crown, even cracked domes exhibit a double-curved 
behaviour that is needed to achieve a balanced state. Here, hoop forces can 
manifest (Fig. 6c).

Consistent with the description above, and considering positive compressive 
forces, it is assumed that the magnitude of the hoop forces is maximum near the 
dome’s crown and decreases along the z-direction. Thus, the minimum value, even 
a null one, is reached in proximity of the base of the structure. This assumption is 
compatible with the observation on the hoop forces described by Heyman (1966), 
as well as with membrane theory where the compressive forces decrease until they 
become tensile forces below a latitude of 51.82°. Therefore, the condition in Eq. 13 
expresses the relationship that all hoop forces must satisfy:

For each point Pi, the magnitude of its related hoop force ‖�Hi‖ is greater the 
following one ‖�Hi−1‖ . Thus, Eq. 13 highlights the existence of a correlation among 
hoop forces: their magnitude does not vary randomly but decreases as they go from 
the crown to the base.

According to Eq. 13, to solve the nodal equations of equilibrium a function which 
describes the distribution of hoop forces is introduced. This function, termed Dh, 

(13)‖‖ΔHi+1
‖‖ ≥ ‖‖ΔHi

‖‖∀i

Fig. 7   Determining of the hoop forces through Dh. Three different distribution functions Dh (top), 
their respective thrust lines in red (center), and relative hoop forces �H

i
 in green (bottom) (Color figure 

online)
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expresses the distribution of hoop forces in relation to a new variable k, providing 
the magnitude of all hoop forces required to assess the state of the structures (Fig. 7).

Referring to the same section displayed in Fig. 7, several equilibrated states can 
be identified, each determined by a different hoop forces’ distribution, Dh. Similar to 
the thrust line, the Dh are not uniquely defined; only when the structure is statically 
determined is the distribution function Dh unique.

The variable k is related to the index i of blocks by Eq. 14. Further, the value of 
function Dh provides the hoop forces’ magnitude of the n-1 block, i.e., if variable k 
is equal to 1, the index i = n − 1 and value of Dh(k) corresponds to the magnitude of 
‖�Hi−1‖.

The distribution functions Dh are defined by the conditions in Eqs. 15, 16 and 17. 
Hence the distribution functions Dh are bounded (Eq. 16) and monotonic decreasing 
(Eq.  17). Their upper bound M is arbitrarily defined; in contrast, the lower limit 
is not determined a priori, but in keeping with the behaviour of existing shells, it 
cannot assume tensile values.

All distribution functions Dh implemented within the present research respect 
the conditions in Eqs. 15, 16 and 17. However, by observation of a different crack 
pattern, different conditions could be assumed. Indeed, the procedure could be 
adapted to a solution that respects the different crack patterns.

The implementation adopted for performing the analyses makes it possible to 
write functions Dh analytically and then manipulate them graphically. Hence, in this 
formulation of MTLM the hoop forces are estimated in real time by manipulating 
the distribution functions. Therefore, the introduction of the distribution function Dh 
and the choice of the position Pn (see Sect. 2) make it possible to solve the nodal 
equations of equilibrium and to define points Pi and hence trace the line of thrust to 
assess the state of the lune.

Case Studies

To demonstrate the method described in Sect.  2, two historic masonry structures 
are analysed. The first one is the dome of the Pantheon in Rome built between 120 
and 135 CE (MacDonald 2002). The second case study corresponds to the dome of 
Santa Maria in Ciel d’Oro in Montefiascone (Viterbo): this masonry shell is a self-
balanced structure, i.e., due to the use of cross herringbone technique, it was built 
without the aid of any temporary support (Paris et al. 2020).

(14)k = n − i

(15)Dh ∶ {k ∈ ℕ|I ∶= 1 ≤ k ≤ n} ↦ ℝ
+

0

(16)k1 < k2 → Dh
(
k1
)
≥ Dh

(
k2
)

∀k ∈ I

(17)Dh(k) ≤ M∀ k ∈ I
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These two quite different structures are chosen for their peculiarities and in the 
analyses performed these features are included. For the case study of Pantheon’s 
dome, the presence of the relevant crack pattern is accounted for within simulations, 
while in the case of the dome of Santa Maria in Ciel d’Oro, due to the construction 
without scaffolding, several construction stages are examined along with the 
completed dome.

The Dome of the Pantheon

The Pantheon’s dome, with a diameter of 43.30 m, is the largest hemispherical dome 
in the world, its thickness decreases from 5.90 m at the base to 1.5 m at the crown 
(Aliberti et al. 2015; Fletcher 2019) (Fig. 8). The dome, constructed in unreinforced 
concrete with coffering on the intrados (Aliberti and Alonso-Rodríguez 2017), is 
composed of different layers of aggregate; the one near the support has the highest 
specific weight (16.00 kN/m3) and, like the thickness, it decreases with height (from 
16.00 to 13.50 kN/m3) (Masi et al. 2018).

For this case study, two different structural behaviours are simulated using 
MTLM. In the first simulation (I), the presence of meridional cracks is neglected, 
thus a full membrane behaviour is assumed. The second simulation (II) represents 

Fig. 8   Sectional view of the Pantheon’s dome. The two lines of thrust drawn are relative to the two 
structural behaviours: the continuous line to a full membrane behaviour (I), while dash line to a partially 
cracked dome (II)
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the actual configuration of the Pantheon’s dome, with the presence of the meridional 
cracks being considered. In keeping with the crack pattern visible on the dome (see 
Fig. 6b), only above the latitude of 56°, the hoop forces are not null, and below this 
the dome exhibits an arch behaviour.

The two structural behaviours (I) and (II) are reported respectively in Figs.  10 
and 11. For both simulations, the dome is sliced into 32 equal lunes and the central 
section of one lune is examined. Following the steps reported in Sect. 2, the lune 
was subdivided into 87 blocks for determining the set of points Pi.

Two different distribution functions Dh were considered, one for each structural 
behaviour (I) and (II), but for both the functions Dh were defined with the purpose of 
tracing the safest line of thrust, i.e., the line of thrust which lies close to the median 
curve of the investigated section (Huerta 2010b). For this, and to differentiate these 
two distributions functions with others adopted in the following analyses they are 
denominated as Safe Dh.

In simulations (I) the Safe Dh is the linear function illustrated in Fig.  9 
(continuous line). Its maximum is 10.25; thus, the maximum magnitude of the 

Fig. 9   MTLM analyses for simulation (I). (Top) Dh function assumed; (centre) sectional view of the 
dome and lines of thrust; (bottom), plan view of the lune analysed and the hoop forces applied on it; 
(right) polygon of forces
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x-component of hoop forces ‖�Hx
n=87

‖ is 10.25 kN, and as stated by Eq. 8, the hoop 
force correspondent is ‖�H87‖ = 104.57 kN. Further, in (I) simulation, the hoop 
forces are never null; their magnitude decreases until reaching the minimum values 
of ‖�H1‖ = 60.11 kN at the dome’s base. With this Dh, the line of thrust lies close 
to the section’s median curve (see Fig. 8). Thus, the dome exhibits a balanced state 
with a high safety factor (Huerta 2010b).

The presence of meridional cracks, simulation (II), leads to a variation of the 
magnitude of hoop forces. In fact, in simulation (II), the Safe Dh adopted has Dh(0) 
= ‖�Hx

n=87
‖  = 12.00 kN as maximum and becomes zero from k = 25, that is i = 62 or 

latitude equal to φi = 56°. The magnitude of the hoop forces rapidly decreases from 
the maximum ‖�H87‖ = 122.43 kN to the value of 82.56 kN when index i = 72. 
After that, the hoop forces remain constant up until block 63. The geometry of the 
line of thrust traced using this function is close to the median curve of the section 
up until a latitude of φ = 56°, and then the absence of hoop forces, move the line of 
thrust toward the intrados (Fig. 9).

For both structural behaviours, a few investigations about the relation between 
the distribution function and the line of thrust were carried out. For each behaviour 
(I) and (II), two distribution functions were assumed: a constant function denoted 
with Constant Dh, and an impulse function indicated as Impulse Dh. These analyses 
were performed searching for the minimum and the maximum hoop forces at the 
uppermost blocks (i = 87). The minimum magnitude was computed assuming 
a Constant Dh and placing point P87 close to the extrados of the dome, while the 
maximum magnitude occurs considering the Impulse Dh, whose peak occurs for 
k = 0.

For both structural behaviours (I) and (II), the Impulse Dh does not lead to a 
balanced state. Thus, in both simulations, the Impulse Dh has a minimum constant 
value different from zero for any k, and leads to define constant hoop forces, whose 
magnitude is ‖�H0−86‖ = 29.13 kN for (I) and ‖�H63−86‖ = 46.65 kN for (II). With 
these Impulse Dh and under the assumption placed in Sect. 2.2, the x-component of 
the thrust at the base of the dome is =  Tx

1
771.12 kN for (I) and 514.89 kN for (II), 

and the lines of thrust traced correspond to the minimum line of thrust. As reported 

Table 1   Forces calculated by MTLM for the two structural behaviours (I) and (II)

φ
(°)

I II

Constant Dh
(kN)

Safe Dh
(kN)

Impulse Dh
(kN)

Constant Dh
(kN)

Safe Dh
(kN)

Impulse Dh
(kN)

78.3 ‖�H
87
‖ 78.30 104.57 1428.32 87.74 122.43 1226.83

77.4 ‖�H
86
‖ 78.30 104.06 29.13 87.74 116.44 46.65

56.7 ‖�H
63
‖ 78.30 88.54 29.13 87.74 82.56 46.65

55.8 ‖�H
62
‖ 78.30 88.03 29.13 0.00 0.00 0.00

0.9 ‖�H
1
‖ 78.30 60.11 29.13 0.00 0.00 0.00

‖Tx

1
‖ 1335.45 1404.34 771.12 548.74 560.48 514.89

‖Tz

1
‖ 8340.11 8340.11 8340.11 8340.11 8340.11 8340.11
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in Table 1 and displayed in Figs. 10 and 11, unlike Impulse Dh, the Constant Dh 
functions do not give any significant line of thrust.

Concerning the uppermost block, the two distribution functions (Constant Dh 
and Impulse Dh) are determined in order to define respectively the minimum and 
the maximum magnitude of the hoop forces. The minimum corresponds to ‖�H87‖ 
= 78.30 kN for simulation (I) and ‖�H87‖ = 87.74 kN in simulation (II). Thus, any 
distribution of hoop forces with maximum magnitude lower than one estimated 
with the Constant Dh would lead to an unbalanced state. In contrast, in the case 
of Impulse Dh, higher magnitudes than ‖�H87‖ = 1428.32 kN for full membrane 
behaviour and ‖�H87‖ = 1226.83 kN in simulation with the presence of cracks (II) 
lead to collapse (Fig. 10).

It should be noted that the range of admissible magnitude of hoop forces ‖�H87‖ 
relative to simulation (I) is larger than that of simulation (II). The cause of this is 
attributable to the presence of cracks, and consequently the absence of hoop forces, 
which reduce the domain of equilibrated solutions. Denoting the ratio between the 
maximum and the minimum hoop forces with αi, the difference between the two 

Fig. 10   MTLM analyses for simulation (II). (Top) Dh function assumed; (centre) sectional view of the 
dome and lines of thrust; (bottom) plan view of the lune analysed and the hoop forces applied on it; 
(right) polygon of forces (right)
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simulations is highlighted. Indeed, in simulation (I) the ratio α87 is equal to 18.24, 
and 13.98 for simulation (II), i.e., the presence of crack leads to a reduction of the 
admissible range of 23.35%.

The Dome of Santa Maria in Ciel d’Oro

The dome of Santa Maria in Ciel d’Oro is an octagonal masonry dome whose 
diagonal measures 13.52 m (Docci 2011), and whose thickness varies from 0.82 to 
0.32  m with the height. The dome also carries the weight of a small lantern and 
part of the roof. Further, the intrados of the dome is not plastered, and the masonry 
layout is exposed, along with several other restoration and maintenance interventions 
conducted in concrete. Thus, for all analyses executed, a concentrated load is applied 
in correspondence of the oculus and equal to 140.00 kN; and a specific weight equal 
to 18.00 kN/m3 is assumed.

The use of the distinctive building technology—the cross-herringbone—
enabled the construction of the dome without falsework. Hence, the balanced 

Fig. 11   Geometry of Santa Maria in Ciel d’Oro dome. (Top) B–B and C–C sectionals views of the 
dome; (bottom) the bottom-up view of two lunes
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state must be achieved even during the construction work. For this reason, two 
different construction stages and the completed structure are examined. The first 
construction stage is simulated by evaluating the geometry of the dome up to the 
latitude of φ = 30.6°, therefore each lune is constituted by 34 blocks, while in 
the analyses concerning the second construction stage the number of the blocks 
is 59, and the portion of the dome is arrested at a latitude of φ = 53.1°. Finally, 
in the completed dome 84 blocks compose each lune. As in the case study of 
the Pantheon’s dome, the blocks are obtained by radial divisions, starting from 
the dome’s centre and with an inclination changing at a uniform 0.9° angle in 
all three cases, thus allowing the comparison between the different construction 
stages.

For all simulations performed, the dome was divided into 16 lunes, and in order to 
address the absence of axial symmetry of the geometry two of them were analysed. 
These two lunes are reported in Fig. 11. The first one contains section B–B, i.e., the 
section obtained by the intersection of the dome and the vertical radial plane whose 
projection onto the XY plane passes through the midpoint of the edge of the dome 
itself. The second one includes the diagonal of the octagon and is indicated by C–C.

The balanced state of the dome is guaranteed only if both the lunes are in 
equilibrium, but they are adjacent to each other and thus have a common interface 
through which exchange forces. Thus, the equilibrium can be achieved only if the 
hoop forces determined for the two lunes are the same. For this reason, the two lines 
of thrust illustrated in Fig. 11 were estimated assuming the same Dh, despite the fact 
that, due to the lune’s different geometries, the two lines of thrust are different. The 
variation in term of z-components ‖Tz

i
‖ is relevant. Indeed, the lune related to section 

C–C weights 12% more than the other one; nevertheless, the horizontal thrust ‖Tx
i
‖ 

evaluated in correspondence of section C–C is 31.93 kN, while for section B-B it is 
‖Tx

i
‖ = 32.18kN. Therefore, the variation of the horizontal component of the thrust 

is only 0.25 kN, equal to 0.7% of the ‖Tx
i
‖ of section B-B, which makes it possible 

to ascertain that the hoop forces acting on the two lunes are the same. Indeed, even 
if the Dh adopted for the two analyses is the same, due to the difference in the 
geometry of the two lunes and thus of the blocks, the hoop forces change slightly. 
Despite that they have same distribution and their sums the ‖Tx

i
‖ are almost identical, 

and therefore it is possible to affirm that the two lunes balance each other (Fig. 11).
Even if the analyses were always carried out on both the lunes, for clarity in what 

follows the results reported will refer only to the section B-B.
Table  2 summarises the values of forces estimated in the three different 

simulations related to different construction stages. In particular, the analysis 
highlights the fact that the maximum hoop forces required to achieve an equivalent 
condition of balance are about 13 times larger in the completed dome than during 
construction. Indeed, the maximum magnitude of hoop forces at completed 
construction works is ‖�H84‖ = 33.75 kN while in the other cases ‖�H59‖ = 2.56 
kN for second construction stage and ‖�H35‖ = 2.56 kN for the first stage. The 
reason for this should be attributable to the concentrated load derived by the lantern, 
and by removing this added load and maintaining the same line of thrust, it can be 
seen that the hoop forces decrease to the value of ‖�H84‖ = 3.08 kN, returning back 
to the same order of the construction stages.
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This characteristic is readable even in the shape of the Dh functions: the two Dh 
related to the first and second construction stages (Fig.  13b, c) are quite similar, 
while the function associated to the completed dome reaches a peak and then 
decreases rapidly to a value of 0.15, becoming linear and reaching the zero values 
for k = 82. Thus, in case of completed dome, the hoop forces related to the firsts 
blocks are zero, while the magnitude of hoop forces for the other two construction 
stages it does not reach zero, they are ‖�H1‖ = 0.34 kN for second construction 
stages and ‖�H1‖ = 0.02 kN for the first one (Fig. 12).

Concerning a generic ith block, the hoop forces decrease during the construction 
works, e.g., for a latitude of φ34 = 30.6° their magnitude ‖�H34‖ starts from 2.56 
kN in the first stage and reaches 0.18 kN at completed dome. This behaviour is 
exhibited even if the concentrated load is not considered. These analyses highlight 
the stabilising action of the load coming from the blocks placed above the one 
examined, i.e., in terms of sliding failure, the most dangerous stage occurs during 
the placing operation (D’Ayala and Tomasoni 2011).

Table 2   Forces calculated 
by MTLM for the three 
construction stages

φ
(°)

I stage
(kN)

II stage
(kN)

Completed
(kN)

74.7 ‖�H
83
‖ – – 33.75

53.1 ‖�H
59
‖ – 2.56 0.20

30.6 ‖�H
34
‖ 2.56 1.25 0.18

0.9 ‖�H
1
‖ 0.34 0.02 0.00

‖Tx

1
‖ 17.40 25.69 32.18

‖Tz

1
‖ 96.24 126.20 144.73

Fig. 12   MTLM analyses for the dome of Santa Maria in Ciel d’Oro. a Completed construction stage; b 
second construction stage; c first construction stage
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Other simulations were carried out to examine the variation of the hoop forces 
during the construction works. The entire construction process was investigated 
through ten other simulations, and a distribution function was defined for each 
one. As in the previous analyses, these were conducted defining functions Dh lead 
to the same shape of the line of thrust, therefore all Dh determined are similar, 
and their variation is almost regular. In the early stages of construction, i.e., up to 
the angle φ = 20°, linear functions describe the distribution of hoop forces, then 
the distribution changes slightly becoming superlinear.

The spatial surface displayed in Fig.  13 is derived by interpolating all 
distribution functions determined for the different construction stages, and 
for the final one, which corresponds to the completed dome, however, here the 
concentrated load is not considered. The surface describes the variation of the 
distribution of hoop forces during the construction works, for this reason, it is 
denoted by the term surface of distribution of hoop forces (ζ). The three axes 
which describe the ζ correspond to the distribution functions Dh, in the Z 
direction, and to the construction stages and the index i, in the XY plane. Thus, 
the surface ζ is interpolated by monotonically increasing function, and it has a 
minimum and a maximum, which respectively correspond to 0.11 and 1.20. 
For what is observed, all functions Dh relative to all construction stages can be 
derived. For example, the two distribution functions illustrated in Fig.  13a, b 
relative to the first and second construction analysed previously can be derived 
through the intersection of vertical planes and the surface itself. Furthermore, 
the surfaces confirm what has already been highlighted: during the construction 
the hoop forces needed to reach a fixed balanced state change. Considering a 
block, the maximum hoop forces are recorded during the placing of the block 
itself. Figure 13 also reports the function Dh in case of the completed dome and 
considering the concentrated load added due to the lantern. In this simulation the 

Fig. 13   Spatial surface interpolated by the distribution function relative to the different construction 
stages. The two axes in the plane XY represent the progression of the construction works, and the blocks, 
this one denoted by index i. The third axis describes the variation of distribution function Dh 
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distribution function is different and the surface ζ exhibits discontinuity to the 
previous one (Fig. 13).

Conclusion

The actual structural state of a masonry dome or shell cannot be known; however, 
its stability can be assessed within the limit analysis and with the aid of the Safe 
Theorem (Heyman 1966). In this study a new formulation of MTLM is presented. 
The introduction of the distribution function Dh allows estimating the hoop forces 
needed to solve the equilibrium through an automatically iterative process.

The two cases studies presented in Sects. 3.1 and 3.2, testify to the wide range 
of application of the MTLM combined with the use of distribution function Dh. 
These applications include structures whose geometries are different from the 
axisymmetric ones, but which present axes that converge to a point, e.g., regular 
polygons in plan. In these cases, further assumptions must be considered, for 
example, as shown in Sect.  3.2, an octagonal dome is analysed by studying two 
different lunes and assuming a unique distribution function. Hence, with careful 
observations, regular polygons can be investigated. As also proven by the analyses 
on Santa Maria in Ciel d’Oro, the use of Dh allows to carry out simulations on the 
variation of the structural state during the different construction stages. Indeed, 
even from this trivial analysis, an exciting remark on the variation of the dome’s 
structural state can be concluded by inspecting the surface ζ. This surface exhibits 
neither discontinuities nor gaps, which occur due to unexpected variation of loads 
(concentrated load due to the lantern) or sudden alterations in the geometry. Thus, 
knowing the structural state of a dome and relative Dh function for two different 
construction stages, it is possible to estimate other states using the surface of the 
distribution of hoop forces.

Studies on the variation of the structural state during the construction works can 
provide in-depth knowledge of architectural heritage, e.g., helping understand the 
evolution of construction technologies, and the reasons behind the architectural 
design. Furthermore, the evaluation of the structural state variation could be applied 
to different research fields. For example, the concept of the surface of distribution 
ζ could be used to define the best process of construction of new self-balancing 
masonry shells, i.e., built without any temporary supports or centring.

Therefore, the introduction of the distribution function Dh widens the range of the 
application of MTLM, facilitating the estimation of the structural state of historical 
masonry domes or shells. The use of distribution function Dh also places the basis 
for evaluating the variation of the structural state during the construction works. In 
this direction, the MTLM can provide a useful contribution to the development and 
construction of the avant-garde masonry shells.
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