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Abstract Inspired by the Ryōan-ji garden in Kyoto, we formulate and solve some

problems on the arrangement of two sets of points in the plane. We imagine a Zen

Master and a Zen Monk that want to create a dry garden: they will discover the

importance of convexity and collinearity, as well as incidence and betweenness. We

present these problems with a didactic exposition and we suggest some general-

izations which require other mathematical tools.

Keywords Incidence � Convexity � Collinearity � Polygons

Mathematics Subject Classification 00A35 � 00A66 � 51M04 � 52A10

Introduction

In 1975 the Queen of England visited the Ryōan-ji Zen temple (which means The

Temple of the Dragon at Peace) in Kyoto (Japan). Like all tourists, she experienced

that, standing in any point of the Master’s porch, it is not possible to see all the 15

stones placed in the front garden, see Fig. 1. We wonder if the Queen of Sciences

may reveal us something more about this singular arrangement.

The kare-sansui garden in the Zen Buddhist temples is a dry garden made of

stones, smooth pebbles and moss. Someone says that the Ryōan-ji garden is a kōan,

a riddle that helps in meditation. Deeper meditation is necessary to construct this

special arrangement of stones so that not all of them can be seen at once. While
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listening to this story, we imagine the dialogue between a Master and a Monk for

realizing this garden. With a mathematical eye, we simplify the setting and present

several problems about points arrangements in a rectangle. The points will

correspond to the rocks in a kare-sansui garden.

Japanese gardens and temples have already inspired mathematical problems,

originally written on wooden blocks. A good reference for this subject is Fukagawa

and Rothman (2008); unfortunately, the Ryōan-ji is not present in this book. On the

other hand, the presence and breaking of symmetry of the Ryōan-ji garden has been

analyzed in Van Tonder et al. (2002) and Van Tonder and Lyons (2005). In

particular, the authors show local axes of symmetry among the rocks by using

medial axis transformations. This is an a-posteriori approach focused on the visual

perception, whereas we imagine the garden in the moment of its construction.

In this paper, taking inspiration from the Kyoto garden, we suggest didactics

kōan that may help to appreciate the importance of the symmetry in these

constructions. We do not know whether such formulation already exists in literature.

We prefer to formulate and solve problems with elementary tools, even though

some of them can also be read with the language of Euclidean Geometry,

Combinatorics and Graph Theory. In order to show the difference between the

didactic and the formal exposition, we present the solution to some problems with

both languages.

We warn the reader that, according to the travel guides, spending enough time in

Kyoto, one could eventually reach the illumination and see all the 15 stones in a

glance. We did not succeed in that, however the word illumination suggested us to

compare this problem with the illumination problem in an art gallery. In Urrutia

(2000), the author analyzes many problems about placing lights (or guards) in a

museum in order to illuminate its walls. These belong to the class of Visibility

Problems in Computational Geometry, the most famous of which is the so-called

Art Gallery Problem (Chvátal 1975; Fisk 1978): one wants to find the minimum

Fig. 1 The Ryōan-ji garden [Source: Wikipedia (https://commons.wikimedia.org/wiki/File:Kyoto-
Ryoan-Ji_MG_4512.jpg)]
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number of guards to control the whole gallery. In our setting the stones play the role

of the guards or of the lights.

The similarity between the Art Gallery Problem and our garden is clear if we

look at Van Tonder et al. (2002, Figure 2), consider the bifurcation points of the

branched tree as guards in the museum and identify the center of each room with a

rock in the garden, see also Fig. 13b in this paper.

One of the main differences between our setting and the visibility problems is

that we often require convexity.

Plan of the Work

‘‘Arranging Stones and Masters’’ is the main part of the paper, the problems are

presented with an increasing level of difficulty up to the more general Problem 6,

which is a 2-dimensional version of the Ryōan-ji garden with a finite number of

visitors. ‘‘Polygonal Arrangements’’ is devoted to investigate possible symmetric

gardens and polygonal arrangements. In ‘‘Generalizations’’, we sketch further

mathematical ideas inspired by the Ryōan-ji garden. In the ‘‘Appendix’’ we recall

Incidence and Betweenness Axioms, according to Hilbert’s formulation, and rewrite

some of the problems of ‘‘Arranging Stones and Masters’’ with this formalism.

Notation

Throughout the paper, we assume N � 2 to be an integer, which denotes the number

of stones S1; . . .; SN . Moreover, we shall use K � 1 to denote the number of Zen

Masters, M1; . . .;MK .

Now we have two sets of points, the stones and the Masters. We formulate our

problems by using the expression ‘‘the Master can see the stone’’. From a

mathematical point of view, this means that on the line segment between the Master

and the stone there is no other point, representing a Master or a stone. In general,

given three distinct points A, B, C, we write A � B � C if B belongs to the segment

AC. In particular, A cannot see C.

For simplicity, we further assume that the garden is rectangular, even though we

can weaken this assumption as convex polygon.

When we refer to inside (or interior) and outside (or exterior) of a convex

polygon we do not include the points of the boundary.

The boundedness of the garden is a restriction, not an assumption, see for

example Solution 6. If necessary, all problems can be written in an unbounded

convex garden with the Masters inside.

Arranging Stones and Masters

Problem 1 On the first day the Master asks the Monk: can you place N stones in

the garden in such a way that if I sit in a precise spot along the garden’s edge I can

see exactly N � 1 of them?
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Solution 1 The Monk draws an M where the Master will sit. Then he draws N � 1

pairwise distinct lines passing through M and places one stone on N � 2 of these

lines and 2 stones on the remaining line, see Fig. 2a. For example, this means that

M � Si � SN for some 1� i�N � 1.

Problem 2 On the second day the Master asks the Monk: can you place N stones

in the garden in such a way that if the K Masters of the temple sit in precise spots

along one side of the garden, no one can see a particular stone? What is the

maximum number of Masters that I can invite so that you can solve this kōan?

Solution 2 The Monk imagines K points M1; . . .;MK on one side of the garden

where the Masters will sit. Then he places the stone SN in the garden and draws the

line through SN and Mi for i ¼ 1; . . .;K. In order to cover SN , he will place the stone

Si on the line segment MiSN . The Monk realizes that it has to be K �N � 1 and the

maximum number of Masters is K ¼ N � 1.

He concludes that Mi � Si � SN for every i ¼ 1; . . .;K and the stone Sj, for j ¼
K þ 1; . . .;N � 1 can be placed in any point of the garden, see Fig. 2b.

From now on, unless otherwise stated, we consider N stones and N � 1 Masters.

If in Problem 2 we have N ¼ 3 and the two Masters sit on different sides of the

garden, the construction suggested by the Monk in Solution 2 is still admissible, but

for some configurations each Master could see less than N � 1 stones. For example,

in Fig. 3a each Master can only see 1 stone instead of 2.

Problem 3 On the third day the Master asks the Monk: there are 2 Masters and 3

stones, can you place them so that each Master can see exactly 2 stones and the

hidden stone is the same for both Masters?

Solution 3 The Monk notices that if the Masters sit on the same side of the garden,

then Solution 2 is still valid. On the other hand, if the Masters sit on different sides

of the garden, the Monk draws the line through M1 and M2 and places the stone S3

outside the line. Then he places Mi � Si � S3 for i ¼ 1; 2, see Fig. 3b. The same

construction works for any position of the Masters along the boundary of the garden.

M

S1

S2

S3
S4

S5

(a)
M1

S1

M2 M3 M4

S5

S2

S3

S4

(b)

Fig. 2 The Masters cannot see a specific stone
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Conversely, if M1 � S3 � M2, then every choice of S1 and S2 does not fulfil the

request of the Master in Problem 3. In mathematical language, this corresponds to

the fact that the locus of the points S3 that solve Problem 3 is the interior of the

rectangle minus the line segment M1M2.

This problem can be generalized for N � 3.

Problem 4 On the fourth day the Master asks the Monk: there are 3 Masters

sitting on the garden’s edge. At least one Master does not sit on the same side as the

other two. Can you place 4 stones in the garden so that each Master can see exactly

3 stones and the hidden stone is the same for all Masters?

Solution 4 The Monk draws the triangle M1M2M3 and places the stone S4 inside

the triangle. Then he places the stone Si on the line segment MiS4 for i ¼ 1; 2; 3, see

Fig. 3c. Let us prove that this gives the solution. First of all notice that, since the

triangle is convex, each Master Mi can see the stone Si but not S4. Let us fix M1. We

need to show that M1 can also see S2 and S3. Assume by contradiction that M1

cannot see S2. Then either M1 � S1 � S2 or M1 � S3 � S2.

In the first case, M1; S1; S2 lie on the same line, which contains also S4. Since M2

belongs to the line through S2 and S4, it follows that S1; S2; S4 lie on the line segment

M1M2, against the fact that S4 is inside the triangle M1M2M3.

In the second case, M1 � S3 � S2 and, moreover, M2 � S2 � S4. Let us consider the

triangle M1M2S2 and the point S4. The line ‘ through S4 and S3 enters this triangle

and it intersects the side M1M2 in a point P such that S4 � S3 � P (the line cannot

intersect the segment M2S2 since S3 6¼ S2).

The line ‘ enters also the triangle M1M2M3 in the point P. Thus S4 and S3 are

outside the triangle M1M2M3, against the construction. Figure 4a shows a possible

configuration.

Hence M1 can see also S2 and, for the same reason, S3. Up to permuting the

indices, we conclude that Mi can see S1; S2; S3 for i ¼ 1; 2; 3.

From a mathematical point of view, we can say something more: according to

Solution 4, the interior of the rectangle is contained in the locus of the points S4 that

solve Problem 4. Having in mind Fig. 6a, clearly the sides of M1M2M3 are excluded

by such locus.

M2
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S2

S3

S1

(a)

M2

M1

S3
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(b)
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M3S4

S2

S1

S3

(c)

Fig. 3 N stones, N � 1 Masters
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We now consider the exterior of the triangle. Notice that, if S4 lies outside the

triangle, some configurations do not satisfy the condition that each Master has to see

exactly 3 stones, see Fig. 4a.

If S4 is placed outside the triangle M1M2M3, then we consider the triangle D with

vertices S4 and two of the masters such that D lies all outside the triangle M1M2M3

(they only have one side in common). Without loss of generality, let D ¼ M1M2S4

as in Fig. 4a. We consider Si on the line segment MiS4 for i ¼ 1; 2. If the stone S3 is

placed on the part of the line segment M3S4 that lies inside the triangle M1M2M3,

each Master can see the stones S1; S2; S3 for the same argument used in Solution 4,

see Fig. 4b.

In any case, for points outside the triangle, there are admissible configurations

which solve Problem 4. We conclude that the locus of the points S4 that solve

Problem 4 is the interior of the garden minus the sides of the triangle M1M2M3.

Problem 5 On the fifth day the Master gives N � 1 blue stones and 1 red stone

(denoted by an empty rectangle in the pictures) to the Monk and asks: tomorrow
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Fig. 4 4 stones, 3 Masters
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Fig. 5 N stones, N � 1 Masters
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there will be N � 1 Masters sitting inside the garden and each of them would like to

see all the N � 1 blue stones and not see the red one.

Solution 5 The Monk draws N � 1 points, representing the Masters, in the garden

and draws the lines through Mi and Mj for every i; j ¼ 1; . . .;N � 1, with i 6¼ j. He

takes care that the lines are pairwise distinct. Hence he considers the figure defined

by M1; . . .;MN�1 and containing all the segments MiMj.

He places the red stone SN in the interior of this figure, so that it does not lie on

any line through Mi and Mj. Moreover, he places the stone Si on the segment MiSN

for i ¼ 1; . . .;N � 1 in such a way that any pair of stones S1; . . .; SN�1 are not

collinear with any Mj, see Fig. 5. Thus the stone Sn is hidden to all masters.

To show that each Mi can see S1; . . .; SN�1, we apply the argument of Solution 4:

if Mj cannot see Si (i 6¼ j), then SN belongs to the line segment Mi;Mj, against the

construction.

When the Monk says in the interior of the figure defined by M1; . . .;MN�1, it is

not clear what is the figure and what interior means. In mathematical terms, this

concept corresponds to the so-called convex hull. The convex hull of a finite set of

points X in Rn is the smallest convex set C that contains X. Hence, the line segment

joining any two points of C lies entirely in C. It is well-known that the convex hull

forms a convex polygon when n ¼ 2, or more generally a convex polytope in Rn.

By induction on N � 2, one can prove that the locus of the points SN that solve

Problem 5 is the plane minus all the line segments MiMj.

If we do not require that the hidden stone is the same for all Masters, then the

solution is different and allows to increase the number of Masters, as shown in the

following Problem.

Problem 6 On the sixth day the Master gives N � 2 blue stones to the Monk and

asks: can you place these N stones in such a way that if N Masters sit on the

boundary of the garden, each of them can see exactly N � 1 stones? You can decide

the position of the Masters.

Solution 6 The Monk realizes that not having a red stone could suggest that the

hidden stone is not the same for all Masters. This allows to consider more Masters

with respect to the previous problems.

As in Problem 3, he first considers the case N ¼ 2. The Monk places the stones

inside the garden and invites the two Masters to sit on the intersections of the line

through S1; S2 with the boundary of the garden, see Fig. 6a. In this way each Master

can see exactly one stone. In this construction, the Monk realizes the importance of

deciding the position of the Masters.

In general, for every N � 2, the Monk places the N stones in the garden, so that

any three of them are not collinear, and then he draws
N

2

� �
¼ NðN�1Þ

2
lines through

any two stones. If needed, he moves the stones closer to each other, keeping them 3

by 3 noncollinear, so that all intersection points P1; . . .;Pk between the lines are

inside the garden. Now the convex hull of the points S1; . . .; SN ;P1; . . .;Pk, in gray

in Fig. 6b, lies inside the garden. It is enough to ask each Master Mi to sit on the
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intersection of the line SiSiþ1 with the boundary of the garden (here we use the

convention for which MN sits on the line SNS1).

Problem 7 On the seventh day the Master gives N � 2 blue stones to the Monk

and asks: what is the maximum number of Masters that I can invite so that sitting on

the boundary of the garden each of them can see exactly N � 1 stones?

Solution 7 The Monk sets the stones as in Solution 6 and invites two Masters to

seat on the intersections of each of these lines with the boundary. Thus the

maximum number of Masters that can be invited is 2
N

2

� �
¼ NðN � 1Þ. A simple

case is shown in Fig. 7.

This is indeed the maximum number of Masters. In fact, if there is one more

Master, he should sit either outside every line or on some line segment between two

stones, not blocking the view of any other Master. In both cases he can see all the

N stones, against the request.
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Fig. 6 N stones, N Masters
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Fig. 7 Maximum number of
Masters that can see N � 1 out
of N stones
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Polygonal Arrangements

On the second week, the Master was feeling the need to have a beautiful

arrangement of the stones in the garden and proposed the following problems.

Problem 8 The Master says to the Monk: I would like N � 3 stones to form a

regular polygon and if I sit in a precise spot along the boundary of the rectangle, I

can see exactly N � 1 stones.

Solution 8 At the beginning the Monk thought he had an easy solution: for

N ¼ 3; 4, it was enough to place an equilateral triangle and a square such that two

consecutive vertices are collinear with the Master (see Fig. 8a). For the triangle, this

is the ‘‘only’’ possible solution.

For N ¼ 4 a different solution is possible, taking M collinear with two opposite

vertices of the square (see Fig. 8b).

With this idea of symmetry in mind, the Monk placed the stones in the shape of a

regular pentagon, with one of the symmetry axis of the pentagon passing through

the Master. He struggled to find the only position of the stones for which the Master

could see less than 5 stones. More precisely, when the distance between the side of

the pentagon and the Master is ‘=2 tanð2p=5Þ (‘ being the length of the side), the

Master will see 3 stones, not 4 as requested (see Fig. 8c).

For a regular pentagon, also the simple solution of sitting on the line containing

one side may fail.

The Monk tried to rotate the stones fixing one of the two vertices closest to the

Master and realized that the problem was solved, but the solution was not so

‘‘beautiful’’. He wanted to show to the Master the symmetries of the pentagon, but

this was not possible. The simplest configuration he could imagine consisted in

placing two non-adjacent stones of the pentagon aligned with the Master, using the

diagonal of the pentagon, see Fig. 9a.

For the hexagon, the Monk was able to place the stones with a symmetry axis

aligned with the Master. In this way the Master could see 5 out of 6 stones and could

imagine two isosceles trapezoids, see Fig. 9b.

Thus the Monk realized that, except for the triangle, the construction was the

same for all polygons: the Master sits on a diagonal of the polygon. Nevertheless,

this solution includes a symmetry axis of the polygon for even-sided polygons. On

M
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(b)
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S2

S4

S3

S5

S1

S2

(c)

Fig. 8 Polygonal arrangements of stones

A Zen Master, a Zen Monk, a Zen Mathematician 467



the contrary, the symmetry axes of the polygon have to be avoided when they are

not diagonals of the polygon, otherwise the Master will see N or N � 2 stones. The

latter is also the minimum number of stones that the Master can see.

The Monk told the Master about the unfortunate case of the pentagon that, at a

certain distance, hid 2 stones (see the vertices S0
i in Fig. 8c). The Master thanked the

Monk for inspiring the next problem.

Problem 9 The Master says to the Monk: if N � 3 Masters sit in the vertices of a

convex N-gon, can you place N stones inside or on the boundary of the N-gon, in

such a way that each Master can see exactly N � 2 stones?

Solution 9 The Monk easily realizes that the problem does not have solution for

N ¼ 3. In fact, if N ¼ 3, since M1 and M2 need to see only 1 out of 3 stones, all

stones have to belong to the line segment M1M2. Hence the Master M3 sits outside

this line and will see 3 stones (see Fig. 10a).

For N ¼ 4, the situation is more complicated. After some attempts, the Monk

realizes that there is no solution, since the stones have to be placed inside or on the

boundary of the quadrilateral. Otherwise, allowing the stones outside the

quadrilateral, a solution is sometimes possible (see Fig. 10b, in which the Masters

M

S4

S5
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S3

(a)

M
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Fig. 9 Symmetric arrangements
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Fig. 10 The Masters sit on the vertices of a convex N-gon
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hinder the view of some stones). To convince ourselves that the Monk is right when

the stones are inside the quadrilateral, we argue by contradiction. Since M1 can see

exactly 2 out of 4 stones, M1 is the vertex of a cone and the stones are placed on the

sides of the cone. The same holds for M2. We conclude that the 4 stones are

arranged as in Fig. 11a. A third Master cannot sit inside either of the cones, since he

could see all 4 stones, neither on the boundary or outside both cones, since he could

see at least 3 stones.

For N � 5, the Monk considers the Master Mi and draws the diagonal connecting the

two Masters adjacent to Mi, for every i ¼ 1; . . .;N. In this way, a smaller N-gon is

drawn inside the N-gon whose vertices are the Masters. Then the Monk places the N

stones at the vertices of the small N-gon and notices that each Master can see exactly

N � 2 stones, see Fig. 11b. Indeed, from each Mi the Monk drew exactly two

diagonals. Each diagonal contains 2 stones, one of which is hidden to Mi. On the other

hand, Mi can see the remaining N � 4 stones. Indeed, if one of these is hidden to Mi,

then it would lie on a third diagonal starting from Mi, which is not drawn.

Combining the discussion in the Solutions of Problem 6 and 9, we conclude that,

for N ¼ 3; 4, the minimum number of stones, placed inside the garden, that can be

seen by N Masters is N � 1.

The Master admires the beauty and the symmetry of the construction and thinks

that from the stones one can draw diagonals with the same rule and obtain new

vertices for new Masters. The Monk also realizes that in a big enough garden,

extending the sides of the polygon and taking the intersection points as stones, one

obtains a new admissible configuration. Both the Master and the Monk are thinking

about a recursive graph, in other words to draw infinitely many nested polygons.

Generalizations

Looking at this recursive graph, the Masters left without new questions. When the

Monk woke up, he found N stones placed in the garden. Right away he understood

in how many and which positions he could sit in order to see exactly N � 1 stones.

M1
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Fig. 11 No solution for N ¼ 4 and recursive polygons
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While he was sitting to check the solution of this dual problem, he realized he had

become a Master himself and created many more problems for his students.

Garden with a Different Shape

In Problems 3, 4, 5, 6, 7, 9 the main idea is to construct figures containing the line

segments through the stones and the Masters, hence convex. Thus the same

constructions solve the problems for any convex garden, when the Masters sit on the

boundary. On the other hand, in a non-convex garden, some of the problems may

not admit any solution. For example Problem 3 does not have solution in the garden

in Fig. 12. In fact, since the visual field of M1 and M2 (in gray in the figure) are

disjoint, if M1 can see S1 and S2, then M2 can see at most one stone, against the

request of Problem 3. This setting reminds the Art Gallery Problem.

The Walking Master

Even the simple Problem 1 does not admit any solution if the Master is allowed to

walk along the edge of the garden. The solution we suggest is, in fact, not stable: as

soon as the Master moves along the edge, he can see all N stones. A mathematician

Monk understands that the problem of the walking Master is equivalent to having

infinitely many Masters.

In the Ryōan-ji garden, the tourist cannot see all the stones at once, even moving

along the edge of the garden. This does not contradict what we said in the previous

problem, since in real life the stones are 3-dimensional, not reduced to points.

2D-stones

In this paper, stones and Masters are represented as points in the plane. A more

realistic version of the construction of the Ryōan-ji garden requires at least that the

stones are disks. This problem is more difficult since, for example, in Fig. 2a we

need a condition on the ray of the hidden stone: the cone with apex the Master and

tangent to S3 has to contain S5, see Fig. 13a.

M1

M2

S1
S2

S3

Fig. 12 Non-convex garden

470 S. Lucente, A. Macchia



Bifurcations

The idea contained in Van Tonder and Lyons (2005) is to describe the properties of

the Ryōan-ji garden by means of a tree structure between the stones. In particular,

we can imagine to construct a garden with stones and hedges. We can formulate the

problem as follows: given N stones, one has to place hedges so that, if the Masters

sit on the bifurcations points of the hedges, then from each side of the hedge each

Master can see exactly 1 stone, see Fig. 13b. As explained in Van Tonder and Lyons

(2005), the mathematical instruments for this problem are medial axis

transformations.

Appendix

Here we suggest a formal discussion of our problems in order to show to some

readers that Hilbert’s formalism is more clear than a didactic approach, and to other

readers that a formal approach can be difficult at the beginning and the didactic one

is necessary.

Following Hartshorne (2000), we recall the Incidence and Betweenness Axioms

formulated by Hilbert.

Incidence axioms:

(I1) For any two distinct points A, B, there exists a unique line ‘ containing A, B.

(I2) Every line contains at least two points.

(I3) There exist three noncollinear points, that is, three points not all contained in

a single line.

A set whose elements are called points, together with a set of subsets called lines,

satisfying axioms (I1), (I2), (I3), will be called an incidence geometry. If a point

P belongs to a line ‘, we say that P lies on ‘, or that ‘ passes through P.

An easy consequence of the incidence axioms is the following:

(H) Two distinct lines can have at most one point in common.
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Fig. 13 2D-stones and bifurcations
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Assuming the Incidence Axioms (I1), (I2), (I3), we postulate a relation between

sets of three points A, B, C, called B is between A and C, subject to the following

Betweenness axioms:

(B1) If B is between A and C, written A � B � C, then A, B, C are three distinct

points on a line, and also C � B � A.

(B2) For any two distinct points A, B, there exists a point C such that A � B � C.

(B3) Given three distinct points on a line, one and only one of them is between the

other two.

(B4) Let A, B, C be three noncollinear points, and let ‘ be a line not containing

any of A, B, C. If ‘ contains a point D lying between A and B, then it must

also contain either a point lying between A and C or a point lying between

B and C, but not both.

If A and B are distinct points, we define the line segment (or segment for short) AB to

be the set consisting of the points A, B and all points lying between A and B. We

define a triangle to be the union of the three line segments AB, BC, AC whenever

A, B, C are three noncollinear points. The points A, B, C are the vertices of the

triangle and the segments AB, BC, AC are the sides of the triangle.

We say that a point P is inside the triangle A1A2A3 if there exists a vertex Ai and a

point Q on the side AjAk (j; k 6¼ i) such that Ai � P � Q. If P is not inside nor on the

sides, we say that P is outside the triangle.

An important consequence of the Incidence and Betweenness Axioms is the

following:

(HH) Every line has infinitely many distinct points.

Using the above axioms one can rewrite ‘‘Arranging Stones and Masters’’,

starting from the following:

Definition 1 Given A, B, C collinear distinct points, we say that A cannot see C

due to B if A � B � C.

Given a collection S ¼ fS1; . . .; SNg of N points and a point M 62 S, we say that

M can see exactly N � K\N points in S if M cannot see exactly K points of S due

to some of the remaining N � K points. In particular, M can see S1; . . .; SN�K if the

lines through M and Si are pairwise distinct and for every P 2 fSN�Kþ1; . . .; SNg
there exists Q 2 fS1; . . .; SN�Kg such that M � Q � P.

This definition is well-posed due to axiom (B3).

We state and prove Problem 1 with this formalism.

Problem 1 Given a point M, find an arrangement of S ¼ fS1; . . .; SNg so that

M 62 S and M can see exactly N � 1 points of S.

Solution 1 Let N ¼ 2. From (B2) we set M � S1 � S2. Now let N � 3. By the axiom

(I1), there exists a unique line ‘1 through M and S1. For (I3) we can choose S2 not

collinear with M and S1. Hence there exists a point S3 such that S1 � S2 � S3 by (B2).

Call ‘ the line containing S1; S2; S3 (by axiom (B1)) and notice that M is not on ‘ by

(H).

Repeating finitely many times the same argument and using (HH), we construct
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the pairwise distinct points S1; . . .; SN�1 on the line ‘ such that Si � Siþ1 � Siþ2 for

every i ¼ 1; . . .;N � 3. Call ‘i the line through M and Si for i ¼ 1; . . .;N � 1. These

lines are pairwise distinct by (H).

Using (B2), we choose SN on ‘N�1 so that M � SN�1 � SN . In this way M can see

S1; . . .; SN�1 and cannot see SN due to SN�1.

The Solution of Problem 2 can be rewritten by using the axiom (I1) and the

properties (H) and (HH). In Problem 3 it is crucial to involve the axiom (I3) and, as

before, (I1) and (HH). In order to show the relevance of (B4) we propose the

detailed solution of Problem 4. We mention to the reader that (B4), known as

Pasch’s axiom, was introduced only in 1882. More precisely, Pasch discovered that

this property was implicitly used by Euclid, tough it cannot be derived from the

postulates stated by Euclid.

Problem 4 Let M ¼ fM1;M2;M3g a set of noncollinear points. Find an

arrangement of S ¼ fS1; S2; S3; S4g such that M\S ¼ ;, each Mi can see exactly

3 elements of S and there exists Sj 2 S such that Mi cannot see Sj for every

i ¼ 1; 2; 3.

Solution 4 The existence of the triangle M1M2M3 follows from the axiom (I2)

and, by (HH), there exists S4 inside the triangle M1M2M3 (see Fig. 3c). For every

i ¼ 1; 2; 3, we choose Si such that Mi � Si � S4. In this way S4 cannot be seen by any

of the Mi. To complete the proof, up to permuting the indices, it is enough to show

that M1 can see S2; S3. Assume by contradiction that M1 does not see S2. Then either

M1 � S1 � S2 or M1 � S3 � S2.

In the first case, M1; S1; S2 lie on the same line, which contains also S4 by (I1) and

the assumption M1 � S1 � S4. Since M2 belongs to the line through S2 and S4, it

follows that S1; S2; S4 lie on the line segment M1M2, against the fact that S4 is inside

the triangle M1M2M3.

In the second case, M1 � S3 � S2 and, moreover, M2 � S2 � S4. Let us consider the

triangle M1M2S2 and the point S4. By the axiom (B4), the line ‘ through S4 and S3

intersects the side M1M2 in a point P such that S4 � S3 � P. Notice that the line

cannot intersect the segment M2S2, indeed (H) is satisfied by the point S4 and the

lines through S2; S4 and S3; S4, where S3 6¼ S2.

Considering P in the triangle M1M2M3 and the line ‘ containing S3; S4, we

conclude that S4 and S3 are outside the triangle M1M2M3, against the construction.

Figure 4a shows a possible configuration.

Hence M1 can see S2 and, for the same reason, S3.

We do not give a formal proof of Problem 5 since it is a generalization of

Problem 4. In Problem 6 and 7 it is important to choose the position of the Masters

and of the stones, hence property (HH) plays a crucial role. Thus all incidence and

betweenness axioms are needed. A formal discussion of ‘‘Polygonal arrangements’’

involves other Euclid and Hilbert axioms.
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