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Abstract Architects and historians commonly claim that when designing the Palau

Güell, Gaudı́ experimented with some architectural elements which would influence

his later works, with the arches being prevalent in the building. But, to date, no

mathematically thorough study has been conducted in order to determine the type of

each of such arches. Furthermore, literature contains subjective and intuitive claims

which create ambiguity and contradictions. Owing to the methods used by Gaudı́,

the arches in Palau Güell are best fit by conical curves (ellipse, parabola, hyperbola)

or hyperbolic-cosine curves (catenary, Rankine). Using photogrammetrical and

mathematical techniques, in this paper we will classify the arches of this building

according to their types, we will eliminate the inconsistencies which currently exist

in literature, and we will obtain the corresponding analytical equations, which may

be helpful in future studies.
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Introduction

The Palau Güell (1885–1890) is amongst the first important projects by Antoni

Gaudı́ (1852–1926), and the only new construction he was able to finish. The

building was commissioned by the Barcelona businessman Eusebi Güell Bacigalupi,

who gave the architect total freedom in design (González and Lacuesta 2013).

The three reasons which led us to make the thorough mathematical analysis

presented here are: the ambiguity in the literature concerning the arches’ geometry;

the fact that there is no original document from Gaudı́ stating the particular types of

arches, and thus there is a need to define the arches used; and the possible

applications of the equations that define the arches.

With regard to the first of these reasons, many studies acknowledge that the

design of this building influenced Gaudı́’s later architectural work. Antoni González

writes, ‘‘…makes own contributions which form the basis of Gaudı́’s subsequently

developed repertoire’’ (González 1990: 19, our trans.) and elsewhere states that

‘‘during conception and design, the architect introduced the formal, spatial and

constructive repertoire which granted him universal recognition’’ (González 1993:

19, our trans.). Others claim that Gaudı́ experimented with different types of arches

in the Palau Güell: ‘‘…for several years, the palace became a big experimental

workshop’’ (González and Lacuesta 2013: 35–36, our trans.). However, the existing

literature contains mathematically non-rigorous claims regarding the types of arches

used. Rainer Zerbst writes, ‘‘…Gaudı́ used the parabolic arch design, which would

recur in all his later works and eventually become a common element in his

projects’’ (Zerbst 1988: 82), interested readers may also read the following reference

(Billington 1985: 184–185). Antoni González and Raquel Lacuesta state, without

providing a demonstration, that ‘‘Antoni Gaudı́ experimented with all types of

arches in Palau Güell’’ (González and Lacuesta 2013: 88–89, our trans.); they say

‘‘all types of arches’’ but without defining those types. When examining the

building’s access arch, various authors (2000; Giralt-Miracle 2002; Granell 2002;

Huerta 2006) propose several contradicting arc types (the contradictions between

claims are not convincingly resolved). Likewise, many intuitive, subjective and

arbitrary claims have been made regarding the overall geometry of the building

arches, as, for instance, these two statements: ‘‘…the recurring use of the parabolic

arch’’ and ‘‘The parabolic arch was a prevailing element…’’ (Lahuerta 1992: 105).

In short, while arcs are the most common geometric elements used throughout

the Palau Güell, this fact has generated a subjective and intuitive debate with the

purpose of ascertaining their types, and while many claims have been made, as the

quotations above show, no final conclusion has been reached.

With regard to the second reason for this study, to fill the need to define the

arches this paper intends to classify into types the 23 arches which can be found in

the indoor and outdoor spaces of Palau Güell (Figs. 1, 2, 3, 4). This classification

serves a dual purpose:

1. To check whether Gaudı́ really experimented with different arch types in Palau

Güell, as stated in several studies. The classification will focus on conical

curves (ellipse, parabola, hyperbola) and hyperbolic-cosine curves (catenary,

174 G. González et al.



Rankine), since these are the geometric shapes used by Gaudı́ to design his

arches as we will show.

2. To eliminate the ambiguities and contradictions which, owing to the lack of

thoroughness and mathematical objectivity, abound in studies and discussions

regarding the type of each of the arches of the building.

Finally, with regard to the third reason for this present study, we will provide the

normalized analytical equations of the best-fitting curves for all arches. These

equations constitute additional information which may be useful for several reasons,

including:

• In the field of architectural renovation, it is important to have an accurate

knowledge of the object or space to be restored. Having geometric control of an

object enables the technician to anticipate possible problems which might arise

Fig. 1 On the left, main facade; in the center, section through the central dome of the building and on the
right, section through the inner courtyard of the building. Arches 1–7 and 21 can be found on level -1;
arches 18 and 20 can be found on entrance level; arches 8, 9, 15 and 16 can be found on level 1; arches 10
and 11 can be found on level 2; arches 12–14 and 19 can be found on level 3; arches 17, 22 and 23 can be
found on the roof. Image: authors

Fig. 2 Location of the arches on level -1 and entrance level of the building. This graphic document is
reproduced with the permission of the Arxiu del Servei de Patrimoni Arquitectònic Local de la Diputació
de Barcelona
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during reconstruction, or even to obtain an accurate estimate of the material

costs and the amount of time needed to repair the arch at issue. The fact that

Palau Güell has been listed as World Heritage by the UNESCO makes it

important to know the precise geometry of each arch, should an intervention

become necessary in the future.

• Having a detailed knowledge of the most representative elements of such an

influential building by Gaudı́ may help to understand his work globally. The

geometric analysis of the arches in Palau Güell may help to discover historical,

formal and structural links with the arches used in other of his architectural

works.

• In addition to the relevance for the field of architecture and architectural history,

knowing the analytical equations can help to study the arches from other points

of view. For instance, these equations could help monitor mechanical behaviour

and come up with structural hypothesis for the arches; they could even help

conduct a more detailed analysis of the acoustic impact on the spaces where the

arches are located. Clearly, the arches play a strong role in many rooms of the

Palau Güell. Besides, it is well known that parabolic and elliptical shapes direct

Fig. 4 Location of the arches on level 3 and on the roof of the building. This graphic document is
reproduced with the permission of the Arxiu del Servei de Patrimoni Arquitectònic Local de la Diputació
de Barcelona

Fig. 3 Location of the arches on level 1 and level 2 of the building. This graphic document is reproduced
with the permission of the Arxiu del Servei de Patrimoni Arquitectònic Local de la Diputació de
Barcelona
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the incident sound waves towards their respective focal points; therefore, the

arches affect the acoustic comfort in spaces. Determining their geometries could

help to globally control the acoustics and make specialized improvements.

In the next section, we briefly describe the geometric method used to determine

the curve which best fits an architectural arch and its analytical equation, and then

we apply this method to the 23 arches in Palau Güell.

Brief Outline of the Method Used to Determine the Geometry
of an Architectural Arch

In this paper we use the method described in (Samper et al. 2017) to objectively

determine which is the geometric shape within each of the conical curve types and

hyperbolic-cosine curve types which best fits an arch of a heritage building. This

method also provides an objective measurement of that fit, and does not involve

mechanical, constructive or structural processes; it only involves standard geometric

processes, numerical processes, computing, statistics and 3D data acquisition. Using

this fitting method, for each type of conical curve (ellipse, hyperbola, parabola) or

each type of hyperbolic-cosine curve (catenary, Rankine) we can determine which

shape best fits a given arch, as well as the corresponding analytical equation and an

objective measurement of that fit.

Interested readers may turn to (Samper et al. 2017) for a more detailed

explanation of this method. What follows is only a brief description.

Our analysis starts with N 0 ¼ P0
i

� �i¼n

i¼1
, which is the point cloud outlining the

edge contour of an arch of Palau Güell. The points of this cloud were obtained using

photogrammetrical techniques and the software PhotoScan (Fig. 5). For these

points, we use 3D coordinates ðx0; y0; z0Þ according to the 3D orthonormal coordinate

system C0 ¼ fp1; u~1; u~2; u~3g of the scanning device. It is to be noted that the spatial

position of this reference C0 is geometrically unknown at the start of calculations.

Next, the cloud N 0
is orthogonally projected on plane r, which is the

architectural plane containing the edge of the arch. This projection renders a new

bidimensional point cloud called N ¼ fPigi¼n
i¼1. Using an orthonormal reference

system R ¼ fP0
1; v~1; v~2g which coordinates the points on r and is obtained using the

Gram–Schmidt process, we calculate the conical regression. The resulting curve

e � B�x2 þ C�y2 þ D�x�y þ E�x þ F�y þ 1 ¼ 0 is the conical curve which best fits the

projected point cloud, minimizing the sum of the quadratic residues
Pi¼n

i¼1 �e
2
i ¼

Pi¼n
i¼1 ðBa2

i þ Cb2
i þ Daibi þ Eai þ Fbi þ 1Þ2

. The solution to the calcu-

lation problem of e is provided by the Gauss normal equations. Then, we consider

another orthonormal reference system C ¼ h; e~1; e~2f g for plane r made up of the

following three geometric elements of the conical curve e in the system R: center

� h ¼ ðhx; hyÞ; major axis � ð�x; �yÞ ¼ hþ ke~2 where k 2 R; and minor axis �
ð�x; �yÞ ¼ hþ ke~1 where k 2 R. After all of the above, the points on r in the

reference system C have new coordinates ðx̂; ŷÞ. Therefore, Pi ¼ ðx̂i; ŷiÞ, where the
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axis Ŷ ¼ hþ ke~2 is the central axis of the point cloud N , as shown in (Samper et al.

2017).

Next we find a subset B ¼ Pij ¼ x̂ij ; ŷij

� �n oij¼100

ij¼1
of N using the algorithmic

process described in (Samper et al. 2017). This subset determines the arch edge, and

we call it edge cloud. Next we normalize the coordinates of the edge cloud B. To

that effect, we impose the condition that the lowest point in B must have coordinates

ð1; 0Þ. This normalization is the equivalent of a change of coordinates to a new

reference system . The points on r in the system G have

coordinates ðx; yÞ, and the points of cloud B ¼ Pij

� �ij¼100

ij¼1
in the system G have

coordinates xij ; yij

� �
.

After defining the final reference system G (which, as we have seen,

originates from the conical regression curve e as a result of geometric

transformations of the cloud N 0
; and is therefore an intrinsic system of the

cloud itself), we will find the conical regression curves and hyperbolic-cosine

regression curves for the point cloud B of the arch’s edge, obtaining their

equations in the system G.

Fig. 5 Outline of the three-dimensional model of the arch 5 created with PhotoScan software. Image:
authors
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We calculate P � y ¼ Ax2 þ B, the parabola regression curve of B, and we obtain

its equation in the reference system G. This parabola regression curve is the parabola

which best fits the point cloud B, minimizing the sum of the quadratic residues
Pij¼100

ij¼1 e2
pij

¼
Pij¼100

ij¼1 Ax2
ij
þ B � yij

� �2

: Its equation is given by the Gauss normal

equations. These Gauss normal equations, as well as the rest of equations referring

to the ellipse, hyperbola and hyperbolic cosine, as mentioned below, can be found in

(Samper et al. 2017).

Similarly, we calculate E � y ¼ 1
2

F � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 4Bx2 þ 4G

p
;B\0, the ellipse

regression curve of B, and we obtain its equation in the reference system G. This

ellipse regression curve is the ellipse which best fits the point cloud B, minimizing

the sum of the quadratic residues
Pij¼100

ij¼1 e2
eij

¼
Pij¼100

ij¼1 B0x2
ij
þ C0y2

ij
þ F0yij þ 1

� �2

;B0C0\0, B ¼ B0

�C0, F ¼ F
�C0,

G ¼ 1
�C0. As before, its equation is given by the Gauss normal equations.

We calculate H � y ¼ 1
2

F � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ 4Bx2 þ 4G

p
;B[ 0, the hyperbola regres-

sion curve of B, and we obtain its equation in the reference system G. This

hyperbola regression curve is the hyperbola which best fits the point cloud B,

minimizing the sum of the quadratic residues
Pij¼100

ij¼1 e2
hij

¼
Pij¼100

ij¼1 Bx2
ij
� y2

ij
þ Fyij þ G

� �2

, B[ 0. The solution to this problem

is not given by the Gauss normal equations, but by a critical point calculation. The

method and the critical point equations which provide the solution can be found in

(Samper et al. 2017).

After all of the above, we have determined which conical curves show the best

regression fit to the cloud B. Now we continue with the following hyperbolic-cosine

curves:

We calculate CH � y ¼ AcoshðxÞ þ B, the hyperbolic cosine regression curve of

B, and we obtain its equation in the reference system G. This hyperbolic cosine

regression curve is the hyperbolic cosine which best fits the point cloud B,

minimizing the sum of the quadratic residues
Pij¼100

ij¼1 e2
hij

¼
Pij¼100

ij¼1 Acos xij

� �
þ B � yij

� �2
. As before, its equation is given by

the Gauss normal equations. Hyperbolic cosine curves are a particular case of

Rankine curves (discussed further below), but the corresponding numerical

calculation is a preliminary step for the method used to calculate the two types of

curves used by Gaudı́ in his projects: catenary curves and Rankine curves.

We calculate C � y ¼ Acosh x
A

� �
þ B, the catenary regression curve of B, and we

obtain its equation in the reference system G. This catenary regression curve is the

catenary which best fits the point cloud B, minimizing the sum of the quadratic

residues
Pij¼100

ij¼1 e2
cij

¼
Pij¼100

ij¼1 Acosh
xij

A

� �
þ B � yij

� �2

. The solution to this prob-

lem is not given by the Gauss normal equations, but by a critical point calculation.

The method and the critical point equations which provide the solution can be found

in (Samper et al. 2017).
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Finally, we calculate R � y ¼ Acosh Cxð Þ þ B, the Rankine regression curve of

B, and we obtain its equation in the reference system G. The classic expression

(Rankine 1877: 173–177; Merriman 1920: 723) of a Rankine curve is:

y ¼ Acosh x 2
l
arccosh Aþh

A

� �� �
þ B, where l and h are the clear span and the height,

Table 1 Analytical and typological results for the 23 arches in Palau Güell

# Type Equation P

1 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �1:357, B � 11:263 99:418

2 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �1:156, B � 9:242 99:879

3 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �0:695, B � 5:720 99:379

4 Parabola y ¼ Ax2 þ B where A � �1:313, B � 1:274 99:815

5 Catenary y ¼ Acosh x
A

� �
þ B where A � �2:848, B � 2:943 99:891

6 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p
where A � �1:335, B � 15:925, C � �8:996 99:939

7 Catenary y ¼ Acosh x
A

� �
þ B where A � �1:601, B � 1:598 99:967

8 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � �7:642, B � 495:667, C � �272:207

99:813

9 Hyperbola y ¼ A � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � 126:007, B � 61229:180, C � 2227:418

99:956

10 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � �9:101, B � 453:016, C � �124:530

99:730

11 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p
where A � �86:757, B � 31362:976, C � �1281:430 99:934

12 Hyperbola y ¼ A � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � 15:215, B � 797:854, C � 134:436

99:765

13 Catenary y ¼ Acosh x
A

� �
þ B

where A � �1:906, B � 1:636

99:050

14 Parabola y ¼ Ax2 þ B where A � �1:317, B � 1:210 99:769

15 Hyperbola y ¼ A � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � 15:271, B � 704:435, C � 258:785

99:503

16 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p

where A � �6:008, B � 295:810, C � �157:245

99:728

17 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �0:445, B � 4:645 99:682

18 Rankine y ¼ Acosh Cxð Þ þ B where A � �0:033, B � 2:542, C � 5:101 99:724

19 Ellipse y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B þ Cx2

p
where A � �2:310, B � 58:971, C � �40:561 99:598

20 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �0; 055, B � 3; 896 99:837

21 Circle y ¼ A þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B � 4x2

p
where A � �2; 552, B � 30; 352 99:546

22 Rankine y ¼ Acosh Cxð Þ þ B where A � �0:816, B � 5:891, C � �2:727 99:290

23 Catenary y ¼ Acosh x
A

� �
þ B where A � �2:958, B � 3:075 99:171
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respectively, of curve R on the reference system V; n~1;�n~2f g where V is the vertex

of the curve.

We note that we do not call R a flattened catenary curve because it is not a

catenary curve. Nor do we call it a general hyperbolic cosine curve, because it is not

a hyperbolic cosine, but rather the analytical composition of a hyperbolic cosine

with a homothetic transformation. We do not call it a funicular curve, because it

does not correspond with the line obtained by hanging a finite number of weights

from a chain.

This Rankine regression curve R � y ¼ Acosh Cxð Þ þ B is the Rankine curve

which best fits the point cloud B, minimizing the sum of the quadratic residues
Pij¼100

ij¼1 e2
rij
¼

Pij¼100

ij¼1 Acosh Cxij

� �
þ B � yij

� �2
. The method and the critical point

equations which provide the solution can be found in (Samper et al. 2017).

After all of the above, we have obtained the specific analytic equations of the

normalized regression curves P, E, H, C and R for the cloud B corresponding to the

edge of an arch from Palau Güell.

Next we will calculate to what extent each of these curves statistically explains

the cloud B. For these calculations, we will use Pearson’s adjusted coefficient of

determination g2
adj, which is given by the equations described in (Samper et al.

2017). This coefficient g2
adj 2 0; 1½ � in all cases, and the value P ¼ g2

adj � 100 is the

Fig. 6 Graphic results for arches 1–7. On the right, in a larger format, arch number 5 with the geometric
regressions which best fit its original design. This arch is a case of coincidence between the best-fitting
catenary curve and the best-fitting Rankine curve. Image: authors
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proportion in which the variable yij of cloud B is statistically explained by the least-

squares correlation between yij and xij . In other words, this value indicates the

percentage of the variable yij of cloud B which is statistically explained by the

corresponding regression curve.

If a much more in-depth geometric analysis is to be made, all the calculations can

be repeated, not for the whole arch (that is, the whole cloud B), but for different arch

segments. This more in-depth geometric analysis can be found in (Samper et al.

2017). We have normalized the size of the arches, considering that an endpoint has

coordinates 1; 0ð Þ; again, an explanation of how the equations change if the scale

changes can be found in (Samper et al. 2017).

Results

As stated before, our analysis starts with N 0 ¼ P0
i

� �i¼n

i¼1
, which is the point cloud

outlining the edge contour of an arch of Palau Güell. The points of this cloud were

obtained using photogrammetrical techniques and the software PhotoScan. For these

points, we use 3D coordinates ðx0; y0; z0Þ according to the 3D orthonormal coordinate

system C0 ¼ p1; u~1; u~2; u~3f g of the scanning device. These initial coordinates are

obtained to six decimal places, the results are presented to three decimal places.

Fig. 7 Graphic results for arches 8–13, and arch 16. On the right, in a larger format, arch number 16 with
the geometric regressions which best fit its original design. Image: authors
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After applying the method from (Samper et al. 2017), as mentioned in the

previous section, the analytical and typological results for each arch are shown in

Table 1 and, graphically, in Figs. 6, 7, 8 and 9.

The reader must take into account that:

• Even though the circle is a particular case of an ellipse, we consider them to be

different cases.

• If the best-fitting curve for an arch is a catenary curve, then the best-fitting

Rankine curve is the same as the best-fitting catenary curve for that arch.

Conclusions

Using standard geometric processes, numerical processes, computing, statistics and

photogrammetrical data acquisition, we have classified the 23 arches from Palau

Güell according to their geometrical types. The equations determined by us show

that Gaudı́ indeed experimented with the four types of conic curves (circle, non-

circular ellipse, parabola, hyperbola) and the two types of hyperbolic-cosine curves

(Rankine, catenary). Hereinafter, those curves which are arcs of non-circular

ellipses are called elliptical curves.

Fig. 8 Graphic results for arches 14, 15 and 17–21. On the right, in a larger format, arch number 18 with
the geometric regressions which best fit its original design. Image: authors
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The arches are classified as follows (Table 1): 26.10% of them are best fit by a

circular arc, 8.70% of them are best fit by a parabolic arc, 26.10% of them are best

fit by an elliptical arc, 13.00% of them are best fit by a hyperbolic arc, 17.40% of

them are best fit by a catenary arc, and 8.70% of them are best fit by a Rankine arc.

Knowing this, we can make the following comments:

1. After searching the existing literature about Gaudi and his work, we have not

found any rigorous geometric study concerning the use of elliptical arches. This

is surprising given that 26.10% of the arches in Palau Güell are elliptical arches.

Further, even though the curve type which best fits the access door of the

building is a Rankine curve, the second best-fitting curve type (with a

P � 97.82% fit) is an ellipse. This claim is made in (Samper et al. 2017), and

can also be visualized in Fig. 5 of this present paper. However, as already said,

it is surprising that this curve type is not mentioned in the existing literature.

2. Although in several pieces of specialized literature, such as (Zerbst 1988), it is

claimed that the parabolic arch is the most frequently used arch in Palau Güell,

it turns out that only 8.70% of the arches (that is, only 2 arches out of 23) are

best fit by parabolic curves.

3. After analysing all the arches and their best-fitting curve types, it appears that

Gaudı́ did not have any particular type of arch in mind for any particular

architectural purpose (structural or ornamental function). There is no particular

Fig. 9 Graphic results for arches 22 and 23. On the far left arch number 22 with the geometric
regressions which best fit its original design. Image: authors
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criterion with regard to the geometric type of the arches, with the sole exception

of the arches which are best fit by circular curves, most of which are located in

the lower areas of the building and clearly have a structural function.

4. Throughout history there are numerous examples of arches and historical

buildings which were based on circular curves, elliptical curves, hyperbolic-

cosine curves and parabolic curves (the latter shape resulting from an evenly-

weighted hanging chain). The reason is twofold: firstly, the simple geometric

tracing of these arches before actual construction, using common methods and

tools; secondly, their geometric-structural properties. The case of the hyperbola

is not as direct and intuitive, since the tracing is technically more complex.

Despite that, in Palau Güell we find three hyperbolic arches.

Our analysis has allowed us to eliminate the ambiguities and contradictions that

abound in studies and discussion regarding the type of each of the arches of the

building.

The contents of this paper provide a preliminary step towards an analytical and

geometric study regarding the behaviour of the categorized mathematical curves

from the structural point of view and how they deform when they are subject to

structural load. We believe it would be interesting to deepen the analysis of the

relationship between surveyed shapes and structural behaviour, in order to highlight

the connection between design intent and actual structural behaviour.
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