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Abstract The rose window is one of the most representative elements of Gothic

art and architecture. In this work we analyze fifteen rose windows from fifteen

Gothic cathedrals using fractal geometry. Specifically, we examine the texture and

roughness of these rose windows focusing on three factors, their designs, glass areas

and solid areas. In this investigation we generate parameters which provide a

measure of roughness of the rose windows in order to find out if they show a general

non-random fractal pattern. The paper concludes that statistically, there is a char-

acteristic fractal pattern in the solid and glass areas of the rose windows of the

Gothic style, but not necessarily in their overall design.

Keywords Rose windows � Gothic architecture � Fractal geometry � Fractal
parameter

Historical Background: Light in the Gothic Cathedral

The Gothic style signaled a veritable revolution in architecture as a result of its

technical innovations which challenged the conventional concepts of construction at

the time and also changed the manner in which large indoor spaces were conceived.

Louis VI, King of France, aspired to rule all of the vast territories which had formed

the Carolingian Empire three centuries before. To achieve this aspiration he was

assisted in this task by Abbot Suger of Saint-Denis, an advisor with both intelligence
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and diplomatic skills. In gratitude for the services rendered, Louis VI granted the

abbey of Saint-Denis great privileges so that they would have a competitive

advantage and be able to hold their prosperous annual fair, which gathered both the

faithful and merchants providing major benefits for the abbey. As a result of this,

Saint-Denis became the richest Benedictine monastery in France after Cluny.

Influenced by the Neoplatonic thoughts which spread amongst scholars of the early

twelfth century in the Paris region, Suger was fascinated by light as a means to

connecting with God. With this concept as an intellectual guide, Suger inferred that

the House of God, the Christian church, had to become a temple of light and even

more: ‘‘a city bathed in the light of God’’ (Berger 1906; Panofsky 1970). In order to

achieve this ideal, it was necessary to modify and improve the construction system

of the great Romanesque churches. That is, it was imperative to remove some walls

and tear others from top to bottom in order to place large windows in them which

would capture the sunlight. The name of the architect who found the solution to

Suger’s problem is unknown. Perhaps it was the master builder who directed the

construction of the Romanesque structure in the abbey of Saint-Denis. Regardless,

shortly before finishing this work, Suger ordered the following inscription to be

places, in Latin verses on the main door of the abbey church. ‘‘Portarum quisquis

attolere quaeris honorem, Aurum nec sumptus, operis mirare laborem. Nobile claret

opus, sed opus quod nobile claret, Clarificet mentes, ut eant per lumina vera, Ad

verum lumen, ubi Christus jaunua vera. Quale sit intus in his determinat aurea

porta’’1 (Grosse 2004; Panofsky 1970).

The large windows that could be opened by merging the pointed arch with the

ribbed groin vault, supported by buttresses and flying buttresses, made it possible to

add spectacular expanses of stained glass through which filtered sunlight could pour

into the naves of the cathedrals and give them a new meaning and character. As a

result of this, from the thirteenth century onwards, and especially during the

fourteenth, fifteenth and sixteenth centuries, glassmakers had an increasingly

important role in the general context of the plastic arts. This technique was used in

every opening of the cathedral, thus incorporating iconographic representations

which enhanced the Christian connotations and messages. In most of the main

façades of Gothic cathedrals, this artist practice was represented in a unique way.

The most important and unique rose window in this part of the cathedral is

sometimes referred to as ‘‘the eye of God’’. Its fretwork circular shape with a mainly

radial tracery, and its complex geometry, have made this element one of the most

representative objects in Gothic art (Fig. 1). For these reasons, in this paper we will

analyze the rose windows of 15 cathedrals—Amiens, Bourges, Burgos, Chartres,

Strasbourg, Laon, León, Mallorca, Milan, Orvieto, Paris, Poitiers, Reims, Sens and

Troyes—which were built between the 11th and 14th centuries. These fifteen are

amongst the most representative of all Gothic cathedrals and their rose windows are

probably the most well documented. Using techniques derived from fractal

geometry, in this paper we examine the texture and roughness of these rose windows

1 ‘‘All you who seek to honor these doors, marvel not at the gold and expense but at the craftsmanship of

the work. The noble work is bright, but, being nobly bright, the work should brighten the minds, allowing

them to travel through the lights to the true light, where Christ is the true door.’’
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taking into account their designs, their glass areas and their solid areas. Knowing

that the main orthographic projections (floor plan, main elevation and cross section)

of the French Gothic cathedrals follow a fractal pattern (Samper and Herrera 2014),

we want to find out if these rose windows also have a characteristic fractal pattern,

or pattern of roughness.

Mathematical Background: Fractal Parameter

As a summary, and by way of conceptual and intuitive explanation in order to

clarify the technique which we will introduce next, we argue that the roughness of

an object, whether or not it is a fractal object, is geometrically expressed as ‘‘its

space-filling ability’’. This space-filling ability is measured by so-called ‘‘fractal

parameters’’. As explained later in this section, fractal parameters are generated

through extrapolated calculations of the theoretical geometric measures of

roughness in fractal objects; and these theoretical measures are the different

geometric dimensions of fractals. Broadly speaking, roughness is the spatial

infiltration behavior of an object across several scales, and a fractal parameter is a

value that provides a measure of this infiltration, stating how much that object seems

to fill the space as we use finer and finer scales.

Fig. 1 On the left, a modified image of the graphic composition of the Laon’s Cathedral rose window
(King 1858. pp. 238). On the right, an original picture of the main elevation
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This geometric concept is applied in several scientific fields. For example, in

medicine, when considering neuronal networks and their pathologies; in electronics,

when considering the physical behavior of circuits on smaller manufacturing scales;

in chemistry, when obtaining different properties of substances depending on their

roughness (Kiselev et al. 2003). This concept is also used in architecture, when

seeking evidence of the objective influence between buildings designed by

renowned architects, or in order to obtain mathematical evidence with regard to

whether or not certain important architects respected the compositional continuity of

the artificial or natural environment in which their design was intended to be

constructed (Bechhoefer and Bovill 1994; Batty and Longley 1997; Hammer 2006;

Sala 2006; Joye 2007; Rian and Park 2007; Bovill 2008; Ostwald 2001; Ostwald

et al. 2008; Ostwald and Vaughan 2009; Vaughan and Ostwald 2009, 2011).

In this particular case of study, the field is architecture and the objects considered

are architectural designs (which are not fractal objects), and thus we will apply a

geometric calculation technique to them in order to generate their fractal

parameters, a process which we will explain next. The process can be summarized

as follows. Firstly, the elements to be considered are drawn precisely. In this paper

we have made three drawings for each rose window, the first shows the design lines;

the second highlights the solid areas—made of stone and lead—and the third

highlights the glass areas (Fig. 2). Next, and for each of these drawings, we apply a

first square mesh made up of squares with a certain edge length. Then we calculate

the number of mesh cells intersecting the lines which make up the drawing. Then we

apply a second square mesh made up of squares with an edge length which is half of

the former edge length, and we calculate again the number of cells intersecting the

lines which make up the drawing (that is, the number of cells which contain

architectural graphic information). These steps are repeated twice more, until we

apply a square mesh with an edge length which is sixteen times smaller than the

first. Finally, with all these regions of different scales into which the architectural

structure has infiltrated, we undertake the calculation which generates the fractal

parameter. As we will see later, this final calculation of the structure’s roughness

parameter is given by the geometric theory about the dimensions of fractal objects.

Finally, with all the data generated for the drawings (three parameters for each rose

window), we make a robust statistical study of the obtained values. Therefore, the

geometric results thus achieved are not subjective and they can be expressed in

architectural and geometric language, as we will state in the conclusions of this paper.

Fractal Dimension Theory

This sub-section includes a technical description and references required to fully

understand the work which is presented in this paper. In this subsection we

summarize the dimensions T(M), D Mð Þ, �F Mð Þ, F(M), H(M), S(M) of the fractal

objects M; and some of their properties. This is the theoretical basis from which the

ideas for generating the fractal parameters Ps(M) arise. First, we will establish a few

basic notions. More detailed mathematical references and demonstrations of these

are available (Falconer 1990, 1997; Edgar 1998).
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In Fractal Geometry we can consider two objects (M, N) such that:

M ¼ hr Nð Þ and M ¼
ai¼m

i¼1
gi Nð Þ ð1Þ

(M is homothetic to N with a homothety hr of ratio r) where gi(N) is a displacement

of N—in (1) the union is disjoint. We say that M has an homothetic structure and its

homothetic dimension is:

H Mð Þ ¼ logr mð Þ ð2Þ

Homothetic objects are particular cases of self-similar objects. Let M be a bounded

non-empty object of the Euclidean space An, such that M ¼
‘i¼m

i¼1 Si Mð Þ, where Si is
a contractive similarity, i.e. Si : A

n ! An such that V(x, y) 2 An 9 An ) d(Si(-

x), Si(y)) = ki d(x, y) with 0\ ki\ 1. Then M is called a self-similar object, and its

self-similarity dimension is the value S(M) such that
Pi¼m

i¼1 k
SðMÞ
i ¼ 1: If a self-

similar object M is a homothetic object, then S(M) = H(M). Besides, the objects

M of space An have their topological dimension T(M), where T(M) = 1, 2 or 3 if

M is a line, a surface or a three-dimensional body, respectively.

Even though M is self-similar, if S(M) = T(M) we say that M is a non-fractal

self-similar object. But when M is self-similar and also S(M) = T(M), then we say

that the self-similar object M is fractal. However, objects M in general do not have a

homothetic structure nor a self-similar structure; therefore, they do not have a

homothetic dimension H(M) nor a self-similarity dimension S(M). In spite of that,

there is a generalization of the self-similarity dimension S(M) which is called

Hausdorff-Besicovich dimension, noted as D(M). If M, either with or without

homothetic or self-similar structure, verifies that D(M) = T(M), then M is a fractal

object.

The definition of D(M) uses geometric-mathematical concepts which fall outside

the purpose of this paper. Intuitively we can say that an object is a fractal when in an

infinite number of its points it does not have tangent space, or to put it more

colloquially, it has an infinite number of points where it seems to be fractured. In

any case, since the calculation of D(M) falls out from the scope of this paper, we

consider another value �F Mð Þ which is an upper bound of D Mð Þ. This bound,

Fig. 2 Example of three drawings made for the analysis of Reims cathedral rose window. On the left, the
design lines; in the center, the solid areas; on the right, the glass areas
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�F Mð Þ�D Mð Þ, is called Minkowski-Bouligand dimension of M, also called upper

fractal dimension of M. The object M may or may not be a fractal object, but,

regardless of this condition, �F Mð Þ is a measure of its irregularity, its space-filling-

ability or roughness.

There is a theorem that states:

�F Mð Þ ¼ lim sup
m!1

ln smð Þ
ln 2mð Þ ð3Þ

where sm is the number of d-mesh cubes of An, that intersect M, with d ¼ 1=2m.

For this reason, �F Mð Þ is also called the upper box-counting fractal dimension. If

�F Mð Þ is equal to lim infm!1
ln smð Þ
ln 2mð Þ, then limm!1

ln smð Þ
ln 2mð Þ ¼ F Mð Þ exists, and

�F Mð Þ ¼ F Mð Þ. This limit F(M), if it exists, is called fractal dimension of M or

box-counting fractal dimension of M.

In Falconer (1990) we find that: (1) T Mð Þ�D Mð Þ� �F Mð Þ� n. (2) If M is a self-

similar object, then D Mð Þ ¼ F Mð Þ ¼ S Mð Þ.
Limit (3) is a theoretical limit of a geometric object M; however, in real cases

such as urban plots, the theoretical limit (3) is always substituted by a similar finite

calculation. This similar calculation generates a parameter which we will call fractal

parameter P(M), and which also offers a roughness measure of M.

Fractal Parameter and Method

After setting out the �F Mð Þ theory in the former subsection, now we will explain how

to generate the fractal parameters P(M).

Architectural structures M are not fractal objects, however we can consider their

unevenness, which determines their space-filling ability (that is, their level of

roughness), and we can generate a parameter for those non-fractal objects. Since the

rose window’s design M is a non-fractal real object, the parameter thus generated

cannot be the theoretical value D(M) or �F Mð Þ. The architectural composition M,

despite showing repetitions in some scales, does not really have a homothetic

structure nor a self-similar structure. Therefore, we will extrapolate the theoretical

calculations of �F Mð Þ and S(M) in order to generate parameters which provide

measures of roughness. We will call these parameters Ps(M) and Pr(M).

Parameter Ps(M) will provide a measure of roughness without taking into account

the self-similarity aspect [this measure will come directly from the theoretical

process described in (3) for �F Mð Þ]; and parameter Pr(M) will provide a measure of

roughness taking into account the self-similarity aspect. Since these parameters

come from theoretical extrapolations which are not applicable to the real structure

M, they cannot be separated from the generation process. Consequently, any study

which is made with such parameters must fulfill two conditions: firstly, the

parameter-generation process must be clearly defined, and secondly, the results of

such study are not the parameters themselves but the general conclusions drawn

from the parameters, regardless of their specific values.
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Summary of the Fractal Parameter’s Generation Process

The first step of our investigation was to collect as many graphic documents as

possible from all the rose windows being studied (Fig. 1). The main information

sources used were the respective archdioceses of the cathedrals, historical archives

(King 1858), universities and private or public companies and entities. Secondly, we

have redrawn all documents collected in order to attain the highest level of

objectivity, homogeneous graphic display criteria and the same level of detail

(Figs. 2, 3). This redrawing is absolutely necessary, since the documents collected

consist of drawings with shadows, stains, colors, defects and freehand lines.

Because all graphic documents show ‘‘noise’’, we had to recreate each and every

one of the drawings which appear in this paper and were used in the analysis. We

have strictly followed precise drawing lines, highlighting the lines which best

represent the geometry of all rosette designs (Ostwald and Vaughan 2012, 2013;

Vaughan and Ostwald 2014). Since rose windows are openings through which light

enters the cathedral, we have made two additional variants of each drawing (apart

from the one showing the design lines) showing the solid areas (Fig. 2). Therefore,

this paper examines 45 drawings (3 drawings for each of the 15 rose windows).

Fig. 3 Example details of redrawn window: Reims’ Cathedral rosette (left), Chartres’ Cathedral rosette
(right)
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The process to generate Ps(M) through calculations with self-created software is

summarized as follows:

1. Given the architectural design M, first we generate its design in AutoCad vector

format, using black color and line width � 0:00mm. From this AutoCad format

we obtain the pdf vector format.

2. From the pdf vector format we generate a black-and-white digital bitmap file,

sized 1024 9 v pixels, showing the architectural design with its size adjusted to

full width and height.

3. Ps(M)—Using self-created software, we calculate the fractal parameter

Ps(M) based on the slope on the last point of a continuous graph ln–ln. In the

following sections we explain which continuous graph we are talking about and

which calculations are made.

The reason we have created special software is twofold: firstly, we will have total

control of the calculations and so we will ensure they are correct. Secondly,

commercial software like Benoit 1.31 de TruSotf Int’I Inc does not use the slope on

the last point of the continuous graph ln–ln.

Fig. 4 Square meshes and graph of the four points used to calculate the fractal parameter for the Troyes’
Cathedral rose window
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Then, if we change step 3 above and instead we use the calculation for the slope

of the regression line corresponding to the discrete set of points, then we obtain

another fractal parameter which we will call Pr(M):

3. Pr(M)—using our self-created software, we calculate the fractal parameter

Pr(M) based on the slope of the regression line corresponding to the discrete set

of points in the graph ln–ln; and for this calculation we use square meshes, the

finest mesh having 4 9 4 pixel squares, and the coarsest mesh having 32 9 32

pixel squares.

We would like to point out that, even though the different calculation methods

may be subject to certain variation (Ostwald 2013) and the value of the fractal

parameter (of non-fractal objects) depends on the method being used and also on the

level of graphic detail of the drawing (Ostwald and Ediz 2015), we have been able

to draw conclusions from our method because they are based on the global statistic

correlations between all the fractal parameters obtained here.

Practical Example Applied to Rosette Troyes’ Cathedral

In this sub-section we have calculated the fractal parameter of the Troyes’ Cathedral

Rosette based on the theory and the summary of the fractal parameter’s generation

process explained in the previous sub-section (Fig. 4).

Since N is a pixelated digital image file, the calculation process to generate P(M)

will have a finite number of steps. The finest mesh used to generate P(M) is a 4 9 4

pixel square mesh, because 4 = 2n gives the finest mesh which is similar to the

theoreticalmeshes for the theoretical calculation of �F Mð Þ (Falconer 1997). This is true
because the 4 9 4 pixel squares have inside points and border points. Therefore, in

order to calculateP(M)wewill use fourmeshes the squares ofwhich are 4, 8, 16 and 32

pixels in length, respectively. The reason to use fourmeshes is that, aswewill see later,

P(M) is generated with the slope of a function of a continuous graph ln–ln. Using the

classical interpolation methods, 4 points of a function are enough to find a good

approximation of that slope. And we should not use more than 4 interpolation points

because of the well-known Runge Phenomenon in numerical calculation. Then, our

software generates a square mesh, which we have called g5, consisting of 32 9 h5
square boxes with an edge dimension a5 = 1024 9 2-5 = 32 pixels. Then we apply

that mesh on the image ofN andwe calculate ln(s5), where s5 is the number of boxes of

g5 which have black pixels. Then we repeat the process with the other square meshes

g6, g7 and g8 having 64� h6, 128 9 h7, 256 9 h8 square boxes, respectively. The

edge dimensions are a6 = 1024 9 2-6 = 16, a7 = 1024 9 2-7 = 8 and

a8 = 1024 9 2-8 = 4, respectively. Then we calculate ln(s6), ln(s7), and ln(s8),

where s6, s7 and s8 are the number of boxeswith black pixels in eachmesh g6, g7 and g8,

respectively. For example, Fig. 4 shows the data corresponding to:

h5; h6; h7; h8ð Þ ¼ 32; 64; 128; 256ð Þ; s5; s6; s7; s8ð Þ ¼ 984; 3182; 9259; 24426ð Þ. As a

result of the above mentioned process we obtain the coordinates of four points

ln 25
� �

; ln s5ð Þ
� �

, ln 26
� �

; ln s6ð Þ
� �

, ln 27ð Þ; ln s7ð Þð Þ, ln 28ð Þ; ln s8ð Þð Þ, in a graph ln–ln

shown in the center of Fig. 4.
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Parameter Ps(M)

Now, our software calculates the slope of the continuous graph ln–ln on the fourth

point ln 28ð Þ; ln s8ð Þð Þ. Such slope is an extrapolation of the process used to calculate

the theoretical limit of the upper fractal dimension �F Mð Þ. To confirm that the

preceding claim is true, you can consider 4 and use l’Hopital’s rule. In order to

calculate that slope, the software implements the classical four-point formula 5,

where h = ln2 and yi = ln(s5?i). The final result y03 given by our software is the

fractal parameter Ps(M). In the example, the fractal parameter is
1

6 ln 2
�2 ln 984ð Þ þ 9 ln 3182ð Þ � 18 ln 9259ð Þ þ 11 ln 24426ð Þð Þ � 1:33.

ln 2nð Þ ¼ x; ln snð Þ ¼ f xð Þ; ln Snð Þ
ln 2nð Þ ¼

f xð Þ
x

ð4Þ

y
0

3 ’
1

6h
�2y0 þ 9y1 � 18y2 þ 11y3ð Þ ¼ Ps Mð Þ ð5Þ

Parameter Pr(M)

We have explained that the fractal parameter Ps(M) is generated by means of the

slope in the fourth point of the continuous graph ln–ln. However, in the theoretical

case of fractal self-similar objects such a graph is a straight line. Therefore, if we

generate a fractal parameter under the hypothesis of self-similarity, then we can use

the slope of the regression line corresponding to the discrete set of the four points

belonging the graph ln–ln. So, the calculation is the quotient of the covariances
rxy
rxx

where:

rxy ¼
1

4

Xi¼3

i¼0

yi � �yð Þð 5þ ið Þ ln 2ð Þ � �xÞ ð6Þ

rxx ¼
1

4

Xi¼3

i¼0

5þ ið Þ ln 2ð Þ � �xð Þ2 ð7Þ

�x ¼ 5þ 6þ 7þ 8

4
ln 2ð Þ; �y ¼ y0 þ y1 þ y2 þ y3

4
ð8Þ

This fractal parameter will be called Pr(M). In the case of the rose window

displayed in Fig. 4, we have Pr(M) & 1.55.

Calculation Results

Table 1 shows the calculated results of the fractal parameters Ps(M) and for Pr(M):

the 15 designs of the rosettes (Fig. 5); the 15 configurations of solid areas (Fig. 6)

and the 15 configurations of the glass areas (Fig. 7).
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Discussion

The Fractal Pattern of the Rose Windows Design

After the study of the design of the fifteen gothic rosettes, we have calculated the

mean mDs
� 1:369 of their fractal parameters Ps(M) and the standard deviation

rDs
� 0:187. Therefore, the Pearson’s coefficient of variation of Ps(M) is

CVDs
¼ 14%. In general, when the Pearson’s coefficient of variation is under

25 % it is considered that there is little scattering around the mean, or that the mean

is representative. As a result, the mean is representative. In order to determine the

probability of the mean mDs
being a non-random result, we have applied Pearson’s

Chi squared test with 19 degrees of freedom in the following two-way table,

Table 2, where I1 ¼ 1:01; 1:05½ 	; I2 ¼ 1:06; 1:10½ 	; . . .; I19 ¼ 1:91; 1:95½ 	; I20 ¼
1:96; 2½ 	; and the result is v2 & 13.684.

In conclusion this table is a non-random table with probability

PDs
¼ 0:198 
 0:998. This probability is very low, consequently the mean mDs

is a random result. But, despite the size of Table 2, which has 19 degrees of

freedom, some of the 40 expected frequencies are less than 5. Therefore, one might

think that we have taken the wrong decision using Pearson’s Chi squared test. In

order to dispel any doubts, we apply Fisher-Irwin’s exact test to the 1855967520

possible matrices. By calculation, we find that the value Pcutoff of conditional

probability for this table’s matrix is Pcutoff ¼ 15!285! 15!ð Þ20

300! 0!ð Þ8 1!ð Þ9 2!ð Þ3 15!ð Þ8 14!ð Þ9 13!ð Þ3

� 5:788725 � 10�9. The number ncutoff of matrices having conditional probability

Pvalue,i B Pcutoff is ncutoff = 1820641656. Finally, the two-side Pvalue of the test is

Table 1 Calculated results

F.P. design F.P. solid areas F.P. glass areas

Ps Pr Ps Pr Ps Pr

Amiens 1.53 1.72 1.79 1.74 1.80 1.70

Bourges 1.37 1.56 1.65 1.62 1.84 1.92

Burgos 1.37 1.69 1.89 1.81 1.89 1.69

Chartres 1.67 1.82 1.89 1.84 1.84 1.70

Strasbourg 1.35 1.63 1.54 1.63 1.87 1.93

Laon 1.21 1.52 1.78 1.70 1.95 1.83

León 1.25 1.56 1.90 1.80 1.88 1.73

Mallorca 1.29 1.75 1.82 1.89 1.66 1.62

Milan 1.01 1.53 1.73 1.65 1.91 1.88

Orvieto 1.50 1.68 1.69 1.72 1.85 1.91

Paris 1.12 1.42 1.79 1.74 1.98 1.86

Poitiers 1.41 1.65 1.81 1.71 1.96 1.82

Reims 1.59 1.67 1.89 1.73 1.92 1.82

Sens 1.64 1.65 1.76 1.65 1.81 1.84

Troyes 1.33 1.55 1.61 1.60 1.81 1.95
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Fig. 5 The designs of the 15 rose windows
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Fig. 6 The solid area of the 15 rose windows
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Fig. 7 The glass areas of the 15 rose windows
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Pvalue ¼
Pncutoff

i¼1 Pvalue;i � 0:741525 ¼ PDs
. In conclusion, using the exact test, this

table is a non-random table with probability PDs
¼ 0:741525 � 0:05. This

probability is very high, consequently the mean mDs
is a random result. From this

we cannot conclude that the rose windows show a fractal pattern. If the mean for

s or r parameters is not representative or is a random result, the geometry of the

configuration does not have a geometric pattern; the existence of the pattern must be

independent of the type of parameter used, giving a numerical value for the

roughness of the geometric configuration.

The Fractal Pattern of the Solid Areas in the Rose Windows

Applying the same method used in the previous subsection, we have analyzed the

configuration of the solid areas of the rose windows (Fig. 6). Using Table 1, we have

calculated the mean mSs � 1:768 and the standard deviation rSs � 0:106 of the

parameters PS(M). Therefore, the Pearson’s coefficient of variation is CVSs ¼ 6 %.

As a result, the mean is very representative. If then we apply Pearson’s Chi square

test with 19 degrees of freedom to the data in Table 3 (the two-way table of s

parameters for the solid areas)—as we did with Table 2—, the result is v2 & 44.561.

The table is a non-random table with probability PSs � 0:998, so the mean mSs is a

non-random result with a very high probability. We can also use Fisher-Irwin’s exact

test, the result of which is Pcutoff ¼ 15!285! 15!ð Þ20

300! 0!ð Þ13 1!ð Þ3 2!ð Þ2 4!ð Þ2 15!ð Þ13 14!ð Þ3 13!ð Þ2 11!ð Þ2 �
9:018023� 10�12,ncutoff ¼ 250220824 and Pvalue ¼

Pncutoff
i¼1 Pvalue;i � 0:000742 ¼

PSs 
 0:01, so the mean mSs is a non-random result with a very high probability.

The analysis results of the parameters Pr(M) for the solid areas are, mSr � 1:722
(Mean), rSr � 0:082 (Standard Deviation) and CVSr ¼ 5 % (Pearson’s Coefficient

of Variation). The mean is very representative and if we apply the Chi square test to

the data in Table 4 (the two-way table of r parameters for the solid areas), the result

is v2 & 52.5982 and PSr � 0:998, so the mean mSr is a non-random result. The

Fisher-Irwin’s exact test for Table 4 generates the result of Pcutoff & 2.834236 9

10-12, ncutoff = 132157864 and Pvalue � 0:000133 ¼ PSr 
 0:01, so the mean mSr

is a non-random result. Thus, the means of the parameters s and r are a non-random

results and they are very representative. Therefore, the solid areas of the rose

windows follow a fractal pattern.

The Fractal Pattern of the Glass Areas in the Rose Windows

Applying the same method used in the previous subsection, we have analyzed the

configuration of the glass areas (Fig. 7). Using Table 1, we have calculated the

mean mLs � 1:865 and the standard deviation rLs � 0:077 of the parameters PS(M).

Therefore, the Pearson’s coefficient of variation is CVLs ¼ 4 %. As a result, the

mean is very representative. If we apply Pearson’s Chi square test with 19 degrees

of freedom to the data in Table 5 (the two-way table of s parameters for the glass

areas) the result is v2 � 52:982. The table is a non-random table with probability
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PLs � 0:998, so the mean mLs is a non-random result with a very high probability.

Using Fisher-Irwin’s exact test, the result of which is Pcutoff & 1.910485 9 10-12,

ncutoff = 112801120 and Pvalue � 0:000048 ¼ PLs 
 0:01, the mean mLs is a non-

random result with a very high probability.

The results of the analysis of the parameters Pr(M) for the glass areas are mLr �
1:820 (mean), rLr � 0:094 (standard deviation) and CVLr ¼ 5% (Pearson’s coef-

ficient of variation). The mean is very representative and if we apply the Chi square

test to the data in Table 6 (the two-way table of r parameters for the glass areas), the

result is v2 & 45.614 and PLr � 0:998, so the mean mLr is a non-random result.

Again we apply Fisher-Irwin’s exact test, the result of which is Pcutoff &
2.605207 9 10-12, ncutoff ¼ 125181064 and Pvalue � 0:000115 ¼ PLr 
 0:01, so

the mean mLr a non-random result. The means of the parameters s and r are a non-

random results and they are very representative. Therefore, the glass areas of the

rose windows follow a fractal pattern.

Conclusion

Using the strictest possible interpretation of the statistical criteria, a fractal pattern

exists if and only if there is pattern in parameter Pr and Ps simultaneously.

Therefore, using the fractal geometric parameterization, it has been proven that the

rose windows designs do not follow any characteristic roughness pattern (Table 7).

With all these results, we can conclude that each of these rose windows was

designed according to the particular stylistic approach of the corresponding

architect, the construction budget and, finally, the architectural composition of the

main elevation. However, if we analyze the techniques which glassmakers and

stonemasons applied to the geometry of the solid and glass surfaces, we find more

interesting results. After analyzing the solid and glass areas of the rose windows we

do find a characteristic roughness pattern because there is a fractal pattern in both

types of parameters (Table 7). This means that the rose windows were designed

with the same roughness model for solid areas and glass areas. This results allows us

to conclude that there is a characteristic fractal pattern not only in the Gothic

structures (floor plan, elevation and cross-section) (Samper and Herrera 2014), but

also in the rose windows (solid areas and glass areas), which are one of the most

representative elements of the Gothic style.

Table 7 The summary table of results

m r CV P� 0:01 Fisherð Þ P� 0:998 v2ð Þ Fractal

pattern
Pr Ps Pr Ps Pr Ps

(%)

Pr Ps Pr Ps

Design – 1.369 – 0.187 – 14 – 0.741525 – 0.072 No

Solid 1.722 1.768 0.082 0.106 5 % 6 0.000133 0.000742 0.998 0.998 Yes

Glass 1.820 1.865 0.094 0.077 5 % 4 0.000115 0.000048 0.998 0.998 Yes
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