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Abstract Applying the methodology and rules that were previously established in

Part I of this work, this part presents the remarks on the mathematical analysis for the

regular multi-sided right prisms. According to the shape of their bases, these include

shapes from pentagon to circle. The first remark examines the effect of h on S. The

second remark calculates the minimum total surface area (SMin) in two cases, the case of

constant h and the case of variable h. The third remark calculates walls ratio RW and the

critical walls ratio RWo. The last remark studies the required conditions for the

numerical equality in two cases, the case of Per = Ar, and the case of S = V. Finally,

the findings of the first group (right regular prisms) are generalized and discussed.

Keywords Trigonometry � Algebra � Differential equations � Volume �
Area � Total surface area � Perimeter � Regular polygons � Multi-sided

prisms � Minimum total surface area � Walls ratio � Numerical equality

Introduction

Regular multi-sided rooms have been used repeatedly in many historical and

contemporary buildings either in simple residential buildings or multi-function

complex projects. The Holy Dome of the Rock in Jerusalem (Elkhateeb 2012) (built

between 687 and 691, Fig. 1a) is one of those famous regular octagonal buildings.

Regular multi-sided shapes were also utilized on the level of city planning, as there

are many examples of cities that have regular multi-sided shapes. The plan of the

city of Palmanova (near Venice, Italy, constructed during the renaissance, Fig. 1b)

is a good example of such a city (Wikipedia 2013).
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For the purposes of this part, the regular multi-sided right prisms are those prisms

that have more than four sides. Thus, and according to the shape of their bases, they

include a wide range of shapes, from pentagonal to circular. In the first part of this

work (Elkhateeb 2014) assumptions and methodology were set out to mathemat-

ically analyze isosceles triangular right prisms in order to answer five questions:

• How the angle h (or h and b) affects S?

• When S becomes minimum (SMin)?

• What is the ratio between walls surface area SW and S (SW/S = RW)?

• When Ar numerically equals Per? and,

• When S numerically equals V?

Following the same methodology and assumptions that were previously applied,

this part investigates the case of the regular multi-sided right prisms.

Notations

In this part, the following terms mean:

Ar : Room floor area (m2)

h : The altitude of the triangle, see Fig. 2 (m)

HR : Room height, the height of the prism (m)

HRo : The critical room height, the height that fulfills (S–V) equality (m)

n : Number of sides

Per : Perimeter (m)

S : Room total surface area (m2)

SMin : The minimum total surface area (m2)

SW : Walls total surface area (m2)

r : Radius (m)

ro : The critical radius, the radius that fulfills (Per–Ar) equality (m)

RW : Walls ratio, SW/S (Ratio)

Fig. 1 Regular multi-sided shapes have many architectural applications. a, left Plan for the Holy Dome
of the Rock. b, right Plan of the city of Palmanova near Venice
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RWo : The critical walls ratio, the ratio between walls total surface area and total

surface area when S is minimum (SMin) (Ratio)

V : Room volume (m3)

xo : The critical ratio, the ratio between HR and r when S is minimum (SMin)

(Ratio)

The other terms will be illustrated in figures according to each case as required.

Room Assumptions

The term ‘‘regular’’ as will be used hereafter means that the shape under discussion

must fulfill two conditions (see Fig. 2):

• To be contained in a circle.

• Its central angle w is constant and equal to 360/n.

Through this part, it is assumed that the angle h, Ar and V are the independent

variables whereas Per and S are the dependent ones. Figure 2 shows the terms: h, w,

h, L and r in the regular multi-sided shapes.

The Mathematical Relationships of Multi-sided Shapes

The regular multi-sided shapes can be identified knowing both Ar and n. This

section derives the main mathematical functions among the different variables of

such shapes. These functions will be utilized later to determine SMin and calculate

the equality conditions. From the first principles, it can be proved that:

Fig. 2 Multi-sided shapes, the different variables. a, left Example for a pentagonal shape. b, right
Example for an octagonal shape
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h ¼ 180

n
ðdegreesÞ ð1Þ

L ¼ 2r sin h: ð2Þ
Also

h ¼ rcosh: ð3Þ
And

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar

n sin h cos h

r

: ð4Þ

The perimeter Per of the regular multi-sided shapes can be calculated as:

Per ¼ n� L ð5Þ
By substitution for L according to Eq. 2, Eq. 5 can be rewritten as:

Per ¼ 2nr sin h ð6Þ
The Area of the regular multi-sided shapes can be calculated as:

Ar ¼ n� L� h

2
ð7Þ

By substitution for L and h according to Eqs. 2 and 3 respectively, Eq. 7 can be

rewritten as:

Ar ¼ nr2 sin h cos h: ð8Þ
In the third dimension, a regular multi-sided shape can be extruded to form a

right prism with a height HR. In this case, its volume V = (HR 9 Ar) can be

calculated from:

V ¼ HR � nr2 sin h cos h ð9Þ
Thus

HR ¼
V

nr2 sin h cos h
: ð10Þ

In this part, the ratio x will be defined as:

x ¼ HR

r
: ð11Þ

The total surface area S of a right prism in this case can be calculated as:

S ¼ 2Arþ Per�HRð Þ ð12Þ
Given the values of Per (Eq. 6), Ar (Eq. 8), and HR (Eq. 10) as a function of h,

Eq. 12 can be rewritten as:

S ¼ 2nr sin h ðHR þ r cos hÞ ð13Þ
By substitution for HR according to Eq. 10, Eq. 13 will be:
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S ¼ 2nr sin h
V

nr2 sin h cos h
þ r cos h

� �

: ð14Þ

Remark 1: Effect of h on S

In multi-sided shapes, the numerical solution of Eq. 13 shows that S is an increasing

function of h (see Fig. 3), thus it is a decreasing function of n according to Eq. 1.

Figure 3 is a graphical representation for Eq. 13. As can be concluded from this

figure, the function reaches its minimum value when h ? 0�.

Remark 2: the Minimum Total Surface Area, SMin

Following the same approach that was previously applied in triangular rooms, two

cases will be considered here:

• Case of constant h, where both Ar and HR are variables. Or;

• Case of variable h, where both Ar and HR are constants.

Case I, Constant h, Variable Ar and HR

In this case, among the different multi-sided rooms that have the same h and V, SMin

occurs when the first derivative of Eq. 14 equals zero, i.e.

dS

dr
¼ 4nr sin h cos h� 2V

r2 cos h
¼ 0 ð15Þ

By Substitution for V according to Eq. 9, and applying the rules of algebra,

Eq. 15 can be rewritten as:

Fig. 3 The relationship between h and S according to Eq. 13
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HR ¼ 2r cos h ð16Þ
Thus, the critical ratio xo (see Sect. ‘‘Notations’’) can be calculated from Eq.16

as:

xo ¼ 2 cos h: ð17Þ
As can be concluded from Eq. 17, xo is a function of h (consequently n). Thus,

for every n (i.e. for every regular multi-sided right prism) there is xo that fulfills

SMin. Eq. 17 also tells that xo is a decreasing function of h, therefore, it is an

increasing function of n, see Fig. 4. When n reaches ?, then h ? 0�, consequently,

xo = 2, this is the case of a circle. To determine room dimensions that fulfill SMin in

such prisms:

• Determine both n and V;

• Calculate h by applying Eq. 1;

• Calculate xo by applying Eq. 17;

• Apply Eq. 10 to get r;

• Apply Eq. 17 again to get HR;

• Utilize Eqs. 2 and 4, respectively to get L and Ar.

It is worth mentioning in this context that Eq. 17 also applies in the two special

cases of equilateral triangle (h = 60�) and square (h = 45�). Both shapes can be

considered regular multi-sided shapes according to the above definition of this term

(see Sect. ‘‘Room Assumptions’’). If r in Eq. 16 was replaced by its equivalent value

of h (r = 2/3 h in equilateral triangle, and r = h/2 in square), then Eq. 17 will yield

xo according to Eqs. 14 or 15 (Part I) and Eq. 14 (Part II) (Elkhateeb and Elkhateeb

2014).

Similar to the cases of triangular and quadratic right prisms, the two relationships

(HR–S) and (Ar–S) depend on xo which divides these functions into two zones (see

Figs. 5 and 6):

• Zone [a]: where x\ xo. In this zone, S is a decreasing function of HR (see

Fig. 5) and an increasing function of Ar (see Fig. 6), note that the location of the

Fig. 4 Values of xo in the range 5 B n B 20 according to Eq. 17
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zones is reversed in Fig. 6. Thus, any increase in room height will decrease its

total surface area.

• Zone [b]: where x[ xo. In this zone, S is an increasing function of HR and a

decreasing function of Ar. This means that the increase in HR will increase S.

Case II, Variable h, Constant Ar and HR

In this case, the perimeter will control the value of S according to Eq. 12 as long as

the other three parameters V, Ar and HR are constants in prisms under consideration.

In this case, S reaches its minimum value when the first derivative of Eq. 6 equals

zero after replacing both n and r by their equivalent values according to Eqs. 1 and

4, respectively, thus:

Fig. 5 The relationship of HR to S (case of pentagon, n = 5)

Fig. 6 The relationship of Ar to S (case of pentagon, n = 5)
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dPer

dh
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

180Ar
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

sin h

h cos h

r

hcos2h� sinhð�h sin hþ cos hÞ
h2 cos2 h

� �

¼ 0 ð18Þ

This leads to:

h ¼ sin h cos h: ð19Þ
Eq. 19 fulfills only if h equals 0. This result completely agrees with the

mathematical axiom that among the different regular shapes that have the same

area, the circle (n = ?) possesses the minimum perimeter. As a result, among the

different regular multi-sided right prisms, a cylinder has the minimum total surface

area. Another proof to this result is that Per is an increasing function of h according

to Eq. 6 (consequently, a decreasing function of n according to Eq. 1), thus Per is a

decreasing function of n; accordingly S is a decreasing function of n (see Figs. 3

and 9).

Remark 3: Walls Ratio RW

In regular multi-sided right prisms, RW can be mathematically defined as:

RW ¼
Per�HR

2Arþ Per�HR
ð20Þ

By substitution for Per and Ar from Eqs. 6 and 8 respectively, Eq. 20 can be

rewritten as:

RW ¼
HR

HR þ r cos h
: ð21Þ

The relationship between RW and h resembles the relationship between S and h
(see Fig. 3), thus it is an increasing function of h, consequently, a decreasing function

of n. RW reaches its minimum value when h ? 0� (circular shapes). To calculate

RWo, the conditions for xo must be applied, thus, Eq. 21 can be rewritten as:

RWo ¼
2r cos h

2r cos hþ r cos h
ð22Þ

This leads to:

RWo ¼
2

3
¼ 0:6667: ð23Þ

Consequently, the critical walls ratio RWo (see Sect. ‘‘Notations’’) in regular

multi-sided right prisms is also constant for any h and equals 2/3.

Remark 4: Case of Equality

This section calculates two cases of numerical equality in regular multi-sided

prisms. The first considers the numerical equality between Per and Ar. The last

considers the numerical equality between S and V.
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Case I, Equality of Per and Ar

In regular multi-sided rooms, and according to Eqs. 6 and 8, the numerical equality

between Per and Ar occurs when:

2nro sin h ¼ nr2
o sin h cos h ð24Þ

By applying the rules of algebra and trigonometry, the critical radius ro (see Sect.

‘‘Notations’’) can be calculated from Eq. 24 as:

ro ¼
2

cos h
: ð25Þ

In the special case where n ? ? (i.e. circular shape), h ? 0. As cos 0 = 1,

thus, ro = 2 m.

Similar to xo, the numerical equality between Per and Ar also depends on h
according to Eq. 25. The values of ro were plotted in Fig. 7. As can be concluded

from this figure, the relationship between h and ro is similar to the relationship

between h and S (see Fig. 3), where ro is an increasing function of h (consequently a

decreasing function of n).

Case II, Equality of S and V

According to Eqs. 9 and 13, such numerical equality occurs when:

2nr sin hðHRo þ r cos hÞ ¼ nr2 sin h cos hHRo ð26Þ
By applying the rules of algebra, Eq. 26 will be:

HRo ¼
2r cos h

r cos h� 2
: ð27Þ

Thus, in regular multi-sided right prisms with given h and Ar, the numerical

equality between S and V occurs only when Eq. 27 fulfills. This can be calculated in

the following sequence:

• Determine both h (or n) and Ar;

• Apply Eq. 4 to get r, then;

• Substitute in Eq. 27 to get the critical room height HRo (see Sect. ‘‘Notations’’).

In the special case where n ? ? (i.e. a cylinder), h ? 0. As cos 0 = 1, thus,

Eq. 29 will be:

HRo ¼
2r

r� 2
ð28Þ

Similar to triangular and quadratic rooms (see Parts I and II), the minus sign (-)

in the denominator of Eqs. 27 and 28 indicates that for every h there is a minimum r

under which this numerical equality will never exist. This occurs when HRo tends to

?, i.e., when Ar equals Per according to Eq. 25. Figure 8 represents the

relationship between Ar and HRo calculated from Eq. 27 for a regular pentagonal

right prism (h = 36�). As can be seen from the figure, in the acceptable range, HRo

is a decreasing function of Ar. In this range, the function can be divided into two
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main zones, zone of rapid decay (when Ar tends to be equal to Per) and zone of slow

decay (when Ar is far from this equality).

Generalization of Results, Group of Regular Traditional Forms

The right prism that has regular bases (from the isosceles triangle to the circle)

constitutes the core of the first three parts of this work (see Elkhateeb 2014;

Elkhateeb and Elkhateeb 2014). It was assumed that the volume of the prism V is

constant. Through this work:

• A complete set of mathematical functions that relates Per, Ar and S to the angle

h (or h and b) was derived.

• The effect of h (or h and b) on S was investigated.

• The minimum total surface area SMin of the prism and walls ratio RW were

calculated.

• The conditions to fulfill two cases of numerical equality (Per–Ar) and (S–V)

were calculated.

When h is variable, in triangular and rectangular rooms that have the same area, S

is a decreasing function of h until a specific h where this relationship reverses and S

becomes an increasing function of h. This specific h = 60� in triangular shapes (i.e.

equilateral triangle) and 45� in rectangular shapes (i.e. square). The same fact also

applies in trapezoidal shapes but the angle at which the function reverses its

direction depends on both h and b. In regular multi-sided rooms, S is an increasing

function of h (accordingly a decreasing function of n).

In all of the examined shapes (from triangle to circle), the mathematical analysis

indicates that S is a decreasing function of n. This means that a triangular right

prism (n = 3) possesses the maximum S in comparison with a cylinder (n = ?)

that has the minimum S assuming that both have the same Ar and V (see Fig. 9).

This can be clarified from the fact that when h is variable and Ar is constant, the

Fig. 7 Values of ro for the common regular multi-sided shapes according to Eq. 25
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perimeter becomes the main variable that controls S. As Per is a decreasing function

of n (i.e. a triangle possesses the maximum Per, whereas a circle possesses the

minimum Per), thus S will be also a decreasing function of n. It should be

mentioned here that the variation in S as a function of n (ds/dn) becomes limited at

the higher values of n (n C 10) as can be seen in Fig. 9.

In trapezoidal shapes, the analysis indicates that Per is a decreasing function of

both h and b. This can be expressed mathematically as:

Per / 1

b
ðwhen h is constantÞ ð29Þ

Per / 1

h
when b is constantð Þ: ð30Þ

When h is constant (so, Ar is variable) and in prisms under consideration, the

mathematical analysis proves that there is a critical ratio xo that makes the total

surface area of a room reaches its minimum value. This xo depends on the shape of

the base and is a function of h (or h and b in trapezoidal shapes). When x\ xo, S

becomes a decreasing function of HR and an increasing function of Ar. This means

that any increase in room height will decrease its total surface area. On the contrary,

when x[ xo, S becomes an increasing function of HR and a decreasing function of

Ar. This means that an increase in HR will increase S.

When h is variable, the mathematical analysis indicates that walls ratio RW of the

prisms under discussion is also a function of h (or h and b in trapezoid). This

relationship resembles the relationship (h–S). Hence, in triangular and quadratic

prisms, RW is a decreasing function of h until a specific h (h = 60� in triangle and

45� in rectangle) then the function reverses and RW becomes an increasing function

of h. In regular multi-sided rooms, RW is an increasing function of h (accordingly a

decreasing function of n).

Fig. 8 The relationship of Ar to HRo when S = V (case of n = 5, h = 36�)
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When S reaches its minimum value, the mathematical analysis proves that RWo is

constant in all prisms under consideration and is equal to 2/3. Figures 10 and 11

summarize the findings of this work (in Parts I, II and III) for both S and RW.

The numerical equality between Per and Ar fulfills when the critical altitude/

diagonal or radius (ho or ro) fulfills. Similar to xo, ho (or ro) is a function of h (or h
and b in trapezoid). In the case of circles, ro = 2 m.

The numerical equality between S and V also fulfills when the critical room

height HRo fulfills. In the acceptable range of the derived formulae to calculate this

equality, HRo is a decreasing function of Ar. In the prisms under consideration, the

Fig. 9 The relationship of n to S

Fig. 10 Cases and mathematical characteristics of S
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mathematical analysis indicates that for every h (or h and b in trapezoid) there is a

minimum Ar under which this equality will never exist. This occurs when HRo tends

to ?, i.e., when Ar equals Per.

Conclusions

Following the same methodology, assumptions and rules that were applied

previously in Parts I and II, this part examines the cases of the regular multi-

sided right prisms. According to the shape of their bases, such prisms include shapes

from pentagon to circle. The first remark examines the effect of h on S. In the

second remark, the minimum total surface area SMin for the prisms under discussion

was calculated in two cases, the case of constant h and the case of variable h. In the

first case, the critical ratio xo was calculated. Results showed that xo depends

entirely on h. The values of xo were calculated and presented. In the second case,

where h is variable, results showed that SMin occurs when h ? 0 (i.e. cylindrical

rooms). The third remark calculates the ratio RW, results showed that RW reaches its

minimum value in circular rooms (n = ?). Results also showed that the critical

Fig. 11 Cases and mathematical characteristics of RW
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walls ratio RWo is constant for any n and is equal to 2/3. The last remark investigates

the conditions for the numerical equality either between Per and Ar or S and V. In

the first case, the critical radius ro that fulfills Per–Ar equality was calculated.

Results showed that ro depends entirely on h. In the second case, the critical room

height HRo that fulfills S–V equality was calculated. Results also indicated that for

every h there is a minimum r under which this equality will never exist; this

corresponds to ro (i.e. Ar = Per). Finally, the results of the first group (regular right

prisms) were generalized and discussed.
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