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Abstract Following the same methodology and rules that were previously applied
in Part I of this work, this part presents the remarks of the mathematical analysis for
the regular quadratic right prisms. These include the rectangular and isosceles
trapezoidal rooms. The first remark examines the effect of 6 (or 6 and B) on S. The
second remark calculates the minimum total surface area (Syg,) in two cases, case
of constant 0 (or 6 and ) and case of variable 6 (or 6 and/or B). The third remark
calculates the two ratios Ry and Ry,. The last remark studies the required condi-
tions for the numerical equality between (Per—Ar), and (S-V).

Keywords Trigonometry - Algebra - Differential equations - Volume -
Area - Total surface area - Perimeter - Regular polygons - Right quadratic
prisms - Minimum total surface area - Walls ratio - Numerical equality

Introduction

In the first part of this work (Elkhateeb 2014), assumptions were set out to
mathematically analyze isosceles triangular right prisms in order to answer five
questions:

e How the angle 0 (or 0 and P) affects S?
e When S becomes minimum (Syyin)?
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e What is the ratio between walls surface area Sy and S (Sw/S = Ry)?
e  When Ar numerically equals Per? and,
e When S numerically equals V?

Applying the same methodology and assumptions that were previously estab-
lished in Part I, this part investigates the case of regular quadratic right prisms. The
bases of such prisms could be either rectangular or isosceles trapezoidal, both will
be considered in this part.

Notations

In this part, the following terms mean:

Ar : Room floor area (m?)

h : The diagonal of the rectangle or trapezoid (m)

hg : The critical diagonal, the diagonal that fulfills (Per—Ar) equality (m)
Hr : Room height, the height of the prism (m)

Hpy, : The critical room height, the height that fulfills (S-V) equality (m)
Per : Perimeter (m)

S : Room total surface area (m?)
Smin : The minimum total surface area (mz)
Sw : Walls total surface area (mz)

Ryw  : Walls ratio, Sw/S (Ratio)
Ry, : The critical walls ratio, the ratio between walls total surface area and total
surface area when S is minimum (Syg;,) (Ratio)

A% : Room volume (m3)
w, : The critical ratio, the ratio between Hg and r when S is minimum (Sys,)
(Ratio)

The other terms will be illustrated in figures according to each case as required.

Rectangular Rooms

The rectangular rooms are the most common rooms in architectural applications.
There is almost no building that doesn’t contain a rectangular room. Figure 1
identifies the terms: 0, \, a, b, h and Hy, in the rectangular room. During this part, it
is assumed that the angle 6, Ar and V are the independent variables whereas Per,
and S are the dependent ones.

The Mathematical Relationships of Rectangular Prisms

Similar to the isosceles triangle, a rectangle can be completely identified knowing
both Ar and 0. This section derives the main mathematical functions among 0, h,
Per, S and V (see Fig. 1). These functions will be utilized later to determine Sy,
and calculate the equality conditions. From the first principles, it can be proved that:
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(a) (b)

Fig. 1 Rectangular rooms, the different variables. a Left room plan; b right room 3-D

a= ;Tro (1)
Also

a = hcos0 (2)
Thus

b=atand. (3)

From Eq. 3, the perimeter Per (2a + 2b) can be calculated as:
Per = 2a(1 + tan ). 4)

By substitution for a from Eq. 1, Per can be also calculated as:

Ar
PeerUM(l + tan ). (5)

From Eq. 1, Ar can be calculated as:
Ar = a*tan 0. (6)

In the third dimension, a rectangular shape can be extruded to form a right prism.
In this case, its volume V = (Hgr x Ar) can be calculated from:

V =a’Hgtan 0 (7)
Thus
\ 4
= 8
R @tano (8)

The total surface area S of a right prism with rectangular bases can be calculated
as:

S = 2Ar + (Per x Hg). 9)

Given the values of Per (Eq. 4), Ar (Eq. 6), and Hy (Eq. 8) as a function of 6,
Eq. 9 can be rewritten as:
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Fig. 2 The relationship between 6 and S according to Eq. 10

S = 24’ tan 0 + 2aHg(1 + tan 0) (10)
or
2V
= 2a* ———(1 . 11
S=2a tan0+atan0< + tan 0) (11)

Remark 1: Effect of 0 on S

Generally, the relationship between 6 and S in the case of the rectangular rooms
resembles that of the triangular rooms. Figure 2 is a graphical representation
for Eq. 10. As can be concluded from this figure, the function is symmetrical
around a vertical axis that passes through 6 = 45°. This has been expected earlier
provided that the room is rectangular (i.e., 6 + \y = 90°). The function reaches its
minimum value at 0 = 45°. Again, this angle (45°) splits the function into two main
zones:

e Zone 1: This zone encloses between 0° < 6 < 45°, in this zone S is a decreasing
function of 0. This zone can be also divided into two sub-zones:

e Zone of rapid decay [a] (0° < 0 < 7°): where S loses more than 40 % of its
maximum value.

e Zone of slow decay [b] (7° < 6 < 45°): 8 increases rapidly in comparison
with the reduction in S (in this zone, S loses about 10 % of its value at
0 ="17°.

e Zone 2: in this zone S is an increasing function of 6. This zone (between
45° < 6 < 90°) can be also divided into two additional sub-zones [c] (up to
0 < 83°, and [d]. Both zones are similar to the sub-zones [b] and
[a] respectively.
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Remark 2: the Minimum Total Surface Area, Sy

Following the same approach previously applied in case of triangular rooms, two
cases will be considered:

e Case of constant 0, where both Ar and Hi will be variables, or
e Case of variable 0, where both Ar and Hi will be constants.

Case I, Constant 0, Variable Ar and Hg

In this case, among the different rectangular rooms that have the same 0 and V, Sy,
occurs when the first derivative of Eq. 11 equals zero, i.e.,

ds 2V

— =datan — —
da M 2 tano
By Substitution for a and V according to Eqs. 2 and 7 respectively, Eq. 12 can be

rewritten as:

(I +tan@) = 0. (12)

2a*Hgxtan0
4hcos@tan0:m(l+tanﬂ). (13)

By applying the rules of algebra and trigonometry, the critical ratio o, (see Sect.
Notations) can be calculated from Eq. 13 as:

2sin @

(1+tan@)’ (14)

W, =

Equation 14 indicates the condition under which S will reach its minimum value
in a rectangular right prism. It is clear from Eq. 14 that o, in this case also depends
entirely on 0. To determine room dimensions that fulfill Sy;,:

Determine both 6 and V;

Calculate w, by applying Eq. 14;

Apply Eq. 8 to get h;

Apply Eq. 14 again to get Hg;

Utilize Eqs. 2 and 6 respectively to get a and Ar.

Figure 3 represents Eq. 14 and also the values of @, in the range 10° < 6 < 80°.
It can be concluded from this figure also that the function is symmetrical around
0 = 45°. In the range 6 < 45°, w, is an increasing function of 6, whereas in the
range 0 > 45° o, is a decreasing function of 6.

Again, the two relationships Hg—Ar on the one hand and Ar-S on the other
resemble the same relationships in case of the triangular rooms. Both relationships
depend totally on m,. As can be seen in Figs. 4 and 5, o, divides the functions into
two zones:

e Zone [a]: where o < w,. In this zone, S is a decreasing function of Hy (see
Fig. 4) and an increasing function of Ar (see Fig. 5), note that the location of the
zones is reversed in Fig. 5. Thus, any increase in room height will decrease its
total surface area.
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e Zone [b]: where @ > ,. In this zone, S is an increasing function of Hr and a
decreasing function of Ar. This means that, unlike zone [a], an increase in Hg
will increase S.

Case 1II, Variable 0, Constant Ar and Hg

In this case, V, Ar and Hy are constants in all rooms, thus and according to Eq. 9,
the perimeter will control the values of S. In this case, among the different
rectangular rooms, Sy, occurs when the perimeter of the room reaches its minimum
value. This can be mathematically calculated when the first derivative of Eq. 5
equals zero, i.e.,

dPer Ar 1 /tanf —Ar
=2y/——(sec’0) +2(1 +tan0) x = /—— x ——=0. 15
do ang*e¢0) 201+ an0) x5y o S (13)
By applying the rules of algebra and trigonometry, Eq. 15 will be:
tan@ = 1, thus 0 = 45° i.e. square. (16)

This means that a room with a squared plan possesses the minimum perimeter
among the other rectangular plans. Consequently, such a room has the minimum
total surface area among the other rooms that have the same Ar and V but different
0. This result completely agrees with the findings of Sect. Remark 1 (see Fig. 2).

Remark 3: Walls Ratio Ry

In rectangular rooms, Ry can be mathematically defined as:
_ Per x Hgp
" 2Ar + Per x Hg '

By substitution for Per and Ar from Egs. 4 and 6 respectively, Eq. 17 can be
rewritten as:

Ry (17)

Hg(1 + tan6)

Ry = . 18
v atan 0 + Hg(1 + tan 0) (18)

The relationship between Ry and 0 resembles the relationship between S and 0
(see Fig. 2). Thus it is symmetrical around 6 = 45°. In the zone where 6 < 45°, Ry
is a decreasing function of 6. In the zone where 6 > 45°, Ry is an increasing
function of 0. Ry reaches its minimum value at 6 = 45°. To calculate Ryy,, the
conditions for m, must be applied, thus, Eq. 18 can be rewritten as:

2hsin0_ . (1 4+ tan @)

(1+tan 0)
Ry, = - 19
" hcos Otan @ + g x (1 + tan 0) (19)
This leads to:
2
Ry, = = = 0.6667. (20)

3=
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Thus, the critical walls ratio Ryy, (see Sect. Notations) in rectangular right prisms
is also constant for any 0 and equals 2/3. This is similar to isosceles triangular right
prisms (Elkhateeb 2014).

Remark 4: Case of Equality

This section calculates two cases of numerical equality in rectangular rooms. The
first considers the equality between Per and Ar. The last considers the equality
between S and V.

Case I, Equality of Per and Ar

In rectangular rooms and according to Egs. 4 and 6, the numerical equality between
Per and Ar occurs when:

2a(1 + tan 0) = a* tan 0. (21)

By substitution for a from Eq. 2, and applying the rules of algebra and
trigonometry, the critical diagonal &, (see Sect. Notations) can be calculated from
Eq. 21 as:

hy, = 2(sec @ + csc ). (22)

Equation 22 indicates the condition for the numerical equality between Per and
Ar. Likewise ,, the equality in this case depends completely on 0, for every 0 there
is a specific h, that fulfills this equality. The values of h, (in the range
20° < 6 < 70°) were plotted in Fig. 6. As can be seen from this figure, the
relationship between 0 and h, is similar to the relationship between 6 and S (see
Fig. 2), symmetrical around a vertical axis that passes through 6 = 45°. The values
of other variables: a, b, Per and Ar can be calculated from Egs. 2, 3, 4 and 6.

Case 1II, Equality of S and V

In this case, the numerical equality between S and V occurs when:
24r + (Per x Hg,) = Ar X Hp,. (23)
By substitution for Ar and Per according to Egs. 2 and 4 respectively, and by
applying the rules of algebra, Eq. 23 will be:

2atan 0

Hpy, = .
K atan@ — 2(1 + tan 0)

(24)

If a was replaced by its equivalent value according to Eq. 2, and by applying the
rules of trigonometry, Eq. 24 will be:
2hsin 0
" hsin0— 2(1+tan @)’
For a rectangular room with given 6 and Ar, the numerical equality between S

and V will occur if the condition of Eq. 24 (or 25) has been satisfied. This can be
calculated in the following sequence:

HRo

(25)
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Fig. 6 Values of h, in the range 20° < 6 < 70° according to Eq. 22

Determine both 0 and Ar;
Apply Eq. 1 to get a or Eq. 2 to get h, then;

e Substitute in Eq. 24 or 25, to get the critical room height Hg, (see Sect.
Notations).

Similar to triangular rooms, the minus sign (—) in the denominator of Eq. 24 (or
25) indicates that for every 6 there is a minimum a (accordingly h) under which this
numerical equality will never exist. This occurs when Hpg, tends to oo, i.e., when Ar
numerically equals Per according to Eq. 22. Figure 7 represents the relationship
between Ar and Hpg, calculated from Eq. 24 (for 8 = 30°). As can be seen from this
figure, in the acceptable range, Hp, is a decreasing function of Ar while the function
can be divided into two main zones, zone of rapid decay (when Ar tends to be equal
to Per) and zone of slow decay (when Ar is far from this equality).

Trapezoidal Rooms

Trapezoidal, or fan-shaped, rooms are commonly used as auditoriums due to their
good acoustic characteristics (Cremer et al. 1978). Dissimilar to triangular or
rectangular shapes that can be mathematically identified knowing both their Ar and
0, an isosceles trapezoidal shape needs more parameters in order to be completely
identified. At least one of the following parameters X, a, L, s or B (see Fig. 8) must
be also given. In the following section it is assumed that the three parameters Ar, 0
and B are defined. Hy is the height of the prism. During this section, it is also
assumed that 0, Ar, B and V are the independent variables whereas Per, and S are the
dependent ones.

The Mathematical Relationships of Regular Trapezoidal Prisms

From the first principles, in an isosceles trapezoid it can be proved that:
L = hsin0 (26)



476 A. A. Elkhateeb, E. A. Elkhateeb

105 .
90 g
75 The imaginary prism where Hg, = ° (or, the
. minimum Ar under which the equality
60 : between S and V will never exist)
45 : /
= \ Acceptable
] 30 . range of Eq. 24
T :
15 . l/ S
0 — : : ,
5 TN 15 ¢ 25 35 45
b : Ar m?
30 Unacceptable .
) range of Eq. 24 \

Fig. 7 The relationship of Ar to Hg, (case of 6 = 30°)

a
‘ pas
| I |
| ! (] // |
| | gt
I I /
| ] // |
I J / |
/
| | / I
| | Y \
| 7/ \
S |, |
Q ]
| e -
|
: Y :
| S |
/ ) |
I / ! \
| ,/ ! |
y i
| , ! |
I
° | @9 Y Z, }
I\, | |
| | |
X S a X
n 1
Fig. 8 Trapezoidal rooms, the different variables
Ar
n = hcos6 (28)
Ar
n=y/— (29)

tan 6
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L
By substitution for L according to Eqs. 26, Eq. 30 will be:
hsin
b= 31
sin (31)
n
h = 32
cos 0 (32)

By substitution for n according to Eq. 29, and applying the rules of algebra and

trigonometry, Eq. 32 will be:
Ar
h=\——. 33
sin @ cos 0 (33)

The perimeter Per of an isosceles trapezoid can be calculated from:

Per =2(a+x+b) (34)
Thus, and according to Fig. 8, Eq. 34 can be rewritten as:
Per =2(n +b). (35)

The last equation can be set in different formats according to the values of both n
and b as calculated in the previous equations. From Egs. 28 and 31, Eq. 35 can be

rewritten as:
in0
Per =2h (cosH + ﬂ) ) (36)
sinf

By substitution for h according to Eq. 33, Eq. 36 can be rewritten as:

Ar sin0
Per =2/ ———— — . 7
“r sin 0 cos 0 <cos0 + sin/f) (37)

If n and b were replaced by their equivalent values according to Eqgs. 27 and 30
respectively, Eq. 35 can be rewritten as:

Ar L
Per =2 —+—. 38
“r <L +sinﬁ) (38)
If L was replaced by its equivalent value according to Eq. 26, the last formula
will be:
Ar  hsin0
Per =2 39
“r (hsina + sinﬁ) (39)
This leads to:
Arsinf + h® sin® 0
Per =2 . 40
“r ( hsinOsinp (40)

By substitution for h according to Eq. 33, Eq. 39 can be rewritten as:
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(Arsinﬂ+ Ar ><sin20)

sinfcos6

Per =

(41)
Ar
sin @ cos 0

X sin @ sin f§

Applying the rules of algebra and trigonometry, Eq. 41 can be simplified to:

Per — 2@ (sinﬁ + tan0>. (42)
sin f Vtan 0
The area Ar of an isosceles trapezoid can be calculated from:
Ar=L(a +x) (43)
Thus
Ar =nL. (44)

By substitution for L and n according to Eqgs. 26 and 28 respectively, Eq. 44 will
be:

Ar = h*sin 0 cos 0. (45)

In the third dimension and according to the assumptions, the isosceles trapezoidal
plan will be extruded to form a right prism. Its volume (Ar x Hg) can be calculated
as:

V = h’Hpgsin 0 cos 0 (46)
Thus, Hi can be calculated as:
| %
Hp=——"— (47)

h>sinfOcosO’

The total surface area S of this prism can be calculated according to Eq. 9. By
substitution for Per and Ar according to Eqs. 36 and 45 respectively, Eq. 9 will be:

in6

S — 2hHg <c0s0 L ) + 2% sin @ cos 0. (48)
sinfi

If Hg was replaced by its equivalent value according to Eq. 47, Eq. 48 can be

rewritten as:

2V

sin0
§= hsinfcos 6

<cos0 + m> + 2h% sin 0 cos 6. (49)
sinf

Remark 1: Effect of 6 on S

Figure 9 is a graphical representation for Eq. 48. As there are three independent
variables in the isosceles trapezoid, the effect of 6 on S is more complicated than the
corresponding cases of triangle and rectangle. In case of the isosceles trapezoid, the
minimum S depends on the three variables. In other words, there is Sy, for every
combination of 0 and [, this will be discussed in more details in Sect. Case II,
variable 0 and/or B. Nevertheless, the function resembles the case of triangular
rooms, where the relationship is reversed when the function reaches its minimum
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Fig. 9 The relationship between 6 and S according to Eq. 48 (both 6 and B are variables)

value, i.e., in Zone [a], S is a decreasing function of 6, while in Zone [b], S is an
increasing function of 0 (see Fig. 9).

Remark 2: the Minimum Total Surface Area, Sy

In isosceles trapezoidal right prisms, three independent variables (Ar, 0 and ) yield
more possibilities than the corresponding cases of triangular or rectangular prisms.
In general, there are two main possibilities that may contain more sub-possibilities,
they are:

e Case of constant 0 and B, (variable Ar and Hg)
e Case of variable 8 and/or B, (constant Ar and Hg). This case can be divided into
two additional sub-cases, these are:

e Case of constant 0 and variable f;
e Case of variable 6 and constant p.

Case I, Constant 6 and

In this case, both h (i.e. Ar) and Hy are variables whereas 0 and [ are constants.
Among the different isosceles trapezoidal right prisms that have the same 6, B and
V, Smin occurs when the first derivative of Eq. 49 equals zero, i.e.
as 2V (cos 0+ sinf
dh h?%sin0cos 0 sinf
By substitution for V from Eq. 46, and by applying the rules of algebra and
trigonometry, the critical ratio @, can be calculated from Eq. 50 as:

) + 4hsin0cos 0 = 0. (50)
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o — 2sinfcos 0 (51)
® " cosO + sinfcscp’

Case I, Constant 0 and

By substitution in Eq. 47, h can be calculated. Knowing h, the other variables L, n
and b can be calculated according to Eqs. 26, 28 and 31 respectively. Consequently
the other parameters of the trapezoid can be calculated.

As can be concluded from Eq. 51, @, is a function of both 8 and B, i.e., for every
combination of 6 and B (8 < P) there is a value for ,. This is obvious in Fig. 10, which
is a graphical representation for Eq. 51 in the range 20° < B < 80° (values of w,
calculated at 10° intervals). It can be concluded from this figure that @, is an increasing
function of 0 as long as 8 < 45°. When 6 exceeds 45°, m, is a decreasing function of 6.

The relationships between (Hg—S) and (Ar—S) are similar to the same relationships in
triangular and rectangular right prisms (see Figs. 4, 5), both depend entirely on e,. In
case @ < m,, S is a decreasing function of Hg and an increasing function of Ar. In case
o > ,, S is an increasing function of Hg and a decreasing function of Ar. Table 1
presents an example for an isosceles trapezoidal right prism where § = 15°, B = 20°
and V = 4,500 m>. For the given prism, o, = 0.29 (see Fig. 10). Hg is assumed for
each case except for o, (the bold row in the table). As can be concluded from this table,
the increase of Hy in the zone @ > @, has a limited effect of S (around 0.1-10 % of S
corresponding to m,). Whereas the increase in Ar in the zone @ < ®, has a significant
effect on S (around 0.1-28 % of S corresponding to ®,).

Case II, Variable 6 and/or 3

In this case, both Ar and Hy are similar to the cases of triangle and rectangle, Sy,
occurs when Per is minimum. As mentioned above, the case of variable 6 and/or
can be divided into two sub-cases, these are:

e Case of constant 6 and variable B
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Table 1 Example shows the effect of Ar and Hg on S in isosceles trapezoidal right prisms (constant 0

and P, and variable Ar)

6 BV ® (ratio) am) b@m) x(m) h@m) Ar(m? Hg Sm» AS
©) ) @) (m) (%)
15 20 4500 w>w, 078 725 2152 2022 2844 20221 2225 2,585.00 10.0
0.67 7.63 22.65 2129 2994 22405 20.08 2519.66 7.2

0.58 8.03 2385 2241 31.51 24826 18.13 246450 4.9

049 845 2510 2359 33.17 27508 1636 241974 3.0

042 890 2642 2483 3492 30480 1476 238569 1.5

036 937 27.81 26.14 3675 33773 1332 236274 05

031 9.86 2928 2751 38.69 37421 1203 235135 0.1

o, 029 10.09 2995 28.15 39.58  391.69 11.49 2,350.14 0.0

o<w, 027 1038 30.82 2896 40.73 41464 10.85 2,352.06 0.1

023 1092 3244 3048 4287 45943 979 236551 0.7

020 11.50 34.15 3209 4513  509.07 884 239244 18

0.17 1210 3594 3378 4750 564.06 7.98 243372 3.6

0.14 1274 37.84 3555 50.00 62500 7.20 249032 6.0

0.12 1338 3973 3733 5250  689.06 6.53 2,559.38 8.9

0.11 14.05 4172 3920 55.13  759.69 592 2,64439 125

0.09 1475 43.80 41.16 57.88 837.56 537 2,746.55 169

0.08 1549 4599 4322 60.78 92341 487 286723 220

0.07 1626 4829 4538 63.81 1,018.06 442 3,007.94 28.0

e Case of variable 6 and constant 3

In the following sections, the condition(s) to fulfill Sy, for each case will be

addressed.

e Case of constant 0 and variable

In this case, to fulfill Syy, the first derivative of Eq. 37 must be equal to zero, i.e.

in6
" (_sm' czosﬂ> _o
sin-p

dPer Ar
dp - sin @ cos 0
Thus
sinOcosp
sin*p -
Consequently

0

cosfp=0,ie p=90°

Equation 54 indicates that an isosceles trapezoidal right prism (with constant 0
and variable B) will possess the minimum S when x — 0, i.e., the trapezoid tends to
be a rectangle. In this case and according to Eq. 54, it is clear that S is a decreasing
function of B (see Fig. 11) regardless the value of 0. It can be concluded also that S

(52)

(53)

(54)
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Fig. 11 The relationship between B and S (different 0)

Sm?

is a decreasing function of 6 in the range where 0 < 45°. This relationship is
reversed when 8 > 45°, i.e. S becomes an increasing function of 6 (see Fig. 11)
regardless the value of f.

e Case of variable 6 and constant 3

Unlike the previous case, here L is variable. Applying the rule of minimum Per,
Swmin Occurs when the first derivative of Eq. 42 equals zero, i.e.,

2
d‘Il’;r = ng X [Zta:zj:;t:TO X (sinﬁ + tan0 + \/t:;TH X SECZO):| =0. (55)
Applying the rules of trigonometry, this leads to:
sinp = tan0 (56)
Thus
0 = tan"'(sinp). (57)

Consequently, among the different isosceles trapezoidal right prisms (with variable 0
and constant f3), the one that satisfies the condition of Eq. 57 possesses Sy, Figure 12
shows an example for the relationship between 6 and S (case of B = 45°).

Equation 57 also reveals the results of the general case where both 0 and [ are variables.
In such cases, Sy, exists when P reaches its maximum value (90°). Thus, and according to
Eq. 57, 0 equals 45°. This means that 6 = Vs, or a squared shape. This result agrees with the
findings of the rectangular prisms where a squared prism has the minimum S among other
prisms that have the same Ar and V (see Sect. Case II, variable 0, constant Ar and Hg).

Remark 3: Walls Ratio Ry
In isosceles trapezoidal right prisms, the ratio Ry can be mathematically calculated

from Eq. 17. By substitution for Per and Ar according to Egs. 36 and 45
respectively, Eq. 17 will be:
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Sm?
sin B =tan 0

Fig. 12 The relationship between 6 and S (case of p = 45°)

2hHp (cos0 + 58
Rw = —. (58)
2h”sin 0 cos 0 + 2hHpg (cos@ + %)
By applying the rules of algebra and trigonometry, Eq. 58 can be rewritten as:
Hg(cos0 + sinfcscp)

hsin 0 cos 0 + Hg(cosO + sinfcscp)
To calculate Ry,, the conditions for @, must be applied, thus, Eq. 58 will be
written as:
sin @
4h? sin 0 cos O x <(COS 0+5’"">>

(cos 0+;;Eg)

Rw, = : (60)
2h? sin 0 cos 0 + 4h* sin 0 cos 0 x <%)
By applying the rules of trigonometry, this leads to:
Rw, = % = 0.6667. (61)

The last equation indicates that Ryy,, similar to triangular and rectangular right
prisms, is constant for any combination of 6 and B and equals 2/3.

Remark 4: Case of Equality

Following the same methodology, this section calculates the two numerical
equalities, (Per—Ar) and (S-V).

Case I, Equality of Per and Ar
In case of isosceles trapezoidal shapes, the critical diagonal h,, (see Sect. Notations)

that fulfills the numerical equality between Ar and Per can be calculated based on
Egs. 36 and 45 as:
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ino
2h, <cos0 + %> — R2sind cos 0. (62)
sinf}

By applying the rules of algebra and trigonometry, Eq. 62 can be simplified to:
h, = 2(csc 0 + sec Ocsc f). (63)

Equation 63 reveals the condition under which this numerical equality exists.
Again, and similar to @,, the numerical equality in this case is a function of both 0
and B, for every combination of 6 and P there is a specific h, that fulfills this
equality. Given the values of h,, 0 and 3, the other parameters of a trapezoid: L, n,
b, Per and Ar can be calculated from Eqgs. 26, 28, 31, 36 and 45 respectively.

Case II, Equality of S and V
In isosceles trapezoidal right prisms, the critical room height Hpg, (see Sect.

Notations) that fulfills the numerical equality between S and V can be calculated
from Eqs. 46 and 48 as:

in6
2h?*sin O cos 0 + 2hHpg, (cosO + %) = h*sin@cos O x Hg,. (64)
sin
By applying the rules of algebra and trigonometry, Eq. 64 can be simplified to:
2h sin 0 cos 0

HRo

= . 65
hsin@cos 6 — 2(cos 0 + sin O csc f) (65)
For an isosceles trapezoidal room with given 0, B and Ar, the numerical equality

between S and V will exist if the condition in Eq. 65 fulfilled. This can be calculated

in the following sequence:

Determine 0, B and Ar;

Apply Eq. 33 to get h, then;

Substitute in Eq. 65, to get the critical room height Hg,;
Apply Eq. 46 to get V and Eq. 48 to get S.

Similar to the triangular and rectangular rooms, the minus sign (-) in the
denominator of Eq. 65 indicates that for every 0 and B there is a minimum h under
which this equality will never exist. Again, this occurs when Hp, tends to o0, i.e.,
when Ar equals Per according to Eq. 63. The relationship between Ar and Hp,
resembles the same relationship in the case of the rectangular right prisms (see
Fig. 7).

Conclusions

Following the same methodology and rules that were applied previously in Part I,
this part examines the cases of the regular quadratic right prisms. Such prisms
include the rectangular and isosceles trapezoidal right prisms; both were considered
in this part. The first remark examines the effect of 6 on S. In the second remark, the
minimum total surface area Sy, for the rooms under discussion was calculated in
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two cases, case of constant 0 (or constant 0 and ) and case of variable 0 (or variable
0 and/or B). In the first case, the critical ratio @, was calculated. Results showed that
o, depends entirely on 6 (or 0 and B in case of isosceles trapezoidal right prisms).
The values of w, were calculated and presented. In the second case, where 6 (or 0
and/or [ in isosceles trapezoids) is variable, results showed that Syy;,, in the case of
rectangles, corresponds to 6 = 45°. In the case of trapezoids, results indicate that an
isosceles trapezoidal right prism (with constant 6 and variable B) will possess the
minimum S when x — 0. In case of variable 0 and constant B, the isosceles
trapezoid that satisfies the condition of Eq. 57 possesses Sy, The third remark
calculates the ratio Rw (Sw/S). In rectangles, results showed that Ry, reaches its
minimum value when 6 = 45° whereas in trapezoids, it depends on the values of 0,
B, h and Hg. Results also showed that the critical walls ratio Ry, is constant for any
0 (or O and B in isosceles trapezoids) and is equal to 2/3. The last remark
investigates the conditions for the numerical equality either between Per and Ar or S
and V. In the first case, the critical diagonal h, that fulfills Per—Ar equality was
calculated. Results showed that h, depends entirely on 6 (or 6 and B in isosceles
trapezoids). In the second case, the critical room height Hpg, that fulfills S-V
equality was calculated. Results also indicated that for every 0 (or 6 and f in
isosceles trapezoids) there is a minimum h under which this equality will never
exist; this corresponds to &, (i.e. Ar = Per).
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