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Abstract Following the same methodology and rules that were previously applied

in Part I of this work, this part presents the remarks of the mathematical analysis for

the regular quadratic right prisms. These include the rectangular and isosceles

trapezoidal rooms. The first remark examines the effect of h (or h and b) on S. The

second remark calculates the minimum total surface area (SMin) in two cases, case

of constant h (or h and b) and case of variable h (or h and/or b). The third remark

calculates the two ratios RW and RWo. The last remark studies the required condi-

tions for the numerical equality between (Per–Ar), and (S–V).

Keywords Trigonometry � Algebra � Differential equations � Volume �
Area � Total surface area � Perimeter � Regular polygons � Right quadratic

prisms � Minimum total surface area � Walls ratio � Numerical equality

Introduction

In the first part of this work (Elkhateeb 2014), assumptions were set out to

mathematically analyze isosceles triangular right prisms in order to answer five

questions:

• How the angle h (or h and b) affects S?

• When S becomes minimum (SMin)?
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• What is the ratio between walls surface area SW and S (SW/S = RW)?

• When Ar numerically equals Per? and,

• When S numerically equals V?

Applying the same methodology and assumptions that were previously estab-

lished in Part I, this part investigates the case of regular quadratic right prisms. The

bases of such prisms could be either rectangular or isosceles trapezoidal, both will

be considered in this part.

Notations

In this part, the following terms mean:

Ar : Room floor area (m2)

h : The diagonal of the rectangle or trapezoid (m)

h0 : The critical diagonal, the diagonal that fulfills (Per–Ar) equality (m)

HR : Room height, the height of the prism (m)

HRo : The critical room height, the height that fulfills (S–V) equality (m)

Per : Perimeter (m)

S : Room total surface area (m2)

SMin : The minimum total surface area (m2)

SW : Walls total surface area (m2)

RW : Walls ratio, SW/S (Ratio)

RWo : The critical walls ratio, the ratio between walls total surface area and total

surface area when S is minimum (SMin) (Ratio)

V : Room volume (m3)

xo : The critical ratio, the ratio between HR and r when S is minimum (SMin)

(Ratio)

The other terms will be illustrated in figures according to each case as required.

Rectangular Rooms

The rectangular rooms are the most common rooms in architectural applications.

There is almost no building that doesn’t contain a rectangular room. Figure 1

identifies the terms: h, w, a, b, h and HR in the rectangular room. During this part, it

is assumed that the angle h, Ar and V are the independent variables whereas Per,

and S are the dependent ones.

The Mathematical Relationships of Rectangular Prisms

Similar to the isosceles triangle, a rectangle can be completely identified knowing

both Ar and h. This section derives the main mathematical functions among h, h,

Per, S and V (see Fig. 1). These functions will be utilized later to determine SMin

and calculate the equality conditions. From the first principles, it can be proved that:
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a ¼
ffiffiffiffiffiffiffiffiffiffi

Ar

tan h

r

ð1Þ

Also

a ¼ hcosh ð2Þ

Thus
b ¼ a tan h: ð3Þ

From Eq. 3, the perimeter Per (2a ? 2b) can be calculated as:

Per ¼ 2a 1þ tan hð Þ: ð4Þ

By substitution for a from Eq. 1, Per can be also calculated as:

Per ¼ 2

ffiffiffiffiffiffiffiffiffiffi

Ar

tan h

r

1þ tan hð Þ: ð5Þ

From Eq. 1, Ar can be calculated as:

Ar ¼ a2 tan h: ð6Þ
In the third dimension, a rectangular shape can be extruded to form a right prism.

In this case, its volume V = (HR 9 Ar) can be calculated from:

V ¼ a2HR tan h ð7Þ

Thus

HR ¼
V

a2 tan h
: ð8Þ

The total surface area S of a right prism with rectangular bases can be calculated

as:

S ¼ 2Arþ Per�HRð Þ: ð9Þ
Given the values of Per (Eq. 4), Ar (Eq. 6), and HR (Eq. 8) as a function of h,

Eq. 9 can be rewritten as:

Fig. 1 Rectangular rooms, the different variables. a Left room plan; b right room 3-D
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S ¼ 2a2 tan hþ 2aHRð1þ tan hÞ ð10Þ

or

S ¼ 2a2 tan hþ 2V

a tan h
ð1þ tan hÞ: ð11Þ

Remark 1: Effect of h on S

Generally, the relationship between h and S in the case of the rectangular rooms

resembles that of the triangular rooms. Figure 2 is a graphical representation

for Eq. 10. As can be concluded from this figure, the function is symmetrical

around a vertical axis that passes through h = 45o. This has been expected earlier

provided that the room is rectangular (i.e., h ? w = 90o). The function reaches its

minimum value at h = 45o. Again, this angle (45o) splits the function into two main

zones:

• Zone 1: This zone encloses between 0o \ h B 45o, in this zone S is a decreasing

function of h. This zone can be also divided into two sub-zones:

• Zone of rapid decay [a] (0o \ h B 7o): where S loses more than 40 % of its

maximum value.

• Zone of slow decay [b] (7o B h B 45o): h increases rapidly in comparison

with the reduction in S (in this zone, S loses about 10 % of its value at

h = 7o).

• Zone 2: in this zone S is an increasing function of h. This zone (between

45o B h\ 90o) can be also divided into two additional sub-zones [c] (up to

h B 83o), and [d]. Both zones are similar to the sub-zones [b] and

[a] respectively.

[a] [b] [c] [d]
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Fig. 2 The relationship between h and S according to Eq. 10
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Remark 2: the Minimum Total Surface Area, SMin

Following the same approach previously applied in case of triangular rooms, two

cases will be considered:

• Case of constant h, where both Ar and HR will be variables, or

• Case of variable h, where both Ar and HR will be constants.

Case I, Constant h, Variable Ar and HR

In this case, among the different rectangular rooms that have the same h and V, SMin

occurs when the first derivative of Eq. 11 equals zero, i.e.,

dS

da
¼ 4a tan h� 2V

a2 tan h
1þ tan hð Þ ¼ 0: ð12Þ

By Substitution for a and V according to Eqs. 2 and 7 respectively, Eq. 12 can be

rewritten as:

4h cos h tan h ¼ 2a2HRtanh

a2 tan h
1þ tan hð Þ: ð13Þ

By applying the rules of algebra and trigonometry, the critical ratio xo (see Sect.

Notations) can be calculated from Eq. 13 as:

xo ¼
2 sin h

ð1þ tan hÞ : ð14Þ

Equation 14 indicates the condition under which S will reach its minimum value

in a rectangular right prism. It is clear from Eq. 14 that xo in this case also depends

entirely on h. To determine room dimensions that fulfill SMin:

• Determine both h and V;

• Calculate xo by applying Eq. 14;

• Apply Eq. 8 to get h;

• Apply Eq. 14 again to get HR;

• Utilize Eqs. 2 and 6 respectively to get a and Ar.

Figure 3 represents Eq. 14 and also the values of xo in the range 10o B h B 80o.

It can be concluded from this figure also that the function is symmetrical around

h = 45o. In the range h\ 45o, xo is an increasing function of h, whereas in the

range h[ 45o, xo is a decreasing function of h.

Again, the two relationships HR–Ar on the one hand and Ar–S on the other

resemble the same relationships in case of the triangular rooms. Both relationships

depend totally on xo. As can be seen in Figs. 4 and 5, xo divides the functions into

two zones:

• Zone [a]: where x\ xo. In this zone, S is a decreasing function of HR (see

Fig. 4) and an increasing function of Ar (see Fig. 5), note that the location of the

zones is reversed in Fig. 5. Thus, any increase in room height will decrease its

total surface area.
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Fig. 3 Values of xo in the range 20o B h B 80o according to Eq. 14
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Fig. 4 The relationship of HR to S (case of h = 30o)
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Fig. 5 The relationship of Ar to S (case of h = 30o)
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• Zone [b]: where x[ xo. In this zone, S is an increasing function of HR and a

decreasing function of Ar. This means that, unlike zone [a], an increase in HR

will increase S.

Case II, Variable h, Constant Ar and HR

In this case, V, Ar and HR are constants in all rooms, thus and according to Eq. 9,

the perimeter will control the values of S. In this case, among the different

rectangular rooms, SMin occurs when the perimeter of the room reaches its minimum

value. This can be mathematically calculated when the first derivative of Eq. 5

equals zero, i.e.,

dPer

dh
¼ 2

ffiffiffiffiffiffiffiffiffiffi

Ar

tan h

r

sec2h
� �

þ 2ð1þ tan hÞ � 1

2

ffiffiffiffiffiffiffiffiffiffi

tan h

Ar

r

� �Ar

sin2h
¼ 0: ð15Þ

By applying the rules of algebra and trigonometry, Eq. 15 will be:

tan h ¼ 1; thus h ¼ 45o; i:e: square: ð16Þ
This means that a room with a squared plan possesses the minimum perimeter

among the other rectangular plans. Consequently, such a room has the minimum

total surface area among the other rooms that have the same Ar and V but different

h. This result completely agrees with the findings of Sect. Remark 1 (see Fig. 2).

Remark 3: Walls Ratio RW

In rectangular rooms, RW can be mathematically defined as:

RW ¼
Per�HR

2Arþ Per�HR
: ð17Þ

By substitution for Per and Ar from Eqs. 4 and 6 respectively, Eq. 17 can be

rewritten as:

RW ¼
HRð1þ tan hÞ

a tan hþHRð1þ tan hÞ : ð18Þ

The relationship between RW and h resembles the relationship between S and h
(see Fig. 2). Thus it is symmetrical around h = 45o. In the zone where h\ 45o, RW

is a decreasing function of h. In the zone where h[ 45o, RW is an increasing

function of h. RW reaches its minimum value at h = 45o. To calculate RWo, the

conditions for xo must be applied, thus, Eq. 18 can be rewritten as:

RWo ¼
2h sin h
ð1þtan hÞ � ð1þ tan hÞ

h cos h tan hþ 2h sin h
ð1þtan hÞ � ð1þ tan hÞ

ð19Þ

This leads to:

RWo ¼
2

3
¼ 0:6667: ð20Þ
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Thus, the critical walls ratio RWo (see Sect. Notations) in rectangular right prisms

is also constant for any h and equals 2/3. This is similar to isosceles triangular right

prisms (Elkhateeb 2014).

Remark 4: Case of Equality

This section calculates two cases of numerical equality in rectangular rooms. The

first considers the equality between Per and Ar. The last considers the equality

between S and V.

Case I, Equality of Per and Ar

In rectangular rooms and according to Eqs. 4 and 6, the numerical equality between

Per and Ar occurs when:

2a 1þ tan hð Þ ¼ a2 tan h: ð21Þ
By substitution for a from Eq. 2, and applying the rules of algebra and

trigonometry, the critical diagonal ho (see Sect. Notations) can be calculated from

Eq. 21 as:

ho ¼ 2ðsec hþ csc hÞ: ð22Þ
Equation 22 indicates the condition for the numerical equality between Per and

Ar. Likewise xo, the equality in this case depends completely on h, for every h there

is a specific ho that fulfills this equality. The values of ho (in the range

20o B h B 70o) were plotted in Fig. 6. As can be seen from this figure, the

relationship between h and ho is similar to the relationship between h and S (see

Fig. 2), symmetrical around a vertical axis that passes through h = 45o. The values

of other variables: a, b, Per and Ar can be calculated from Eqs. 2, 3, 4 and 6.

Case II, Equality of S and V

In this case, the numerical equality between S and V occurs when:

2Arþ ðPer�HRoÞ ¼ Ar�HRo: ð23Þ
By substitution for Ar and Per according to Eqs. 2 and 4 respectively, and by

applying the rules of algebra, Eq. 23 will be:

HRo ¼
2a tan h

a tan h� 2ð1þ tan hÞ : ð24Þ

If a was replaced by its equivalent value according to Eq. 2, and by applying the

rules of trigonometry, Eq. 24 will be:

HRo ¼
2h sin h

h sin h� 2ð1þ tan hÞ : ð25Þ

For a rectangular room with given h and Ar, the numerical equality between S

and V will occur if the condition of Eq. 24 (or 25) has been satisfied. This can be

calculated in the following sequence:
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• Determine both h and Ar;

• Apply Eq. 1 to get a or Eq. 2 to get h, then;

• Substitute in Eq. 24 or 25, to get the critical room height HRo (see Sect.

Notations).

Similar to triangular rooms, the minus sign (-) in the denominator of Eq. 24 (or

25) indicates that for every h there is a minimum a (accordingly h) under which this

numerical equality will never exist. This occurs when HRo tends to ?, i.e., when Ar

numerically equals Per according to Eq. 22. Figure 7 represents the relationship

between Ar and HRo calculated from Eq. 24 (for h = 30o). As can be seen from this

figure, in the acceptable range, HRo is a decreasing function of Ar while the function

can be divided into two main zones, zone of rapid decay (when Ar tends to be equal

to Per) and zone of slow decay (when Ar is far from this equality).

Trapezoidal Rooms

Trapezoidal, or fan-shaped, rooms are commonly used as auditoriums due to their

good acoustic characteristics (Cremer et al. 1978). Dissimilar to triangular or

rectangular shapes that can be mathematically identified knowing both their Ar and

h, an isosceles trapezoidal shape needs more parameters in order to be completely

identified. At least one of the following parameters x, a, L, w or b (see Fig. 8) must

be also given. In the following section it is assumed that the three parameters Ar, h
and b are defined. HR is the height of the prism. During this section, it is also

assumed that h, Ar, b and V are the independent variables whereas Per, and S are the

dependent ones.

The Mathematical Relationships of Regular Trapezoidal Prisms

From the first principles, in an isosceles trapezoid it can be proved that:

L ¼ hsinh ð26Þ

Fig. 6 Values of ho in the range 20o B h B 70o according to Eq. 22
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n ¼ Ar

L
ð27Þ

n ¼ hcosh ð28Þ

n ¼
ffiffiffiffiffiffiffiffiffiffi

Ar

tan h

r

ð29Þ

Acceptable 
range of Eq. 24 

Unacceptable 
range of Eq. 24 

The imaginary prism where HRo = ∞ (or, the 
minimum Ar under which the equality 

between S and V will never exist) 

Fig. 7 The relationship of Ar to HRo (case of h = 30o)

Fig. 8 Trapezoidal rooms, the different variables
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b ¼ L

sin b
: ð30Þ

By substitution for L according to Eqs. 26, Eq. 30 will be:

b ¼ hsinh

sin b
ð31Þ

h ¼ n

cos h
ð32Þ

By substitution for n according to Eq. 29, and applying the rules of algebra and

trigonometry, Eq. 32 will be:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar

sin h cos h

r

: ð33Þ

The perimeter Per of an isosceles trapezoid can be calculated from:

Per ¼ 2ðaþ xþ bÞ ð34Þ
Thus, and according to Fig. 8, Eq. 34 can be rewritten as:

Per ¼ 2ðnþ bÞ: ð35Þ
The last equation can be set in different formats according to the values of both n

and b as calculated in the previous equations. From Eqs. 28 and 31, Eq. 35 can be

rewritten as:

Per ¼ 2h coshþ sinh

sinb

� �

: ð36Þ

By substitution for h according to Eq. 33, Eq. 36 can be rewritten as:

Per ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar

sin h cos h

r

coshþ sinh

sinb

� �

: ð37Þ

If n and b were replaced by their equivalent values according to Eqs. 27 and 30

respectively, Eq. 35 can be rewritten as:

Per ¼ 2
Ar

L
þ L

sinb

� �

: ð38Þ

If L was replaced by its equivalent value according to Eq. 26, the last formula

will be:

Per ¼ 2
Ar

hsinh
þ hsinh

sinb

� �

ð39Þ

This leads to:

Per ¼ 2
Arsinbþ h2 sin2 h

hsinhsinb

� �

: ð40Þ

By substitution for h according to Eq. 33, Eq. 39 can be rewritten as:
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Per ¼ 2
Arsinbþ Ar

sinhcosh
� sin2h

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar
sin h cos h

q

� sin h sin b

2

6

4

3

7

5

: ð41Þ

Applying the rules of algebra and trigonometry, Eq. 41 can be simplified to:

Per ¼ 2
ffiffiffiffiffiffi

Ar
p

sin b

sinbþ tanh
ffiffiffiffiffiffiffiffiffiffi

tan h
p

� �

: ð42Þ

The area Ar of an isosceles trapezoid can be calculated from:

Ar ¼ Lðaþ xÞ ð43Þ
Thus

Ar ¼ nL: ð44Þ
By substitution for L and n according to Eqs. 26 and 28 respectively, Eq. 44 will

be:

Ar ¼ h2 sin h cos h: ð45Þ
In the third dimension and according to the assumptions, the isosceles trapezoidal

plan will be extruded to form a right prism. Its volume (Ar 9 HR) can be calculated

as:

V ¼ h2HR sin h cos h ð46Þ
Thus, HR can be calculated as:

HR ¼
V

h2 sin h cos h
: ð47Þ

The total surface area S of this prism can be calculated according to Eq. 9. By

substitution for Per and Ar according to Eqs. 36 and 45 respectively, Eq. 9 will be:

S ¼ 2hHR coshþ sinh

sinb

� �

þ 2h2 sin h cos h: ð48Þ

If HR was replaced by its equivalent value according to Eq. 47, Eq. 48 can be

rewritten as:

S ¼ 2V

h sin h cos h
coshþ sinh

sinb

� �

þ 2h2 sin h cos h: ð49Þ

Remark 1: Effect of h on S

Figure 9 is a graphical representation for Eq. 48. As there are three independent

variables in the isosceles trapezoid, the effect of h on S is more complicated than the

corresponding cases of triangle and rectangle. In case of the isosceles trapezoid, the

minimum S depends on the three variables. In other words, there is SMin for every

combination of h and b, this will be discussed in more details in Sect. Case II,

variable h and/or b. Nevertheless, the function resembles the case of triangular

rooms, where the relationship is reversed when the function reaches its minimum
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value, i.e., in Zone [a], S is a decreasing function of h, while in Zone [b], S is an

increasing function of h (see Fig. 9).

Remark 2: the Minimum Total Surface Area, SMin

In isosceles trapezoidal right prisms, three independent variables (Ar, h and b) yield

more possibilities than the corresponding cases of triangular or rectangular prisms.

In general, there are two main possibilities that may contain more sub-possibilities,

they are:

• Case of constant h and b, (variable Ar and HR)

• Case of variable h and/or b, (constant Ar and HR). This case can be divided into

two additional sub-cases, these are:

• Case of constant h and variable b;

• Case of variable h and constant b.

Case I, Constant h and b

In this case, both h (i.e. Ar) and HR are variables whereas h and b are constants.

Among the different isosceles trapezoidal right prisms that have the same h, b and

V, SMin occurs when the first derivative of Eq. 49 equals zero, i.e.

dS

dh
¼ � 2V

h2 sin h cos h
coshþ sinh

sinb

� �

þ 4h sin h cos h ¼ 0: ð50Þ

By substitution for V from Eq. 46, and by applying the rules of algebra and

trigonometry, the critical ratio xo can be calculated from Eq. 50 as:

]b[]a[

SMin

Fig. 9 The relationship between h and S according to Eq. 48 (both h and b are variables)
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xo ¼
2 sin h cos h

coshþ sinhcscb
: ð51Þ

Case I, Constant h and b

By substitution in Eq. 47, h can be calculated. Knowing h, the other variables L, n

and b can be calculated according to Eqs. 26, 28 and 31 respectively. Consequently

the other parameters of the trapezoid can be calculated.

As can be concluded from Eq. 51, xo is a function of both h and b, i.e., for every

combination of h and b (h\b) there is a value for xo. This is obvious in Fig. 10, which

is a graphical representation for Eq. 51 in the range 20o B b B 80o (values of xo

calculated at 10o intervals). It can be concluded from this figure that xo is an increasing

function of h as long as h\ 45o. When h exceeds 45o, xo is a decreasing function of h.

The relationships between (HR–S) and (Ar-S) are similar to the same relationships in

triangular and rectangular right prisms (see Figs. 4, 5), both depend entirely on xo. In

case x\xo, S is a decreasing function of HR and an increasing function of Ar. In case

x[xo, S is an increasing function of HR and a decreasing function of Ar. Table 1

presents an example for an isosceles trapezoidal right prism where h = 15o, b = 20o

and V = 4,500 m3. For the given prism, xo = 0.29 (see Fig. 10). HR is assumed for

each case except for xo (the bold row in the table). As can be concluded from this table,

the increase of HR in the zone x > xo has a limited effect of S (around 0.1–10 % of S

corresponding to xo). Whereas the increase in Ar in the zone x < xo has a significant

effect on S (around 0.1–28 % of S corresponding to xo).

Case II, Variable h and/or b

In this case, both Ar and HR are similar to the cases of triangle and rectangle, SMin

occurs when Per is minimum. As mentioned above, the case of variable h and/or b
can be divided into two sub-cases, these are:

• Case of constant h and variable b

 = 80o

 = 70o

 = 60o
 = 50o

 = 45o

 = 40o

 = 30o

 = 20o

Fig. 10 Values of xo in the range 20o B b B 80o according to Eq. 51
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• Case of variable h and constant b

In the following sections, the condition(s) to fulfill SMin for each case will be

addressed.

• Case of constant h and variable b

In this case, to fulfill SMin the first derivative of Eq. 37 must be equal to zero, i.e.

dPer

db
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ar

sin h cos h

r

� � sinhcosb

sin2b

� �

¼ 0 ð52Þ

Thus

sinhcosb

sin2b
¼ 0 ð53Þ

Consequently

cosb ¼ 0; i:e: b ¼ 90o: ð54Þ
Equation 54 indicates that an isosceles trapezoidal right prism (with constant h

and variable b) will possess the minimum S when x ? 0, i.e., the trapezoid tends to

be a rectangle. In this case and according to Eq. 54, it is clear that S is a decreasing

function of b (see Fig. 11) regardless the value of h. It can be concluded also that S

Table 1 Example shows the effect of Ar and HR on S in isosceles trapezoidal right prisms (constant h
and b, and variable Ar)

h
(�)

b
(�)

V

(m3)

x (ratio) a (m) b (m) x (m) h (m) Ar (m2) HR

(m)

S (m2) DS

(%)

15 20 4,500 x[xo 0.78 7.25 21.52 20.22 28.44 202.21 22.25 2,585.00 10.0

0.67 7.63 22.65 21.29 29.94 224.05 20.08 2,519.66 7.2

0.58 8.03 23.85 22.41 31.51 248.26 18.13 2,464.50 4.9

0.49 8.45 25.10 23.59 33.17 275.08 16.36 2,419.74 3.0

0.42 8.90 26.42 24.83 34.92 304.80 14.76 2,385.69 1.5

0.36 9.37 27.81 26.14 36.75 337.73 13.32 2,362.74 0.5

0.31 9.86 29.28 27.51 38.69 374.21 12.03 2,351.35 0.1

xo 0.29 10.09 29.95 28.15 39.58 391.69 11.49 2,350.14 0.0

x\xo 0.27 10.38 30.82 28.96 40.73 414.64 10.85 2,352.06 0.1

0.23 10.92 32.44 30.48 42.87 459.43 9.79 2,365.51 0.7

0.20 11.50 34.15 32.09 45.13 509.07 8.84 2,392.44 1.8

0.17 12.10 35.94 33.78 47.50 564.06 7.98 2,433.72 3.6

0.14 12.74 37.84 35.55 50.00 625.00 7.20 2,490.32 6.0

0.12 13.38 39.73 37.33 52.50 689.06 6.53 2,559.38 8.9

0.11 14.05 41.72 39.20 55.13 759.69 5.92 2,644.39 12.5

0.09 14.75 43.80 41.16 57.88 837.56 5.37 2,746.55 16.9

0.08 15.49 45.99 43.22 60.78 923.41 4.87 2,867.23 22.0

0.07 16.26 48.29 45.38 63.81 1,018.06 4.42 3,007.94 28.0
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is a decreasing function of h in the range where h B 45o. This relationship is

reversed when h[ 45o, i.e. S becomes an increasing function of h (see Fig. 11)

regardless the value of b.

• Case of variable h and constant b

Unlike the previous case, here L is variable. Applying the rule of minimum Per,

SMin occurs when the first derivative of Eq. 42 equals zero, i.e.,

dPer

dh
¼ 2

ffiffiffiffiffiffi

Ar
p

sin b
� �sec2h

2tanh
ffiffiffiffiffiffiffiffiffiffi

tan h
p � sinbþ tanhþ 1

ffiffiffiffiffiffiffiffiffiffi

tan h
p � sec2h

� �� �

¼ 0: ð55Þ

Applying the rules of trigonometry, this leads to:

sinb ¼ tanh ð56Þ
Thus

h ¼ tan�1ðsinbÞ: ð57Þ
Consequently, among the different isosceles trapezoidal right prisms (with variable h

and constant b), the one that satisfies the condition of Eq. 57 possesses SMin. Figure 12

shows an example for the relationship between h and S (case of b = 45o).

Equation 57 also reveals the results of the general case where both h and b are variables.

In such cases, SMin exists when b reaches its maximum value (90o). Thus, and according to

Eq. 57, h equals 45o. This means that h = w, or a squared shape. This result agrees with the

findings of the rectangular prisms where a squared prism has the minimum S among other

prisms that have the same Ar and V (see Sect. Case II, variable h, constant Ar and HR).

Remark 3: Walls Ratio RW

In isosceles trapezoidal right prisms, the ratio RW can be mathematically calculated

from Eq. 17. By substitution for Per and Ar according to Eqs. 36 and 45

respectively, Eq. 17 will be:

θ = 10o

θ = 20o

θ = 30o

θ = 45o

θ = 70o

θ = 60o

Fig. 11 The relationship between b and S (different h)
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RW ¼
2hHR coshþ sinh

sinb

	 


2h2 sin h cos hþ 2hHR coshþ sinh
sinb

	 
 : ð58Þ

By applying the rules of algebra and trigonometry, Eq. 58 can be rewritten as:

RW ¼
HR coshþ sinhcscbð Þ

h sin h cos hþHR coshþ sinhcscbð Þ : ð59Þ

To calculate RWo, the conditions for xo must be applied, thus, Eq. 58 will be

written as:

RWo ¼
4h2 sin h cos h� ðcos hþsin h

sin b
Þ

ðcos hþsin h
sin b
Þ

� �

2h2 sin h cos hþ 4h2 sin h cos h� ðcos hþsin h
sin b
Þ

ðcos hþsin h
sin b
Þ

� � : ð60Þ

By applying the rules of trigonometry, this leads to:

RWo ¼
2

3
¼ 0:6667: ð61Þ

The last equation indicates that RWo, similar to triangular and rectangular right

prisms, is constant for any combination of h and b and equals 2/3.

Remark 4: Case of Equality

Following the same methodology, this section calculates the two numerical

equalities, (Per–Ar) and (S–V).

Case I, Equality of Per and Ar

In case of isosceles trapezoidal shapes, the critical diagonal ho (see Sect. Notations)

that fulfills the numerical equality between Ar and Per can be calculated based on

Eqs. 36 and 45 as:

SMin

si
n 

β 
=

 ta
n 

θ

Fig. 12 The relationship between h and S (case of b = 45o)
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2ho coshþ sinh

sinb

� �

¼ h2
osinh cos h: ð62Þ

By applying the rules of algebra and trigonometry, Eq. 62 can be simplified to:

ho ¼ 2ðcsc hþ sec h csc bÞ: ð63Þ
Equation 63 reveals the condition under which this numerical equality exists.

Again, and similar to xo, the numerical equality in this case is a function of both h
and b, for every combination of h and b there is a specific ho that fulfills this

equality. Given the values of ho, h and b, the other parameters of a trapezoid: L, n,

b, Per and Ar can be calculated from Eqs. 26, 28, 31, 36 and 45 respectively.

Case II, Equality of S and V

In isosceles trapezoidal right prisms, the critical room height HRo (see Sect.

Notations) that fulfills the numerical equality between S and V can be calculated

from Eqs. 46 and 48 as:

2h2 sin h cos hþ 2hHRo coshþ sinh

sinb

� �

¼ h2 sin h cos h�HRo: ð64Þ

By applying the rules of algebra and trigonometry, Eq. 64 can be simplified to:

HRo ¼
2h sin h cos h

h sin h cos h� 2ðcos hþ sin h csc bÞ : ð65Þ

For an isosceles trapezoidal room with given h, b and Ar, the numerical equality

between S and V will exist if the condition in Eq. 65 fulfilled. This can be calculated

in the following sequence:

• Determine h, b and Ar;

• Apply Eq. 33 to get h, then;

• Substitute in Eq. 65, to get the critical room height HRo;

• Apply Eq. 46 to get V and Eq. 48 to get S.

Similar to the triangular and rectangular rooms, the minus sign (-) in the

denominator of Eq. 65 indicates that for every h and b there is a minimum h under

which this equality will never exist. Again, this occurs when HRo tends to ?, i.e.,

when Ar equals Per according to Eq. 63. The relationship between Ar and HRo

resembles the same relationship in the case of the rectangular right prisms (see

Fig. 7).

Conclusions

Following the same methodology and rules that were applied previously in Part I,

this part examines the cases of the regular quadratic right prisms. Such prisms

include the rectangular and isosceles trapezoidal right prisms; both were considered

in this part. The first remark examines the effect of h on S. In the second remark, the

minimum total surface area SMin for the rooms under discussion was calculated in
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two cases, case of constant h (or constant h and b) and case of variable h (or variable

h and/or b). In the first case, the critical ratio xo was calculated. Results showed that

xo depends entirely on h (or h and b in case of isosceles trapezoidal right prisms).

The values of xo were calculated and presented. In the second case, where h (or h
and/or b in isosceles trapezoids) is variable, results showed that SMin, in the case of

rectangles, corresponds to h = 45o. In the case of trapezoids, results indicate that an

isosceles trapezoidal right prism (with constant h and variable b) will possess the

minimum S when x ? 0. In case of variable h and constant b, the isosceles

trapezoid that satisfies the condition of Eq. 57 possesses SMin. The third remark

calculates the ratio RW (SW/S). In rectangles, results showed that RW reaches its

minimum value when h = 45o whereas in trapezoids, it depends on the values of h,

b, h and HR. Results also showed that the critical walls ratio RWo is constant for any

h (or h and b in isosceles trapezoids) and is equal to 2/3. The last remark

investigates the conditions for the numerical equality either between Per and Ar or S

and V. In the first case, the critical diagonal ho that fulfills Per–Ar equality was

calculated. Results showed that ho depends entirely on h (or h and b in isosceles

trapezoids). In the second case, the critical room height HRo that fulfills S–V

equality was calculated. Results also indicated that for every h (or h and b in

isosceles trapezoids) there is a minimum h under which this equality will never

exist; this corresponds to ho (i.e. Ar = Per).
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