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AAbbssttrraacctt.. Developable surfaces form a very small subset of all 
possible surfaces and were for centuries studied only in 
passing, but the discovery of differential calculus in the
seventeenth century meant that their properties could be
studied in greater depth. Here we show that the generating 
principles of developable surfaces were also at the core of their
study by Monge. In a historical context, from the beginning 
of the study of developable surfaces, to the contributions
Monge made to the field, it can be seen that the nature of 
developable surfaces is closely related to the spatial intuition 
and treatment of space as defined by Monge through his
descriptive geometry, which played a major role in developing 
an international language of geometrical communication for 
architecture and engineering. The use of developable surfaces
in the architecture of Frank Gehry is mentioned, in particular 
in relation to his fascination with ‘movement’ and its role in
architectural design.

IInnttrroodduuccttiioonn
Contemporary use of developable surfaces and their geometric manipulation with or

without the use of computer software has been increasingly well documented (see in 
particular [Liu et al. 2006] and the bibliography therein). The application of developable 
surfaces is wide ranging – from ship-bulding to manufacturing of clothing – as they are 
suitable to the modelling of surfaces which can be made out of leather, paper, fibre, and 
sheet metal. Some of the most beautiful works of modern architecture by architects such 
as Hans Hollein, Frank O. Gehry and Santiago Calatrava use the properties of 
developable surfaces, yet the history of this type of surface is not well known; this is the 
task the present paper is set to achieve.  

Developable surfaces form a very small subset of all possible surfaces: for centuries
cylinders and cones were believed to be the only ones, until studies in the eighteenth
century proved that the tangent surfaces belong to the same mathematical family (see in
particular [Euler 1772] and [Monge 1780, 1785]). 

There are therefore three types of developable surfaces (excluding a fourth type, the 
planar surface):  

1. surfaces in which generating lines are tangents of a space curve: this type of 
surface is spanned by a set of straight lines tangential to a space curve, which is
called the edge of regression (fig. 1a); 

2. surfaces which can be described as a generalised ‘cone’ where all generating lines 
run through a fixed point, the apex or vertex of the surface (fig. 1b); r

3. surfaces which, in the same manner, can be described as a generalised cylinder,
where all generating lines are parallel, swept by a set of mutually parallel lines 
(fig. 1c).  
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It should be mentioned that the developable surfaces are also those which contain 
elements of any of the above mentioned general cases of developable surfaces, as long as 
they can be flattened onto a planar surface, without creasing, tearing or stretching (fig.
1). 

Fig. 1. The three kinds of developable surfaces: a, left) tangential; b, centre) conical; c, right)
cylindrical. Curves in bold are directrix or base cruves; straight lines in bold are directors or 

generating lines (curves) 

Developable surfaces are a special kind of ruled surfaces: they have a Gaussianf
curvature equal to 0,1 and can be mapped onto the plane surface without distortion of 
curves: any curve from such a surface drawn onto the flat plane remains the same. In this
context, it is important to remember the following property of Gaussian curvature: if the
surface is subjected to an isometric transformation (or more plainly bending), the 
Gaussian curvature at any point of the surface will remain invariant.2 The Gaussian
curvature is in fact determined by the inner metric of a surface, therefore all the lengths 
and angles on the surface remain invariant under bending, a property immensely 
important in using developable surfaces in manufacturing. As a consequence, developable 
surfaces, having the Gaussian curvature equal to zero, the same as plane surfaces, can be
obtained from unstretchable materials without fear of extending or tearing, but by 
transforming a plane through folding, bending, gluing or rolling. 

The use of developable surfaces in contemporary architecture, for example in the 
work of Gehry,3 to which we will return later on in this paper, have been, more recently, 
made possible by the development of computer software which, given user-specified 
three-dimensional boundary curves, generates a smooth developable surface.  

In our usual world of three dimensions, the one in which we make architectural 
objects, all developable surfaces are ruled. 

Fig. 2. A hyperbolic paraboloid is a ruled, but not developable, surface
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The ruled surface is such that it contains at least one family of straight lines. Ruled 
surfaces are generated by a directrix or x base curve – the curve along which the ruling, e
director, or generating curve moves. The rulings or s directors of ruled surfaces are straight s
lines. Although all developable surfaces (in three dimensions) are ruled, not all ruled 
surfaces are developable. For example, the hyperbolic paraboloid is not developable but it 
is a ruled surface (fig. 2).  

To summarise: the developable surfaces are cylinders, cones, and tangent developable
surfaces, or a composition of these. The tangential developable surfaces can be best 
described and visualised as surfaces formed by moving a straight line in space (the 
director as explained above) along a directrix. If you imagine a generating line describing 
a tangential surface, then all points on that generating line share a common tangent 
plane.  

TThhee hhiissttoorryyyrryy ooff ddeevveellooppaabbllee ssuurrffafaffaffaffaff cceess

The history of developable surfaces can be traced as far back as Aristotle (384-322
B.C.): in De Anima (I, 4) he states that ‘a line by ita s motion produces a surface’ [Aristotle 
2004: 409], although this does not mean that it was Aristotle who defined or named the
ruled or developable surfaces. Nevertheless, the statement had profound influence on
perceiving the generation of surfaces through movement. More than twenty centuries
later, Monge (1746-1818) used the principle of generating surfaces in a task he was given
while he worked at the Mézières4 as a draftsmen in the 1760s [Taton 1951; Sakarovitch 
1989, 1995, 1997], which led to his discovery of a technique which later gained the 
name of ‘descriptive geometry’. We will return to his invention, but first let us look at
how similar treatment of motion was used in practical geometry before him.5

A first example is William Hawney, a minor eighteenth-century author on surveying,
who in 1717 described the cylinder as a surface ‘rolled over a plane so that all its points 
are brought into coincidence with the plane’.6 In 1737 Amédée François Frézier (1682-
1773) also considered the rolling of the plane to form a circular cylinder and cone (see
[Frézier 1737-39]), but he did not generalise on the mathematical properties of this 
process, nor did he distinguish between developable and ruled surfaces. 

Almost half a century later, Euler (1707-1783) and Monge became interested in 
developable surfaces and used differential calculus to study their properties. Only in 1886 
however, was the term “differential geometry” coined. It was used for the first time by 
Italian mathematician Luigi Bianchi in his textbook Lezioni di geometria differenziale
(Pisa, 1886). The investigations of Euler and Monge therefore preceded the beginning of 
a study of differential geometry, and initiated investigations in the field of developable 
surfaces.  

Before we get there, a reminder needs to be made about the nature of the study of 
change through differential calculus. In the seventeenth century, independently of each
other,7 Isaac Newton (1643-1727) and Gottfried Leibniz (1646-1716) discovered 
calculus, which deals with the study of change. Newton used calculus to determine an 
expression for the curvature of plane curves. As the study of tangential surfaces is
mentioned throughout this paper, it is worth noting the comparison of the study of 
curves in two dimensions through differential calculus. For example, finding a tangent to 
a curve at any point involves seeking the first derivative of that curve and using this result 
to find an equation of a tangent at a particular point to the curve.  t
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Euler, who was by that time blind, wrote a paper entitled “De solidis quorum
superficiem in planum explicare licet” (On solids whose surface can be unfolded onto a 
plane, E419) [1772] in which his perception of space is clearly shown to be that of 
identifying and describing surfaces as boundaries of solids, not as collection of solids.8

 Euler’s approach includes differential treatment combined with geometrical. First he 
looks at any surface and assumes that a limiting value from this surface will be its
derivative: this he obtains through selecting an infinitesimally small right triangle on the 
surface and seeking its relationship to a congruent triangle in a plane. At this point Euler
is generalising a problem via a system of differential equations, but he then proceeds to 
seek its solution via geometrical treatment. Euler draws three lines on a sheet and
describes them simply as Aa, Bb, Cc (fig. 3).  

Fig. 3. Euler’s generalisation begins from three straight lines on a sheet of paper, and the bending 
of the paper along those lines 

He then proceeds to investigate what happens when this sheet is bent along a straight 
line; however that happens, it is always possible to conceive of a solid which fits that bent 
sheet. From this it follows, Euler concludes that, besides prismatic and pyramidal bodies,
there are any number of other kinds of bodies which may be covered in this manner by 
such a sheet, and whose surfaces may accordingly be unfolded upon a plane: 

Let us now increase to infinity those lines Aa, Bb, Cc, etc. so that our 
solid acquires a surface everywhere curved, as our problem demands 
according to the law of continuity. And now it appears at once, that the
surface of such bodies should be so constituted that from any point in it at 
least one straight line may be drawn which lies wholly on this surface; 
although this condition alone does not exhaust the requirements of our 
problem, for it is necessary also that any two proximate straight lines lie in
the same plane and therefore meet unless they are parallel (translation by 
Florian Cajori [1929]).9

The enormity of Euler’s contribution in this respect is simple to establish. He 
extended the study of surfaces to developable surfaces by posing a simple question about 
wwhhhwhiicchh kkiinndd ooff ssuurrffafaffaffaffaff cceess ccaann bbee ddeevvveveellooppeedd iinnttoo aa ppllaannee :  

Notissima est proprietas cylindri et coni, qua neorum superficiem in planum 
explicare licet atque adeo haec proprietas ad omnia corpora cylindrical et conica 
extenditur, quorum bases figuram habeant quamcunque; contra vero sphaera hac 
proprietate destituitur, quum eius superficies nullo modo in planum explicari 
neque superficie plana obduci queat; ex quo nascitur quaestio aeque curiosa ac 
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notatu digna, vtrum praeter conos et cylindros alia quoque corporum genera 
existant, quorum superficiem itidem in planum explicare liceat nec ne? quam ob 
rem in hac differtatione sequens considerare constitui Problema: 
Inuenire aequationem generalem pro omnibus solidis, quorum superficiem in 
planum explicare licet, cuius solutionem variis modis sum agressurus. 

[Euler 1772: 3].

Euler proceeds to look at the intersections of the pairs of lines: if connected these 
intersections themselves would form a twisted surface of double curvature, a surface, as it
were, of a ‘higher’ degree than the one from which we started (of single curvature, a 
developable surface). Euler then established the analytical relationship between this
twisted curve and the points on the developable surface. His exposition was based on
three aspects of the study of such surfaces: the study of developable surfaces by the means 
of analytical principles; their study by the means of geometrical principles; and finally the
study in which the second is applied to the study of the first. It is interesting to note that,
although Euler’s opus includes some 832 original works,10 nevertheless this paper of 
Eulier is considered by some to be his very best mathematical piece.11

MMoonnggee’’ss ssttuuddyyydy ooff ddeevvveveellooppaabbllee ssuurrffafaffaffaffaff cceess aanndd tthhee iinnvveennttiioonn ooff DDeessccrriippttiivvee
GGeeoommeettrryyyrryy

Independently from Euler, and at almost the same time, a young draughtsman 
glimpsed a new way of imagining spatial relations through principles of generation of 
geometrical entities by movement. Monge therefore studied developable surfaces, having 
started from an entirely different viewpoint. In, or around, 1764, and while working at 
the l’École Royale du Génie de Mézières, Monge was given the task of determining the 
necessary height of an outer wall in a design of fortification (fig. 4).  

Fig. 4. Monge’s work on determining the height of the fortification wall included construction of f
developable surfaces
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Up to that time, there were two methods most widely used for this problem. One 
involved determining numerous view points from the terrain; the triangles thus 
determined by the view point, a point of the edge of the fortification, and the height of 
the wall sufficient to offer effective protection, were all necessary measurements; a lengthy 
empirical process was involved. The other method, which was employed in the school in
Mézières, was based on long calculations with the heights of each crucial point being 
measured directly on the terrain and noted on a plan. Instead of using these methods,
which would have taken a week to yield the final result, Monge found a way to finish his 
work in two days. Monge conceived of a new technique, which he called Géometrie 
Descriptive and which was naturally related to the methods widely used at the time. The 
method was examined with the highly critical eye of his superintendents who had their
suspicions about Monge’s speed in resolving the problem; when properly understood, it 
was ruled a military secret.

To solve the problem he was faced with, Monge determined a plane tangent to the 
terrain. This plane is determined by a point and a line: point A lies in the ground plane 
of the plan of fortification (fortification designs were usually predetermined and their 
plans were strictly geometrical), line q is drawn as a perpendicular to line p (p(( is a tangent 
to t), which is the contour line of the terrain).t

Monge further considered conical surfaces which used lines such as p as generatrixes 
and points such as A as centres to determine the height of the fortification (the thickened A
line perpendicular to the plane in which the fortification plan rests). 

Once it became a military secret, Descriptive Geometry saw little light until the 
reform of the educational system of France, which took place during the Revolution. 
However, Monge’s first publications were on developable surfaces: these came years
before his technique of descriptive geometry could be made public. His paper, Mémoire 
sur les développées, les rayons de courbure et les différents genres d’innn exions des courbes 
à double courbure [Monge 1785; written in 1771, but published 1785] gave his theory e
of developable surfaces in an abstract and purely mathematical manner. The paper 
“contains a broad exposition of the whole differential geometry of space curves” [Struik 
1933: 105], introducing the rectifying developable, and describes such crucial terms in 
the study of developable surfaces as normal plane, radius of first curvature, and the 
osculating sphere [Reich 2007].  

It is now known that Monge read Euler’s paper (E419) only after this, his own (and 
first) publication on developable surfaces, which made him more interested in the subject 
and upon which he wrote his second paper Mémoire sur les propriétés de plusieurs genres 
de surfaces courbes, particulièrtement sur celles des surfaces d´eveloppables, avec une 
application à la theorie des ombres et des pénombres [Monge 1780]. In this paper s
Monge establishes his simplification of Euler’s findings 

… a memoir of Mr Euler … on developable surfaces … in which that illustrious 
Geometer gave the formulas for recognizing whether or not a given curved surface 
has the property of being able to be mapped to a plane, … I arrived at some 
results which seem much simpler to me and easier to use for the same purpose.12

These ‘simpler’ results are summarized in his definition of a developable surface as 
one which is “flexible and inextensible, one may conceive of mapping it onto a plane, … aa
so that the way in which it rests on the plane is without duplication or disruption of 
continuity” [Monge 1780: 383].  
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In this, his second paper on the topic, Monge begins with a curve of double curvature
(a twisted curve – for example, a helix) and defining a point on it. Through this point he
draws a plane which is perpendicular to a line tangent to the curve at this point; he does
the same with another point, tangent and plane that go perpendicularly through this
tangent. The two planes intersect in a line. If one imagines a curve which goes around the f
original surface (of double curvature), takes consecutive points on it and does the same as
above (i.e., draws through each point a tangent, and through each tangent a normal
plane), then finds the intersections of these planes, a developable surface will have thus 
been constructed. The generalisation to which Monge arrived at was that, in fact, any 
curvature of double surface can be enveloped by a space curve; this tangent curve can bey
used, as explained, to generate a developable surface. Monge’s spatial and Euler’s 
analytical insights, proved that the tangent surfaces belong to the same family as conical 
and cylindrical ones. 

Further, developable surfaces are, as will be shown, an integral part of the Mongean 
treatment of space. His descriptive geometry was born out of an insight into a possibility 
of constructing an imaginary tangential plane to a terrain in order to solve the real 
problem of fortification design. But it was not only that his description of the technique
itself is a study in developable surfaces; it was that in fact, all objects imagined through
the use of descriptive geometry as given by Monge are ruled surfaces (and most arey
developable). Monge describes all geometrical objects through generation: a point is a 
generatrix of a line; similarly any plane is generated by two lines. In descriptive geometry 
the position of any element is determined by its position with respect to the projection 
planes, of which there are two (for simplicity of explanation, the horizontal and vertical). f
The generation of a plane surface could be described by the lines in which the plane in 
question intersects the projection planes. These two lines determine the plane in full and
are called the traces of the plane. 

In order to arrive at a fuller understanding of Monge’s conception of space we will 
bring one example as follows. The traces of the plane on the projection planes may also 
be regarded as the lines that generate the plane. It should be now easy to see that those 
two traces meet on the straight line in which the planes of projection meet each other. In 
Monge’s drawing (fig. 5) this means that in the plane, which has been named from its
traces as BAb, those traces, namely the line AB and Ab, meet on the line AC=LM, which 
represents the intersecting line of two projection planes.

Fig. 5. Plate III from the 1811 Hachette
édition of Monge’s Géométrie Descriptive
showing the primary operations with two 

planes. The system, although determined by 
two planes of projection, is actually represented 
only by their line of intersections, AC=LM on

this diagram
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If we were to consider a second plane (this plane is labelled DCd) we would be able 
to see how this plane meets the first plane, and their intersection line is EF, the first 
projection of which is given as Ef and second as eF. We may bear in mind that this is the 
process that is used in the construction of any solid body with plane surfaces for its sides.  

Two important things that explain, in basic terms, the principles of the technique, are 
to be learnt from this example. First, every three-dimensional geometrical body can be 
described as a sum of planes which are generated by some mode of motion and intersect
each other. This means that the solid is not regarded as an independent entity in itself, 
but as a product of motion and intersection of its primary elements. Had we further 
elaborated upon the above example, and said that, for example, the two planes which
intersect should be orthogonal to each other, and if we had continued by adding four 
further planes in a similar manner so that each of them is orthogonal to the one it 
intersects, and that they should be on the same distance to the parallel ones on all sides, 
we would generate a cube. In this way the perception of all geometrical entities is
changed from a collection of various forms, to a collection of various methods and 
processes by which those forms are being generated. 

Monge realised that, although descriptive geometry had a very practical application in 
stone-cutting, engineering, and architectural drawing, this treatment of space had also 
implications for the study of the properties of curves. To Monge, developable surfaces 
were not just mathematical curiosities which arose out of his spatial insight underpinned 
by the technique of descriptive geometry which he perfected. In fact, the study of surfaces
was an integral part of his interest in stonecutting; in the first edition of Descriptive 
Geometry he describes, for example, how the surfaces of the voussoir joints must bey
developable 

…This is a practical consideration: if such a surface were not a ruled 
surface, it would not be executable sufficiently rapidly to be economically 
viable or with sufficient precision to ensure proper contact between the 
voussoirs. The fact that the surface is also developable allows greater
precision with the use of panels for tracing [Monge 1795b, quoted in
Sakarovitch 2009: 1295].  

Fig. 6. One of Monge’s main 
works on developable surfaces,

Feuille d’Analyse [1795a]

But being practical, however useful, was not the 
main achievement of Monge. The visual insight and 
ability to manipulate objects in an imaginary space 
with his technique, meant that his results in three-
dimensional differential geometry were superior to
those of Euler. The two papers mentioned earlier
summarising his results were followed by his Feuilles 
d’analyse appliquée à la géométrie [1795a] (fig. 6).  

This book offered a systematic treatment and 
translated properties of curves and surfaces into
analytical language which could be manipulated 
through partial differential equations. In the words of 
Morris Kline, “Monge recognised that a family of 
surfaces having a common geometric property or 
derived by the same method of generation should 
satisfy a partial differential equation” [1990: II, 566].  
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Monge’s treatment of developable surfaces is, as can be glimpsed from these short
insights into his work on the topic, entirely different from that of Euler. While Euler’sy
treatment was ‘of a profoundly analytic spirit’ [Taton 1951: 21], Monge had keen
geometrical intuition which manifested itself most profoundly in his conception off
descriptive geometry, and which enabled him to apply analysis to geometry, rather than
consider the two disciplines as separate ways of inquiry.  

TThhee ccoollllaabboorraattiivvee ffrffrffrfrff aatteerrnniittyyytyy ooff MMoonnggee aanndd GGeehhrryyyrryy

Separated by centuries and different professions, it may seem that Monge and Gehry
may not have anything in common apart from an interest in developable surfaces. And
perhaps one would be right to disregard any further analysis of their common interest.
Let us however, entertain an idea that both, in their own times and in their own ways,
were interested in these surfaces not by chance, but because they embodied certain ideas
about motion that had a particular slant on creative processes that resonated with both
Monge and Gehry. In Monge’s case this manifested itself in his involvement in all social,
political, and educational aspects of his involvement in building the new Republic.
Monge built on the tradition and knowledge of stonemasons, resulting in his conceptionf
of a new, all-encompassing technique which would serve as a language of graphical
communication throughout the territory in which French educational system would
extend its influence. This proved to be a large territory, with influences felt up to modern
times, and with descriptive geometry still surviving in many national educational
systems.13 Monge’s wholehearted involvement with the ideals of the Enlightenment and
the founding of the revolutionary educational institutions of the new Republic, gained
him the title of the Father of École Polytechnique (see [Sakarovitch 2009]).

The teaching of descriptive geometry in this institution was certainly not a
continuation of the educational tradition of the Ancien Régime; it was a revolutionaryf
subject taught in a revolutionary way, in the first of revolutionary schools: 

A scholastic discipline which was born in a school, by a school and for a 
school (but maybe one should say in the École Polytechnique, by the 
École Polytechnique, and for the École Polytechnique), descriptive 
geometry allows the passage from one process of training by 
apprenticeship in little groups which was characteristic of the schools of 
the Ancien Régime, to an education in amphitheatres, with lectures, and 
practical exercises, which are no longer addressed to 20 students, but to 
400 students. Descriptive geometry also stems from revolutionary y
methods. A means to teach space in an accelerated way in relation to the 
former way of teaching stereotomy, an abstract language, minimal, rapid 
in the order of stenography, descriptive geometry permits a response to the
urgent situation as for the education of an elite, which was the case of 
France at the moment of the creation of École Polytechnique [Sakarovitch
1995: 211]. 

It is here, in the context of such sweeping changes, that we move our focus back to
the architecture of Gehry (fig. 7). In particular, his architecture is habitually defined by
the use of developable surfaces constructed from sheet metal. Gehry himself lists several
things that led him to the use of developable surfaces in his later designs, the most
important of which he lists as collaboration, movement, and context. All of these in their
own way correspond to some of the sentiments that descriptive geometry inspires by its
method. Movement is, for Gehry, the leading force:
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Fig. 7. Frank O. Gehry, the Guggenheim Museum Bilbao, completed 1997..
Photo: iStockphoto

I became fascinated with the idea of building in a sense of movement with 
static materials. Historically there are a lot of references. At the Parthenon,
Phidias played with that idea – not in the building, but in the sculptures. 
And the Indian Siva figures are extraordinary, if you look at the best ones: 
when you look away, you are sure they moved. That has always fascinated 
me [Gehry 1996: 38].

His interest in collaboration – the building on the tradition of unions – is somewhat 
similar to Monge’s sentiment regarding the stonemasons;14 in Gehry’s case this
manifested itself in his involvement with the metal workers’ union. He highly values their
input – and testifies to a bond between the designer and the executor in terms of their
regard for the material to which both are dedicated and from which new structures are 
built:

The [Sheet Metal Workers Union of America] is connected to metal 
workers around the world, and they have agreed to provide me with
technical assistance wherever I go. They have lived up to that agreement, 
most recently on a project in Bilbao, Spain. They have helped me work 
within my budget and still achieve the forms I want. This collaboration 
has certainly made possible some of my successes in the use of metal
materials [Gehry 1996: 40].

Finally it is movement, in all its symbolic and contextual form, that Gehry perhaps 
embodies best through his architecture: the sweeping movements of lines generating 
developable surfaces ‘that is the sort of thing that occurs in a fast-moving city; as one tries
to respond to the context, it changes, always more rapidly’ [Gehry 1996: 42]. 
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CCoonncclluussiioonn

In the nineteenth century the mathematics of developable surfaces temporarily left 
the realm of the real world. This happened for very many reasons but suffice it to say 
that, for example, the freer and more common use of the imaginaries of all kinds: talking 
about ‘circular points of the line at infinity’ and being able not only to describe but 
manipulate imaginary numbers with increasing ease, meant that the study of surfacesg
increasingly involved interest in the imaginaries linked to such entities. This in turn led 
to the discovery and study of minimal surfaces.15 In another development, Henry 
Lebesgue (1875-1941), best known for his theory of integration, made an astonishing 
discovery of surfaces which, although resembling developable surfaces, are neither 
developable nor ruled, and can be flattened into a plane without stretching or tearing 
(but with creasing) [Picard 1922].16 Lebesgue’s own description of such surfaces is
somewhat convoluted, but nevertheless its very short version is given in a footnote to a 
simple explanation given to Lebesgue’s discovery by Émile Picard (1856-1941):

According to general practice, we suppose in the preceding analysis, as in 
all infinitesimal geometry of curves and surfaces, the existence of 
derivatives which we need in the calculus. It may seem premature to 
entertain a theory of surfaces in which one does not make such
hypotheses. However, a curious result has been pointed out by Mr 
Lebesgue (Comptes Rendus, 1899 ands thesis); according to which ones
may, by the aid of continuous functions, obtain surfaces corresponding to 
a plane, of such sort that every rectifiable line of the plane has a 
corresponding rectifiable line of the same length of the surface, 
nevertheless the surfaces obtained are no longer ruled. If one takes a sheet
of paper, and crumples it by hand, one obtains a surface applicable to the
plane and made up of a finite number of pieces of developable surfaces, 
joined two and two by lines, along which they form a certain angle. If one 
imagines that the pieces become infinitely small, the crumpling being 
pushed everywhere to the limit, one may arrive at the conception of 
surfaces applicable to the plane and yet not developable [in the sense there 
is no envelope of a family of planes of one parameter] and not ruled
[Picard 1922], quoted in [Cajori 1921: 436].

An apparent departure from the ‘real world’ into the abstract construct of imaginaries 
permitted a new understanding of developable surfaces. But their physical embodiment 
in the architecture of Frank Gehry perhaps provides the most fitting monument to the
study of developable surfaces in three dimensions, and to Mongean treament of space. 

NNootteess

1. Gausian curvature is equal to zero when the product of minimal and maximal curvatures of a 
curve is equal to zero, i.e., maxmin kkk . Carl Friedrich Gauss (1777-1855), called sometimes 

“the Prince of Mathematicians’ contributed to a huge array of fields in the study of 
mathematics, including analysis, differential geometry, number theory, astronomy and optics. 

2. Beyond the scope of this paper, this property of Gaussian curvature is none the less fascinating. 
It was expounded upon in Gauss’s Theorema Egregium (Remarkable Theorem), which statesm
that the Gaussian curvature of a surface can be determined by measuring distances and angles
of a surface without reference to the way in which the surface is positioned in three-
dimensional space.

3. For further details see [Amar and Pomeau 1997]. 
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4. The Royal School of Engineering at Mézières was founded in 1748 and was closed in 1794
when it transferred to the School of Engineering at Metz.  

5. Omitted from this paper for the reasons of length and simplicity are descriptions of the work of 
Jean Baptiste Marie Charles Meusiner (1754-1793) and Piere Charles François Dupin (1674-
1873). Dupin’s main contribution was the invention of a method for describing the local shape 
of a surface by, what is now called Dupin indicatrix. The indicatrix is the end product of a x
limiting process by which the plane approaches a tangent plane of the surface studied. 
Meusiner, on the other hand studied minimal surfaces.  

6. See [Cajori 1929: 431]; the description used in Hawney is ‘in form of a Rolling stone used in
Gardens’ [1717: 154]. 

7. Although this fact was vehemently denied by Newton who pursued thy e claims of plagiarism 
until Leibniz’s death; see [Hall 1980].

8. In fact this approach was followed as late as the nineteenth century in relation to constructive 
geometry: for a different treatment of space in particular in context of generating surfaces f
(Gaspard Monge, France) and manipulating objects (Peter Nicholson, England) see [Lawrence
2002; 2010]. 

9. Meaning that if there is a surface, there lie in it at least two lines which are parallel [Euler 
1772]. 

10. Euler’s papers were catalogued by Gustaf Eneström (hence the E numbers). Most of them can 
be found at The Euler Archive online: http://www.math.dartmouth.edu/~euler/. 

11. According to Andreas Speiser (1885-1970), a Swiss mathematician and philosopher of science, 
quoted in [Reich 2007: 483, note 7].

12. Full text states: Ayant repris cette matière, à l’occasion d’un Mémoire que M. Euler a donné 
dans le Volume de 1771, de l’Académie de Pétersbourg, sur les surfaces développables, et dans 
lequel cet illustre Géomètre donne des formules pour reconnoître si une surfache courbe 
proposée, jouit ou non de la propriété de pouvoir être appliquée sur un plan, je suis parvenu à 
des résultats qui me semblent beaucoup plus simples, et d’un usage bien plus facile pour le 
même objet [Monge 1780; quoted in Reich 2007: 490, note 15].t

13. Currently a research project by the author, to be presented at the Second International
Conference on the History in Mathematics Education, Portugal, October 2011. 

14. Without wishing to imply any parallels with Gehry’s own sentiments in this regard, it can,
however, be noted that the ideals that defined Monge’s political and social life were also those 
of the French Revolution – liberté, égalité, fraternité (without the terror) – and which were alsoé
manifest in Monge’s admission to the French Freemasonic order, the Grand Orient ;  see
[Lawrence 2002: 118]. 

15. As already mentioned, Meusiner’s study of surfaces via a calculus of variations led him to 
discover that a surface is minimal if and only if its mean curvature vanishes. The most common 
‘real-life’ explanation of minimal surfaces is their comparison with the soap film formed around 
a wire boundary.

16. Lebesgue’s own explanation of the surfaces that are not ruled yet can be ‘flattened’ into a plane 
goes like this:  

To obtain surfaces that are not ruled I take an analytic developable one and upon it an
analytic curve C, not geodesic [shortest path between points on a curved surface]. One
knows that there exists another developable surface passing through C, such that one 
can make the two developables applicable to a plane in such a manner that to each
point of C, whether considered as belonging to the one or to the other of the two 
surfaces, there corresponds one and the same point in the plane. The curve C divides 
the first developable in two pieces, A, B, also the second into two pieces A , B .  
Two of the four surfaces (A, A ), (A, B ), (B, B ) are applicable to the plane without 
tearing or duplication and are indeed such that one can detach from them a finite piece 
enjoying the above property and containing an arc of C. This C is then a singular line.
As before, one may pass from this one singularity to an infinite number of singularities
and one thus obtains surfaces applicable to the plane, yet not containing any segment 
of a straight line [Lebesgue 1899].  
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