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Abstract
The present study aimed to use the autoregressive integrated moving average (ARIMA) model to forecast foodborne dis-
ease incidence in Shenzhen city and help guide efforts to prevent foodborne disease. The data of foodborne diseases in 
Shenzhen comes from the infectious diarrhea surveillance network, community foodborne disease surveillance network, 
and student foodborne disease surveillance network. The incidence data from January 2012 to December 2017 was used 
for the model-constructing, while the data from January 2018 to December 2018 was used for the model-validating. The 
mean absolute percentage error (MAPE) was used to assess the performance of the model. The monthly foodborne dis-
ease incidence from January 2012 to December 2017 in Shenzhen was between 954 and 32,863 with an incidence rate 
between 4.77 and 164.32/100,000 inhabitants. The ARIMA (1,1,0) was an adequate model for the change in monthly food-
borne disease incidence series, yielding a MAPE of 5.34%. The mathematical formula of the ARIMA (1,1,0) model was  
(1 − B) × log(incidencet) = 0.04338 + εt/(1 + 0.51106B). The predicted foodborne disease incidences in the next three years 
were 635,751, 1,069,993, 1,800,838, respectively. Monthly foodborne disease incidence in Shenzhen were shown to follow 
the ARIMA (1,1,0) model. This model can be considered adequate for predicting future foodborne disease incidence in 
Shenzhen and can aid in the decision-making processes.

Keywords  Foodborne disease · ARIMA · Time series analysis · Forecasting foodborne diseases · Foodborne disease 
incidence

1  Introduction

Foodborne disease is one of the most important public 
health issues in both developed and developing countries 
(Saulat 2012). Generally, foodborne disease results from the 
consumption of food contaminated with pathogens such as 
bacteria, viruses, parasites or with poisonous chemicals or 
bio-toxins (Bintsis 2017). Although the disease is usually 
mild and self-limiting, due to the high number of individu-
als affected each year, foodborne disease exerts a substan-
tial socioeconomic burden on the population and healthcare 

system (Wu et al. 2018). The World Health Organization 
(WHO) estimated that 31 foodborne hazards caused 600 
million foodborne disease cases and 420,000 deaths world-
wide in 2010 (WHO 2017). China faces various and unprec-
edented challenges in all aspects of the food chain (Liu et al. 
2018), and 94.117 m cases of bacterial foodborne diseases 
occur every year, of which 3.357 m are hospitalized and 
8530 die with a mortality rate of 9.1/100,000 (Mao et al. 
2011). Furthermore, a minority of patients with foodborne 
diseases seek formal medical care, and informative tests are 
reported for only a fraction (Alcorn and Ouyang 2012). The 
burden of foodborne disease in China may be even greater.

China is currently developing and implementing a food-
borne disease surveillance system across the country. How-
ever, the foodborne disease surveillance system remains 
in the early stage of development in a stepwise fashion, 
and the system has various limitations (Liu et al. 2018).  
In Shenzhen, a city of Guangdong Province, a citywide sur-
veillance network on infectious diarrhea patients was estab-
lished in 2010. Samples were collected at intervals from both 
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children and adults among diarrhea outpatients in hospitals 
and tested for viruses and bacteria in Shenzhen Center for 
Disease Control and Prevention (CDC). Acute gastroenteri-
tis and diarrhea are clinical outcomes of foodborne diseases, 
with data showing that up to 70% of acute gastroenteritis 
results from foodborne diseases (Lakhan et al. 2013). Addi-
tionally, in order to monitor patients with foodborne diseases 
more comprehensively, Shenzhen city has also established 
two other foodborne disease surveillance networks, namely 
community foodborne disease surveillance network (2012) 
and student foodborne disease surveillance network (2012), 
whose main monitoring objects are community population 
and primary and secondary school students. The three major 
systems provide a good guarantee for the surveillance of 
foodborne diseases, and a good data basis for the prediction 
of foodborne diseases in Shenzhen. The accurate prediction 
of a foodborne disease epidemic is crucial for public health 
authorities.

The ARIMA model, which is also known as the Box–Jen-
kins model, was proposed by George Box and Gwilym Jen-
kins in the early 1970s. An ARIMA model is a statistical 
model for analyzing and forecasting time series data, and 
the model can explain a given time series based on its own 
past values, that is, its own lags and the lagged forecast 
errors, so that the equation can be used to forecast future 
values (Altekruse and Swerdlow 1996). The ARIMA 
model has become one of the most popular and conveni-
ent models in time series analysis and been widely used 
as classical method for various infectious disease predic-
tion, especially in infectious diarrhea (Fang et al. 2020; Li 
et al. 2010). In China, so far, there have been few studies 
using the ARIMA model to predict foodborne disease, and 
there are some differences in the models used by different 
researchers. Based on the infectious diarrhea (excluding 
cholera, dysentery, typhoid and paratyphoid) morbidity 
data and meteorological data from 2012 to 2016 in Jiangsu 
province, a univariate ARIMA model (1,0,1) (1,0,0)52 
(AIC = − 575.92, BIC = − 558.14) and a multivariable 
ARIMAX model (1,0,1) (1,0,0)52 with 0–1 week lag pre-
cipitation (AIC = − 578.58, BIC = − 578.13) were developed 
to predict the incidence of infectious diarrhea (Fang et al. 
2020). It also suggested that the introduction of meteoro-
logical factors did not significantly optimize the prediction 
accuracy of the ARIMA model (Fang et al. 2020). This find-
ing was consistent with other previous studies. Based on 
the monthly incidence rate of dysentery in Shanghai from 
1990 to 2007, the model ARIMA (1,1,1) (0,1,2)12, namely 
(1 − 0.443B)(1 − B)(1 − B12) Zt = (1 − 0.806B)(1 − 0.543B12) 
(1 − 0.321B2×12)μt, had a good correlation with the changes 
of incidence rate of dysentery and could forecast the future 
incidence rate in Shanghai (Li et al. 2010). Another ARIMA 
(1,1,1) × (1,1,2)12 model fitted exactly with the number of 
bacillary dysentery cases during January 2004 to December 

2014 in Jiangsu and could predict bacillary dysentery inci-
dence during the period January to August 2015 (Wang 
et al. 2016). However, one study conducted in Lanzhou of 
China showed that the incidence of other types of infectious 
diarrhea (other than cholera, dysentery, typhoid, and para-
typhoid) had typical seasonal changes, and easily occurred 
in weather conditions with a higher temperature, humidity, 
and lower pressure. The number of people with other types 
of infectious diarrhea increased by 66.71%, 5.24%, 7.1% and 
6.93% per day with an increase of the inter-quartile range 
determined by average temperature, wind speed, relative 
humidity, and daily sunshine hours respectively (Tao et al. 
2015). Another study also concluded that the etiological and 
meteorological factors had age-specific effects on the preva-
lence of infectious diarrhea in Jiangsu (Fang et al. 2019). 
However, even if the ARIMA models are constructed based 
on foodborne diseases, there were still some differences in 
model parameters in different regions (Fang et al. 2020; Li 
et al. 2010; Tao et al. 2015; Wang et al. 2016).

In order to develop an early warning system for foodborne 
diseases to facilitate preventive strategies in Shenzhen, food-
borne disease incidence data from 2012 to 2017 in Shenzhen 
was used to construct the prediction model, and the data 
from 2018 were used for validating model. The present study 
aimed to use ARIMA model to forecast foodborne disease 
incidence in Shenzhen city and help guide efforts to prevent 
foodborne disease.

2 � Material and methods

2.1 � Study area

Shenzhen is a major sub-provincial city on the east bank 
of the Pearl River estuary on the central coast of south-
ern Guangdong province, People's Republic of China.  
Shenzhen's registered population was estimated to be 
12,905,000 in 2017, but local police and authorities esti-
mated the population to be about 20 m, due to large pop-
ulations of short-term residents, unregistered floating 
migrants, part-time residents, commuters, visitors, as well 
as other temporary residents. With a total area of 1992 km2,  
Shenzhen has a population density of 6889 inhabitants per 
km2.

2.2 � Data source

The data comes from the three surveillance systems from 
2012 to 2018, namely infectious diarrhea surveillance 
network, community foodborne disease surveillance net-
work, and student foodborne disease surveillance network. 
The surveillance system consisted of three levels: hospi-
tal, community and school for case finding, sampling and 
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information collection; district-level CDCs for sample test-
ing; and the municipal CDC for management and quality 
control. The three levels could share information through a 
dedicated online system.

2.3 � Case definition

All suspected cases in the surveillance system must be 
reviewed and confirmed by experts based on the criteria for 
foodborne diseases. Foodborne disease cases were defined 
according to the criteria from WHO: (1) patients with diar-
rhea as the main symptom, with three or more stools per 
day, and changes in stool characteristics; or with less than 
three stools per day, but with vomiting as the main symp-
tom, and comprehensively judged as foodborne disease or 
suspected foodborne disease by asking the medical history; 
(2) patients diagnosed by a doctor as acute gastroenteritis; 
(3) patients without diarrhea as the main symptom, but with 
clinical manifestations and an epidemiological history that 
indicates foodborne disease or suspected foodborne disease.

2.4 � Data check and process

All data of foodborne disease patients in three surveillance 
systems from 2012 to 2018 were reviewed by clinical doc-
tors and downloaded from the online systems. The three 
databases were merged, and duplicate data was removed 
according to variables such as patient ID, gender, and diag-
nosis time. We used the incidence data from January 2012 
to December 2017 as the model-constructing dataset and the 
incidence data from January 2018 to December 2018 as the 
model-validating dataset.

2.5 � Statistical analysis

The ARIMA model is generally referred to as an ARIMA (p, 
d, q), where p is the number of autoregressive terms, d is the 
number of nonseasonal differences needed for stationarity, 
and q is the number of lagged forecast errors in the prediction 
equation (Li et al. 2019). The patterns of the plot of the auto-
correlation function (ACF) and the partial autocorrelation 
function (PACF) were used to determine the order of autore-
gressive (AR) and moving average (MA) included in the 
ARIMA model (Grahn 1995; Juang et al. 2017). The fitting 
of the ARIMA model involves the following three essential 
steps (Fang et al. 2020): first, a time series graph and an aug-
mented Dickey–Fuller test is conducted to detect whether the 
original time series is stationary (statistical properties such 
as the mean and variance are all constant over time). If not, 
a logarithmic transformation or/and difference is adopted to 
achieve stability. Second, ARIMA models are established for 
a stationary time series, and the model with the minimum 
Akaike information criterion (AIC) and Schwartz Bayesian 

information criterion (SBC) values is considered the optimal 
model. AIC and SBC are model selection criteria based on 
the log-likelihood, and AIC is defined as 2log(L) + 2(p + q), 
SBC is defined as 2log(L) + log(n)(p + q). Here, L is the like-
lihood evaluated at the maximum likelihood estimate, n is 
the length of the time series. The model parameters are then 
estimated using the conditional least squares method. Third, 
to verify the adequacy of the ARIMA model, a Box-Ljung 
test, a type of statistical test of whether any of a group of 
autocorrelations of a time series are different from zero, is 
conducted to check whether the residual series is a white 
noise sequence. A white noise sequence is a purely random 
time series without an autocorrelation, and useful informa-
tion has been extracted from the sequence for model fitting. 
If not, the model must be reestablished. Finally, a prospec-
tive prediction is conducted using the optimal model which 
was applied to predict the infectious diarrhea incidence and 
compare this prediction with the validating dataset. The 
mean value of MAPE is used to assess the level of forecast 
accuracy. MAPE = 1

n

∑
n

t=1
�(x

t
− x̂

t
)∕x

t
� , where x

t
 and x̂

t
 rep-

resents observed and predicted value at time t. The smaller 
the MAPE value, the higher the level of forecast accuracy. 
All computations are done by using SAS software (SAS® 
9.3, SAS Institute Inc., Cary, NC, USA).

3 � Results

3.1 � Model identification

The monthly foodborne disease incidence from Janu-
ary 2012 to December 2017 in Shenzhen was between 
954 and 32,863, with an incidence rate between 4.77 and 
164.32/100,000 inhabitants. As shown in Fig. 1, the inci-
dence exhibited a clear increasing long-term trend dur-
ing these 6  years. In terms of the temporal distribution of 
the foodborne disease cases, Fig. 1 did not show that the 
monthly incidence exhibited obvious seasonal variation. 
After logarithmic conversion and first order difference, the 
temporal distribution was stationary and without seasonality 
(Fig. 2A, Table 1). So, a non-seasonal ARIMA model was 
used for model-constructing.

3.2 � ARIMA model‑constructing

The ACF plot in Fig. 2B shows a significantly positive 
spike at lag 0, revealing a non-seasonal parameter MA of 
one order (q = 0). The PACF plot shown in Fig. 2C reveals 
a significantly positive spike at lag 1, suggesting a non-
seasonal parameter AR of one order (p = 1). In addition, 
we also conducted ARIMA (0,1,1) and ARIMA (1,1,1) 
model. Among the three models, ARIMA (1,1,0) model 
has the smallest value of AIC (19.99) and SBC (24.51). 
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The next step was to verify the adequacy of this model. 
Figure 3 shows the residual correlation and white noise 
test plots, which indicated that the residuals were uncor-
related, and the normality plots showed no departure from 
the normal distribution. The model passed autocorrela-
tion check of residuals (p > 0.05). So, the ARIMA (1,1,0) 
was adequate for the monthly change in foodborne disease 
incidence series.

The parameter estimation was conducted next, and the 
results were reported in Table 2. There were two param-
eters in the model. The mean term was labelled as MU (the 
constant term, namely the average difference in the time 
series); its estimated value was 0.04338, and the p value 
for MU indicated that this term marginal significantly con-
tributed to the model (p = 0.0491). The AR parameter was 
labelled as AR1,1; this was the coefficient of the lagged 
value of the change in foodborne disease incidence, and its 
estimate was − 0.51106 (p < 0.0001). So, the mathemati-
cal formula of the fitted ARIMA (1,1,0) model was given 
by the following: (1 − B) × log(incidencet) = 0.04338 + εt/
(1 + 0.51106B), where B is the back operator.

Based on this equation, the values and plot of the fore-
cast from January 2012 to December 2017 were produced. 
As shown in Fig. 4, all the actual monthly foodborne dis-
ease incidences almost fell in the 95%-confidence interval 
of the forecasted value, which further indicated the accu-
racy of the constructed ARIMA (1,1,0) model.

3.3 � Prediction performance comparison

As shown in Table 3, the monthly foodborne disease data in 
2018 were predicted using the ARIMA (1,1,0) model, the 
results of which suggested that the predicted values fitted 
well with the actual values. Notably, the actual values in 
2018 fell in the 95% confidence intervals of the ARIMA 
(1,1,0) model, and the MAPE was 5.34%.

3.4 � Forecasting

The ARIMA (1,1,0) model was then used to forecast the 
foodborne disease incidence in the next 5 years. The pre-
dicted incidences were shown in Fig. 4 with a significant 
upward trend in the next 5 years. The predicted incidences 
from 2019 to 2021 in Shenzhen were 635,751, 1,069,993 
and 1,800,838, respectively.

4 � Discussion

A variety of bacteria, viruses, parasites, and chemical haz-
ards can be transmitted to humans via contaminated food and 
cause illness and death. The sources of these hazards and the 
routes of exposure are diverse, ranging from the environment 
and primary production at the beginning of the food chain 
through to domestic handling and food consumption (WHO 

Fig. 1   Monthly reported foodborne disease incidence from January 2012 to December 2017 in Shenzhen, China
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Fig. 2   Autocorrelation function (ACF), partial autocorrelation func-
tion (PACF) and inverse autocorrelation function (IACF) for food-
borne disease incidence time series based on log transformed data. 
The former A shows a significantly positive spike at lag 0, revealing 
a non-seasonal moving average component of one order. The latter 

B–D shown reveals a significantly positive spike at lag 1, suggest-
ing a non-seasonal autoregressive component of one order (p = 1). In 
addition, no seasonal lag in the foodborne disease incidence series 
data was found within the period examined

Table 1   Augmented Dickey-
Fuller unit root tests

There are three kinds of tests under the augmented Dickey-Fuller tests: Rho-test, Tau-test, and F-test. The 
Rrho-test is the regression coefficient test, which is also called the normalized bias test. The Tau-test is the 
studentized test. The F-test is a joint test for unit root

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero mean 0 − 103.961 0.0001 − 14.54  < 0.0001
1 − 148.236 0.0001 − 9.28  < 0.0001
2 − 122.914 0.0001 − 5.70  < 0.0001
3 − 97.6595  < 0.0001 − 4.49  < 0.0001

Single mean 0 − 105.773 0.0001 − 14.91 0.0001 111.20 0.0010
1 − 166.931 0.0001 − 9.74 0.0001 47.44 0.0010
2 − 180.840 0.0001 − 6.21 0.0001 19.26 0.0010
3 − 191.988 0.0001 − 4.96 0.0002 12.32 0.0010

Trend 0 − 106.636 0.0001 − 14.97  < 0.0001 112.17 0.0010
1 − 174.817 0.0001 − 9.75  < 0.0001 47.90 0.0010
2 − 217.293 0.0001 − 6.32  < 0.0001 20.04 0.0010
3 − 282.860 0.0001 − 5.01 0.0006 12.73 0.0010
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Fig. 3   Graphical check of the residuals for the ARIMA (1,1,0) model. 
We accepted the null hypothesis that the residuals were uncorrelated. 
The normality plots also showed no departure from the normal dis-
tribution. A Autocorrelation of the time series, B partial autocorrela-
tion of the time series, C inverse autocorrelation of the time series,  

D autocorrelation check for white noise, E histogram of the residuals, F 
normal quantile plot of the residuals. ACF autocorrelation function, IACF 
interaural cross-correlation function, PACF partial autocorrelation function
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2017). Globalization, international trade and travel, and cli-
mate change also increase the spread of foodborne disease 
(Pozio 2020; WHO 2017). The results of this study show 
that the incidence of foodborne disease in Shenzhen exhibits 
a long-term gradual growth trend. Mathematical prediction 
models are urgently required to reinforce integrated man-
agement to monitor, control and prevent foodborne disease. 
The ARIMA (1,1,0) model was constructed and delivered a 
good accuracy in predicting the incidence of foodborne dis-
ease with a MAPE of approximately 5.34%. The model can 
relatively estimate the monthly foodborne disease incidence 
well in Shenzhen and can provide new evidence for policy-
making and assist in the development of foodborne disease 
prevention and control strategies, such as funding and staff-
ing for foodborne disease control. The ARIMA models can 

also be used to evaluate the effectiveness of preventive and 
control measures.

As described earlier, the ARIMA models for predicting 
foodborne diseases constructed by different studies were dif-
ferent (Fang et al. 2020; Li et al. 2010; Tao et al. 2015; Wang 
et al. 2016), which may be related to the different preva-
lence patterns and trends of foodborne diseases in differ-
ent regions, and the latter was related to influencing factors. 
For example, economic level, new foodborne pathogens, the 
types of food that people eat, the sources of those foods, and 
the possible decline in public awareness of safe food prepa-
ration practices were the factors altering foodborne disease 
patterns (Altekruse et al. 1996). Additionally, climatic fac-
tors (temperature, relative humidity, rainfall, insolation, and 
cloudiness) can affect the incidence of foodborne diseases, 
and the interrelationships or higher-order interrelation-
ships among these climatic factors played an important role 
in the incidence of foodborne diseases (Park et al. 2018). 
Food-borne diseases still showed spatio-temporal high-risk 
clusters in some regions (Yang et al. 2019). All those fac-
tors would increase the difficulty of modeling, and it is not 
difficult to see that although the ARIMA model was used, 
all those factors would also lead to differences in ARIMA 
models constructed by different studies. Therefore, when 
constructing the model, we need to consider which factors 

Table 2   Parameter estimates for the ARIMA (1,1,0) model using the 
algorithm of maximum likelihood

ARIMA autoregressive integrated moving average, SE standard error, 
MU mean term of parameter in the model, AR autoregressive param-
eter

Parameter Estimate SE t value p value Lag

MU 0.04338 0.02166 2.00 0.0491 0
AR1,1 − 0.51106 0.10366 − 4.93  < 0.0001 1

Fig. 4   Fitting status situation between actual and predicted food-
borne disease incidence from 2012 to 2018, and with the predicted 
incidences from 2019 to 2023 in Shenzhen, China. The red line indi-
cates the actual incidence values, and the blue dotted line indicates 

the predicted incidence, while the two green lines indicate the upper 
and lower scope of 95% confidence intervals of predicted incidence 
of foodborne disease (Color figure online)
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should be included in the ARIMA, such as meteorologi-
cal factors, which depended on the specific circumstances 
of each region. So, it is very meaningful to build ARIMA 
model based on data from different regions.

In the present study, seasonal fluctuation of foodborne 
disease was not found in Shenzhen, while other studies in 
China showed a distinct seasonality, i.e., two incidence 
peaks were observed during each year: namely a higher 
winter peak from December to February and a lower sum-
mer peak from July to September in Jiangsu (Fang et al. 
2020). Although Shenzhen is situated about a degree south 
of the Tropic of Cancer, due to the Siberian anticyclone it 
has a warm, monsoon-influenced, humid subtropical climate, 
which also leads to little change in temperature throughout 
the year, so there may not be obvious seasonality. Unlike 
Shenzhen, Jiangsu Province, located along the eastern coast 
of China, has a typical temperate subtropical monsoon cli-
mate with mild temperature, moderate rainfall and a distinct 
four-season pattern (Fang et al. 2020). Additionally, the per-
formance of the ARIMAX model was comparable to that of 
the ARIMA model with a MAPE reaching approximately 
30% (Fang et al. 2020). However, the MAPE in the present 
study using the ARIMA (1,1,0) model was 5.34%, which 
indicated this model has a good prediction performance. 
Furthermore, even for the same disease in China, the pre-
diction of foodborne disease incidence in different regions 
should consider different ARIMA models.

To our best knowledge, only few studies have applied the 
ARIMA model for studying the annual variability of food-
borne disease incidence based on the monthly data in China 
(Fang et al. 2020; Li et al. 2010; Wang et al. 2016), and the 
numbers of foodborne disease cases were all downloaded 

from the National Notifiable Disease Surveillance System 
(NNDSS). However, some mild cases may use home thera-
pies, and cases with atypical symptoms may be misdiag-
nosed, therefore, the reported data may underestimate the 
level of morbidity (Fang et al. 2020). In present study, the 
data from the three surveillance systems could provide all 
possible foodborne disease patients in the region, thereby 
improving the accuracy of the basic data. The present study 
suffered from a few limitations. First, we employed the uni-
variate ARIMA model to forecast foodborne disease inci-
dence. Other factor, i.e., meteorological factors, may influ-
ence the quantity of infectious diarrhea incidence (Tao et al. 
2015). Second, the ARIMA model itself also has certain 
limitations. For instance, it proposes the linear or non-linear 
relation within time-series data by taking the time factor 
into consideration only, rather than pathogen, host, social 
economy, and natural environment factors (Lee et al. 2013).

In summary, monthly foodborne disease incidence in 
Shenzhen were shown to follow the ARIMA (1,1,0) model. 
This model can be considered adequate for predicting 
future foodborne disease incidence in Shenzhen and can be 
employed to aid in decision-making processes.
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Table 3   Comparison between 
actual and predicted monthly 
infectious diarrhea in 2018

MAPE mean of absolute  percentage error, and the value is 5.34%, 95% CI 95% confidence interval
a Value between actual value and predicted value
b Ratio of error absolute value and actual value

Month Actual value Predicted value Error absolute 
valuea

Absolute 
percentage 
errorbNumber Logarithm Logarithm 95% CI

Jan 19,027 9.85 10.08 9.55–10.62 0.23 0.02
Feb 24,132 10.09 10.16 9.56–10.76 0.07 0.01
Mar 27,490 10.22 10.19 9.47–10.91 − 0.03 0.00
Apr 20,535 9.93 10.24 9.45–11.04 0.31 0.03
May 18,786 9.84 10.28 9.40–11.16 0.44 0.04
Jun 19,757 9.89 10.33 9.38–11.27 0.44 0.04
July 15,175 9.63 10.37 9.36–11.38 0.74 0.08
Aug 16,442 9.71 10.41 9.34–11.48 0.7 0.07
Sep 13,312 9.50 10.45 9.33–11.58 0.95 0.10
Oct 14,064 9.55 10.50 9.31–11.68 0.95 0.10
Nov 17,613 9.78 10.54 9.31–11.78 0.76 0.08
Dec 20,362 9.92 10.58 9.30–11.87 0.66 0.07
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included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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