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1 Introduction

Due to the vast parameter space of Standard Model extensions and to the lack of significant
evidence for new particles or forces of nature, a new model-agnostic search paradigm has
emerged. Many of these anomaly detection (AD) strategies are enabled by machine learning
(see e.g. refs. [1–4]) and the first results with collision data are now available [5, 6]. One way
to characterize AD methods is based on their physics assumption of the new phenomena [2].
Strategies that assume the new physics is “rare” [7] estimate (explicitly or implicitly) the
data probability density and focus on events with low density. In contrast, techniques that
assume the new physics will manifest as an overdensity in phase space use likelihood ratio
methods to compare a reference dataset to a target dataset. The latter approach has been
extensively studied in the context of resonant anomaly detection [8], where one resonant
feature (usually a mass) is used to create a sideband region (reference dataset) nearly devoid
of any anomalous events and a signal region (target dataset) that may contain anomalies.
The reference dataset is used to estimate the presence of anomalies in the target dataset
via interpolation.

Many existing approaches are defined using one reference dataset and one target
dataset [9–18, 18–24]. However, in practice one can have access to or construct mul-
tiple references. First, there may exist multiple resonant features that can be used to
construct sideband and signal regions. For instance, when a particle decays into two new
particles, the decay products can be used to construct all three intermediate resonances,
a setting present in the LHC Olympics Dataset [3]. Second, there may also exist multiple
independent Standard Model simulators available for producing a dataset (e.g. Pythia [25],
Herwig [26], or Sherpa [27]). Using multiple reference datasets may improve performance,
but it is not clear how to incorporate all of their information when using existing methods
designed for a single set.

We explore two generalizations of resonant AD to multiple reference datasets. First,
we consider Classification Without Labels (CWoLa) [9, 10, 28], in which the reference is
simply the sideband region — a form of weak supervision where the noisy label of “signal”
is assigned to events in the signal region and the noisy label of ‘background’ to events in
the sideband region. We propose a new method, Multi-CWoLa, that builds multiple
reference datasets by constructing signal and sideband regions along different resonant
features. We consider a point’s membership in each feature’s signal region as a noisy vote for
anomaly, learn weights on each vote, and aggregate them to produce a higher-quality noisy
label. We demonstrate Multi-CWoLa’s performance on the LHC Olympics Dataset [3].

Next, we study Simulation Assisted Likelihood-free Anomaly Detection (SALAD) [14].
In this method, a reweighting function between a reference simulation dataset and a tar-
get dataset is learned in the sideband conditioned on the resonant feature. The simu-
lated events in the signal region are reweighted by interpolating this function and then
are used to distinguish anomalies in the target dataset. We extend this to the case of
multiple simulated datasets, each of which may make different approximation choices and
thus provide complementary accuracy when using SALAD. We introduce Multi-SALAD,
which combines the simulated datasets accordingly and then reweights, with the key find-
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ing that combining data helps when each simulator approximates different components of
the background well. We demonstrate Multi-SALAD’s performance on synthetic data.
Reweighting simulations is a widely-used procedure in high energy physics, well beyond
anomaly detection. While we focus on anomaly detection here because of the need for
model-independent bounds, the approach here is generally applicable.

Finally, we study the finite sample guarantees of our proposed methods. Many res-
onant AD methods have optimality guarantees in some asymptotic limit, but there is no
first-principles understanding of the methods’ performance with finite samples. In partic-
ular, approaches like the ones described above that use classifiers to distinguish a refer-
ence dataset from a target dataset approximate the signal-to-background likelihood ratio.
When the reference (physics) model is correct, this approach will converge to the optimal1
Neyman-Pearson likelihood ratio test in the limit of infinite statistics, complex enough clas-
sifier architecture, and flexible enough training procedure [15, 29]. However, a finite sample
understanding of these approaches is lacking. We draw on results from statistical theory to
begin a formal study of resonant AD methods with limited data. Our results lay a founda-
tion for future investigations into the finite sample properties of AD and related methods.

This paper is organized as follows. Section 2 briefly set up the resonant AD setting and
then Multi-CWoLa and Multi-SALAD are introduced in sections 3 and 4, respectively.
The paper ends with conclusions and outlook in section 5.

2 Problem setup

We have an input space of discriminating features x ∈ X and k resonant features m =
[m1, . . . ,mk] ∈ Rk. Associated with a point (x,m) is an unknown label y ∈ Y for Y = {0, 1}
(background vs. signal). Points (x,m, y) are drawn from a distribution P with density
p(·). For a resonant feature mi ∈ R, an interval Imi ⊂ R is used to define a signal region
SRi = {(x,m) : mi ∈ Imi} and a sideband region SBi = {(x,m) : mi /∈ Imi} (when the
resonant feature is obvious, the i is dropped and we use SR and SB). We assume that the
sideband region contains little to no signal, i.e., p(y = 1|(x,m) ∈ SB) ≈ 0. Our goal is to
construct a predictor f : X → Y to perform anomaly detection.

3 Multi-CWoLa: learning from multiple resonant features

We introduce Multi-CWoLa, an approach to anomaly detection that uses multiple ref-
erence datasets and is built using principles from the area of weak supervision [30, 31].

Standard CWoLa. We have one unlabeled dataset D = {(xi,mi)}ni=1 with one resonant
feature (k = 1) that we want to use to learn f . We use m to construct the signal and side-
band regions, DSR,DSB ⊂ D where DSR = D∩SR and DSB = D∩SB, with distributions
pSR and pSB respectively. With the intuition that there are more anomalies in the signal

1Optimal for a given model is not achievable as we do not posit a particular signal hypothesis. Instead,
we are optimal for the following hypothesis test where the null hypothesis is that data is drawn from the
reference dataset and the alternative hypothesis is that the data is drawn from the target dataset. See
appendix A in ref. [15] for details.
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region, we express each distribution as a mixture of signal and background components
with weight 0 ≤ ηSR, ηSB ≤ 1:

pSR(x) = ηSRp(x|y = 1) + (1− ηSR)p(x|y = 0) (3.1)
pSB(x) = ηSBp(x|y = 1) + (1− ηSB)p(x|y = 0) (3.2)

Under this construction, the density ratio of the mixtures pSR(x)
pSB(x) can be written in

terms of the ratio of the signal and background components, r(x) = p(x|y=1)
p(x|y=0) , as

pSR(x)
pSB(x) =

ηSRr(x)+1−ηSR

ηSBr(x)+1−ηSB
. Assuming ηSR > ηSB (e.g. more signal in the signal region), the mixture

ratio is monotonically increasing in r(x). Therefore, we train a classifier f to learn pSR(x)
pSB(x) by

distinguishing between DSR and DSB, and this f provides information about r(x) and can
be used for anomaly detection. Note that CWoLa requires that x and m are independent
of each other.

3.1 Multi-CWoLa method

Intuitively, CWoLa uses the resonant feature m as a noisy label that identifies the signal
versus sideband region and then trains a classifier using these. This idea leads to a simple
question — if more than one such feature is available (k > 1), how can the multiple noisy
labels best be utilized? We tackle this question using principles from weak supervision [30–
33]. The idea is that some features that were used to train the weakly supervised classifier
could instead be used to improve the weak labels. In many cases, it is possible to know how
to pick labeling functions with these ‘resonant’ features,2 such as when a known particle
mass is reconstructed. If the additional resonant features correspond to unknown particle
masses, it may not be possible to know how to use the features to inform accurate weak
labels. Scanning over possible intervals could result in a large trails factor. In the numerical
examples below, we include both cases where the features are useful (we know the right
interval) and not very useful (we do not know the right interval) for the weak labeling.

3.1.1 Model

In our approach, we split D along each resonant feature mi to produce pairs of datasets
DSBi and DSRi for each i ∈ [k] based on membership in Imi . A straightforward way to
use all datasets (DSB1 ,DSR1), . . . , (DSBk

,DSRk
) is to apply standard CWoLa k times by

training k classifiers that we can then ensemble or average. Instead, in Multi-CWoLa,
we construct a binary vector per x consisting of k noisy membership labels, M(m) =
{M1(m), . . . ,Mk(m)} ∈ {0, 1}k, where Mi(m) = 1 if (x,m) ∈ DSRi and Mi(m) = 0 if
(x,m) ∈ DSBi . We propose to directly aggregate these labels M(m) into an estimate of y,
ŷ, and train a classifier on the aggregated ŷ along with the discriminative features x. Since
each Mi(m)’s “vote” can have different correlation with the true y, we aim to combine the
votes in a weighted fashion. We cannot directly measure each membership label’s accuracy
since the true y is unknown, so we draw on methods from weak supervision.

2By resonant, we really mean that we can isolate a region of high signal-to-background — it does not
have to be a closed interval.
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We model the distribution p(y,M(m)) as a probabilistic graphical model with the
following parametrization:

p(y,M(m); θ) = 1
Z

exp
(
θyỹ +

k∑
i=1

θiM̃i(m)ỹ
)
, (3.3)

where θ = {θy, θi ∀i ∈ [k]} are the canonical parameters of the distribution, Z is for
normalization, and ỹ and M̃i(m) are y andMi(m) scaled from {0, 1} to {−1, 1}. Intuitively,
θi represents the (unobserved) strength of the correlation between Mi(m) and y and thus
captures a notion of Mi’s accuracy. This model also implies, for simplicity, that Mi(m) ⊥
Mj(m)|y; that is, the resonant features are conditionally independent given y in addition
to m and x being independent as in the standard CWoLa case.3

Our goal is to estimate the parameters of the graphical model and use them to perform
inference, producing aggregated weak labels ŷ from the distribution p(y = 1|M(m); θ) given
a vector of noisy labels M(m).

3.1.2 Parameter estimation
We first learn the parameters of p(y,M(m); θ) as defined in (3.3). Of key interest is
the accuracy parameter αi = p(Mi(m) = 1|y = 1) = p(Mi(m) = 0|y = 0) of the ith
resonant feature, which corresponds to the canonical parameter θi (see [35] for more back-
ground on probabilistic graphical models). We estimate the accuracy parameters by adapt-
ing the triplet approach from [31]. First, we draw triplets of resonant features a, b, c ∈
[k].4 If the distribution on y,M(m) follows the graphical model in (3.3), it holds that
yMa(m) ⊥ yMb(m) if Ma(m) ⊥ Mb(m)|y. Then, we have that E[ỹM̃a(m)]E[ỹM̃b(m)] =
E[M̃a(m)M̃b(m)] since ỹ2 = 1. Writing one such equation for each pair in the triplet
(a, b, c), we have that

E[ỹM̃a(m)]E[ỹM̃b(m)] = E[M̃a(m)M̃b(m)]
E[ỹM̃a(m)]E[ỹM̃c(m)] = E[M̃a(m)M̃c(m)]
E[ỹM̃b(m)]E[ỹM̃c(m)] = E[M̃b(m)M̃c(m)].

Solving this system, we obtain

|E[ỹM̃a(m)]| =

√√√√∣∣∣∣E[M̃a(m)M̃b(m)]E[M̃a(m)M̃c(m)]
E[M̃b(m)M̃c(m)]

∣∣∣∣,
and similarly for b and c. We assume that each signal region is positively correlated with
the true signal, which allows for us to ignore the absolute value and uniquely recover
E[ỹM̃a(m)]. Next, we can use E[ỹM̃a(m)] = 2p(ỹ = M̃a(m)) − 1 to obtain αi using
properties of the graphical model in (3.3). Note that in practice, all of these quantities are
empirical estimates, with terms such as Ê[M̃a(m)M̃b(m)] = 1

n

∑n
i=1 M̃a(mi)M̃b(mi).

3We can model some dependencies among resonant features if desired (see [31] for a method and see [34]
for how to learn if resonant features are not conditionally independent). However, we need at least three
conditionally independent subsets of resonant features in M(m) in order for the estimation method from [31]
to recover the correct parameters.

4We assume that k ≥ 3. In Lemma 1, we discuss why having k = 1 or k = 2 resonant features does not
recover a unique model.
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Algorithm 1 Multi-CWoLa.
1: Input: dataset D = {(xi,mi)}ni=1; thresholds Imi that split D into signal and sideband

regions, DSRi and DSBi respectively, for each mi; class balance probability of anomaly
p(y = 1)

2: Construct noisy label Mi(m) =

1 (x,m) ∈ DSRi

0 (x,m) ∈ DSBi

for each resonant feature mi.

3: for each triplet a, b, c ∈ [k] do
4:

βa :=
√∣∣Ê[M̃a(m)M̃b(m)]Ê[M̃a(m)M̃c(m)]/Ê[M̃b(m)M̃c(m)]

∣∣ (3.4)

βb :=
√∣∣Ê[M̃a(m)M̃b(m)]Ê[M̃b(m)M̃c(m)]/Ê[M̃a(m)M̃c(m)]

∣∣ (3.5)

βc :=
√∣∣Ê[M̃a(m)M̃c(m)]Ê[M̃b(m)M̃c(m)]/Ê[M̃a(m)M̃b(m)]

∣∣, (3.6)

where Ê is an empirical estimate of the expectation over D, and M̃(m) indicates
M(m) scaled to {−1, 1}.

5: end for
6: Set accuracy parameter αi = p̂(Mi(m) = 1|y = 1) = p̂(Mi(m) = 0|y = 0) = p̂(Mi(m) =
y) = βi+1

2 .
7: Compute estimate p̂(y = 1|M(m)) ∝ ∏m

i=1 p̂(Mi(m)|y = 1)p(y = 1).
8: Construct ŷ ∼ p̂(y = 1|M(m)) for each (x,m) ∈ D.
9: Output: classifier f̂ for anomaly detection trained on {(xi,mi, ŷi)}ni=1.

3.1.3 Inference and training

After we learn the accuracy parameters, we use them to estimate p(y = 1|M(m)) for a
given M(m). We use Bayes’ rule and the conditional independence among M(m) to write
p(y|M(m)) =

∏m

i=1 p(Mi(m)|y=1)p(y=1)
p(M(m)) . We assume that the class balance p(y = 1) is known;

otherwise, it can be estimated via tensor decomposition [33]. p(Mi(m)|y = 1) is either equal
to αi if Mi(m) = 1 or 1 − αi if Mi(m) = 0, and the denominator p(M(m)) can be either
directly estimated since all quantities are observable or computed as ∏m

i=1 p(Mi(m)|y =
1)p(y = 1)+∏m

i=1 p(Mi(m)|y = 0)p(y = 0) using the estimated accuracies and class balance.
Once p(y = 1|M(m)) is estimated for all M(m) ∈ {0, 1}k, the aggregated weak label ŷ

is drawn from such distribution. With labels ŷ for each (x,m) ∈ D, we train a classifier f̂
on the weakly labeled dataset {(x, ŷ)}ni=1. This procedure is summarized in Algorithm 1.

3.2 Theoretical results

Under (3.3), Multi-CWoLa offers finite-sample generalization guarantees. Suppose the
downstream model f̂ trained on ŷ belongs to class F . Define a loss function `C : Y×Y → R
and let the expected loss of f be LC(f) := E [`C(f(x), y)] on true labels. Then, the optimal
classifier is f? = argminf∈F LC(f), which is achieved with unlimited labeled data. Let
the empirical loss of f on ŷ be L̂C(f) := 1

n

∑n
i=1 `C(f(xi), ŷi). Then, the f̂ we learn

is constructed from f̂ = argminf∈F L̂C(f), which is learned on finite and noisily labeled
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data. Note that this construction is different from the standard empirical risk minimization
(ERM) loss on labeled data, and thus L̂C(f) does not asymptotically equal LC(f). We
aim to minimize the generalization error LC(f̂)− LC(f?).

We now present our result on an upper bound for LC(f̂) − LC(f?). Define the
Rademacher complexity of F as Rn(` ◦ F) = E

[
supf∈F 1

n

∑n
i=1 εi`(f(xi), yi)

]
with ran-

dom variables Pr(ε = 1) = Pr(ε = −1) = 1
2 . Define emin as the minimum eigenvalue of

the covariance matrix on [y,M1(m), . . . ,Mk(m)], and let amin be the minimum value of
E[M̃i(m)y] over all i.

Theorem 1. Assume that p(y,M(m)) can be parametrized according to (3.3) and that `
is scaled to be bounded in [0, 1]. Assume that the class balance p(y) is known (if not, there
are ways to estimate it [33]), and that k ≥ 3. Then, with probability at least 1 − δ, the
generalization error of Multi-CWoLa on D is at most

LC(f̂)− LC(f?) ≤ 4Rn(` ◦ F) + 2

√
log 2/δ

2n + c1
emina5

min

(√
k

n
+ c2k√

n

)
,

where c1, c2 are positive constants.

The proof of Theorem 1 is provided in appendix E. We observe that there are several
quantities controlling the above bound:

• The Rademacher complexity of F : this term describes the model’s expressivity. Smaller
Rademacher complexity means that the model is easier to learn and that our f̂ will
be closer to the best model in F . This quantity can be readily computed for a variety
of function classes F , such as decision trees, linear models, and two-layer feedforward
networks, which makes our bound in Theorem 1 tractable. See appendix D.2 for exact
values.

• Using n finite samples: as the amount of data increases, the error decreases in O(n−1/2).

• Using noisy labels ŷ instead of y: for our weak supervision algorithm and graphical
model, using ŷ rather than y contributes an additional O(n−1/2) error. Asymptotically,
our approach thus does no worse than training with labeled data.

• The number of resonant features k: as k increases, the expression increases. This is due
to the fact that larger k results in more accuracy parameters to estimate.

By contrast, the standard CWoLa approach with k = 1 does not utilize any aggrega-
tion or weak supervision, which requires k ≥ 3. For standard CWoLa, the second term
in the generalization error is irreducible due to the fact that using any single resonant
feature in place of y is biased; see Theorem 3 in appendix D for the exact generalization
bound. On the other hand, Multi-CWoLa corrects for some of this bias; the second term
asymptotically approaches 0 with more data.
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3.3 Empirical results

In figure 1, we compare Multi-CWoLa with standard CWoLa as well as three other base-
lines. For this study, we use datasets from the LHC Olympics [3]. This data challenge was
created to develop and test resonant anomaly detection methods. The setting is events with
a pair of hadronic jets whose invariant mass is in excess of 1TeV. Inclusive bump hunts are
broadly sensitive to localized excess in the dijet invariant mass spectrum, but are not partic-
ularly sensitive when the jets have complex substructure. For example, if the jets are formed
from a new resonance A that decays to two other resonances B and C with mB,mC � mA

and B,C → qq′, then B and C particles will form two-prong jets that are readily distin-
guishable from the one-prong quark and gluon jets in the background. This signal scenario
is exactly what is present in the LHC Olympics dataset. All events are simulated with
Pythia 8 [25] and for simplicity, are summarized by five features: the invariant mass of the
two jets (k = 1), the masses of the two jets, and a measure of the two-pronginess of the two
jets (via the n-subjettiness ratio τ21 [36, 37]). In the standard CWoLa setup, we use one
thresholded resonant feature (k = 1) and use 4 discriminative features as x. For Multi-
CWoLa, we have generated k = 3 mixtures by varying how the 3 resonant features (the
jet masses in addition to the dijet mass) are thresholded and use 2 discriminative features
as x. Since we do not know the values of the masses, we pick windows in the middle of the
spectrum for the individual jet masses (correct for one jet and not the other), as shown in
figure 7. The proportion of anomalies in the training dataset is 0.149, while the proportion
in the test dataset is 0.289. We have three other baselines that utilize 3 resonant features:

• CWoLa + intersect defines the signal region as the intersection of the resonant fea-
tures’ signal regions, e.g. SR = SR1∩SR2∩SR3, but this can be overly conservative.

• CWoLa +x thresholding has one resonant feature as the noisy label ŷ = M1(m), and
includes the remaining thresholded features as discriminative {M2(m),M3(m), x}.

• CWoLa + average runs standard CWoLa three times, once per resonant feature and
with the 2 discriminative features. The three model scores are averaged to produce
the final output.

We vary the number of samples available on a logarithmic scale from n = 59 to 6003
and plot the AUC averaged over 5 runs per sample size in 1. We find that Multi-CWoLa
offers a higher AUC and lower variance, especially when there is limited data. We also
plot the (Significance Improvement) SI curves averaged over 5 runs for n = 59, 530, 6003
in 2. The SI corresponds to a multiplicative factor by which the significance of the anomaly
increases with a corresponding threshold set by the x-axis. Numerically, the SI is the true
positive rate divided by the square root of the false positive rate. The anomaly detection
is useful only if the max SI is above 1. In practice, we do not know what threshold to make
(which is signal-model dependent), so a set of cuts could be applied. Scanning over the
cut would introduce a trials factor, but it is non-trivial to calculate given the correlation
between different thresholds. Recent experimental results have used a couple of thresholds
that are widely different so that these correlations and the trials factor are both small [5].
More experimental details and results are in appendix F.
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Figure 1. Comparison between CWoLa and Multi-CWoLa. Using multiple mixed samples
helps performance across a range of dataset sizes. Access to multiple weak sources enables better
AUC and lower variance compared to the single-feature version.

Figure 2. Significance Improvement (SI) curve for Multi-CWoLa at sizes n = 59, 530, and 6003.
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4 Multi-SALAD: learning from multiple simulations

We often have access to a(n approximate) simulation of the background process. We first
provide an overview of SALAD, which reweighs samples from the simulation to better
assist with classification on the real dataset. Then, we present Multi-SALAD, a variant
of SALAD that uses multiple simulations.

Standard SALAD. We have a background simulation dataset Dsim = {(xi,mi)}nsim
i=1

with yi = 0 for all i in addition to one true dataset D = {(xi,mi)}ni=1. Dsim is drawn from
some distribution Psim with density psim. While CWoLA learns the likelihood ratio between
the signal and sideband regions of D alone, SALAD utilizes Dsim as well. Note that if psim
is equal to p(·|y = 0), we could directly train a model to distinguish between D and Dsim in
the signal region to get a classifier that could detect anomalies. However, since Dsim may
not match the true background data, we instead first need to learn a reweighting function
that captures the differences between Dsim and D’s background data, and then we train a
model to distinguish between D and the reweighted Dsim in the signal region. Formally,
given fixed SR and SB for both datasets, the method can be broken into two steps:

1. Reweighting: a classifier ĝ is trained to distinguish between Dsim
SB = Dsim ∩SB and

DSB. Assuming that the sideband region has no anomalies, this ĝ is able to produce
an estimate of the weight ratio5 w(x,m) = p(x,m|y=0)

psim(x,m|y=0) ≈
ĝ(x,m)

1−ĝ(x,m) , assuming that
the datasets are the same size (|Dsim

SB | = |DSB|).

2. Detection: using a loss function LS with estimated ŵ(x,m) applied to Dsim
SR =

Dsim ∩ SR, a classifier ĥ is trained to distinguish between DSR and Dsim
SR .

If the estimate ŵ(x,m) is exactly equal to w(x,m) (e.g. ĝ is Bayes-optimal), then the
second step will be equivalent in expectation to learning the ratio p(x)

p(x|y=0) (see Lemma 2
in appendix D.4), from which one can detect anomalies.

4.1 Multi-SALAD method

Now, we have multiple simulation datasets Dsim
1 , . . . ,Dsim

k . One approach would be to
maintain distinctions among simulations by reweighing each pair to learn k weight func-
tions wi(x,m), and then using one overall loss function that weights points from each Dsim

SR,i

with wi. However, it has been shown that importance reweighting, despite working in ex-
pectation, can be highly unstable and result in poor performance of tasks on the target data
D [42]. To understand why, ref. [43] showed that the generalization error of an empirical
loss function with importance weights w depends on the magnitude of w. Applied to our
setting, it suggests that the more inaccurate the simulation is, the less the reweighted loss
recovers the true p(x)

p(x|y=0) , and the model may instead pick up on differences between DSR
and the reweighted Dsim

SR that are noise rather than the anomaly. As a result, aggregating
individual SALAD outputs can be equivalent to ensembling many poor classifiers.

5This is with the binary cross entropy loss function (also works for other functions [38]). This likelihood-
ratio trick is well-known (see e.g. refs. [39, 40]), also in high-energy physics (see e.g. ref. [41]).
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Given these observations, Multi-SALAD uses multiple simulation datasets in a very
simple yet theoretically principled way: control the magnitude of the overall w by com-
bining all the Dsim

i to produce one large simulation dataset D̃sim whose distribution best
approximates the true background p(x|y = 0), and then use standard SALAD with D̃sim

and D. Note that this approach both improves sample complexity and can “suppress” a
simulation that on its own has high w, while the approach of learning k weight functions
would not offer such improvements. In Algorithm 2 and appendix C.1, we write this proce-
dure out where we simply concatenate all Dsim

i together. However, with domain knowledge
on the strengths and weaknesses of each simulation across features, one could produce D̃sim

by sampling accordingly from each. We leave this direction for future work.

4.2 Theoretical results

We now present a finite sample generalization error bound on Multi-SALAD that also
applies to SALAD. To measure the generalization error, recall w(x,m) = p(x,m|y=0)

psim(x,m|y=0)
and let ŵ be the classifier g’s estimate. We denote h as the reweighted classifier. Let
h? = argminh∈H LS(h,w) and let ĥ = argminh∈H L̂S(h, ŵ). We aim to bound LS(ĥ, ŵ)−
LS(h?, w).

We first set up some definitions. Define nSR as the number of points from D and
D̃sim belonging to the signal region, and nSB as the number of points belonging to the
sideband. Let nSRsim be the number of points in D̃sim belonging to the signal region. Let
ĝ(x) ∈ [ĝmin, ĝmax] and g?(x) ∈ [g?min, g

?
max], where g? is the optimal classifier. Let RnSR(`S◦

{H,G}) be the Rademacher complexity of the overall loss LS(h,w) across function classes
h ∈ H, g ∈ G. Define W = maxx,mw(x,m) as the maximum ratio between the simulation
and true background. Let B1 = max{− log h?(x,m),− log(1 − h?(x,m))} be based on
the most extreme value of h? (i.e. how far apart p and p(·|y = 0) can be). Let η =
max(− log(1− h?(x,m))) for x,m ∈ Dsim

SR . Let RnSB (` ◦ G) is the Rademacher complexity
of the loss function class used for learning the reweighting, where ` is point-wise cross-
entropy. Finally, let B2 = − log(min{ĝmin, g

?
min}).

Theorem 2. With probability at least 1 − δ, there exists a constant c > 0 such that the
generalization error of Multi-SALAD on D̃sim and D is at most

LS(ĥ, ŵ)− LS(h?, w) ≤ 2RnSR(`S ◦ {H,G}) + (1 +WB1)

√
log 8/δ
2nSR (4.1)

+ ηnSRsim
(1− ĝmax)(1− g?max)nSR

(
4cRnSB (` ◦ G) + 2c

√
log 4/δ
2nSB +B2

√
log 8/δ
2nSRsim

)
.

We make several observations about this bound:

• The bound scales in (nSB)−1/2 and (nSRsim)−1/2, where the former comes from the
initial reweighting step while the latter comes from the weighted classification step.

• The bound is also dependent on the Rademacher complexities of both classifiers g
and h used.
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• The bound depends on the difference between the simulation and data distributions
through quantities W , B1, B2, η, ĝmax, gmax. If the distributions have very different
densities, these quantities will all be large, increasing the generalization error.

We comment how this bound is different when instantiated for SALAD versus Multi-
SALAD. The following example shows how SALAD with one simulation can result in a
largeW (and other large constants), while Multi-SALAD with two simulations combined
can reduce W in the bound.

Example 1. Let P1
sim(x|y = 0) = N (µ, σ2), P2

sim(x|y = 0) = N (−µ, σ2) be Gaussian
distributions on x with µ, σ2 ∈ R, and let the true background distribution P(·|y = 0) be a
mixture of the Gaussians on x, P(x|y = 0) = 1

2P
1
sim+ 1

2P
2
sim. Let P1

sim,P2
sim, and P have the

same marginal distribution over m with x ⊥⊥ m|y. Then, if we only use one simulation P1
sim,

w(x,m) = p(x,m|y = 0)
p1

sim(x,m|y = 0) = p(x|y = 0)
p1

sim(x|y = 0)

=
1

2σ
√

2π exp
(
− (x−µ)2

2σ2

)
+ 1

2σ
√

2π exp
(
− (x+µ)2

2σ2

)
1

σ
√

2π exp
(
− (x−µ)2

2σ2

)
= 1

2 + 1
2 exp

((x− µ)2

2σ2 − (x+ µ)2

2σ2

)
= 1

2 + 1
2 exp

(−2xµ
σ2

)
.

Therefore, as x → −∞, W → ∞. However, if we define Psim as the distribution of
the two simulation datasets concatenated, we have that psim(x|y = 0) = p(x|y = 0), and as
a result, W → 1, making the generalization error bound smaller.

From this example, we can see that significantly differing simulation and data dis-
tributions can result in large, unbounded weight ratios, which are correlated with poor
performance.6 This concretely motivates our algorithmic objective to combine multiple
simulation datasets as to closely approximate the true data.

4.3 Empirical results

To demonstrate how Multi-SALAD can improve over using only one simulation and
over using simulations separately, we consider a synthetic experiment with two simulation
datasets.7 The true background is P(·|y = 0) = 1

2N (−1, 0.2)+ 1
2N (1, 0.2), and the anomaly

is P(·|y = 1) = 1
2N (−1.5, 0.2)+ 1

2N (1.5, 0.2). Simulation 1 is P1
sim = 1

2N (1, 0.2)+ 1
2N (0, 1),

and simulation 2 is P2
sim = 1

2N (−1, 0.2)+ 1
2N (0, 1). We generate 2000 points from the true

background and 100 points that are anomalies to form D, and 2000 points each from P1
sim

and P2
sim to form Dsim

1 and Dsim
2 . We construct signal and sideband regions from these

6The bound in Theorem 2 is meant to provide a general understanding of SALAD’s performance. It
can be made tighter by replacing terms that are maxima like M and B2 with terms that are based on
the overall data distributions (e.g. variance, as in ref. [43]). Variance-based bounds are less likely to be
vacuous, but will still demonstrate how performance is dependent on the intrinsic differences between the
two distributions.

7We find that the differences between the simulations in the LHC Olympics are not enough to see a
noticeable gain from Multi-SALAD over SALAD.
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Figure 3. Synthetic data for evaluating Multi-SALAD.

by splitting datasets in half randomly, assuming they follow the same distribution over x
(i.e., m is independent of x) except that there is no anomaly in the sideband regions. A
visualization is shown in figure 3.

Intuitively, the anomaly is only slightly different from the background data, which
makes it important to learn a good reweighting function from the simulations. Because each
simulation alone diverges greatly from the data for one mode, each individual reweighting
may not approximate the true P(·|y = 1) well. On the other hand, if we combine both
simulation datasets together, the aggregate distribution has smaller weights with lower
variance, which can allow for more accurate reweighting. This is demonstrated in figure 4,
which depicts the reweighting in the sideband region. We have plotted the true density of
the data distribution in the sideband region, as well as the simulation’s distribution and
the reweighted simulation’s distribution. In red, we plot the absolute value of the difference
in the densities between the true data and the reweighted simulation. We find that the
mean difference when using simulation 1 only is 0.1150, when using simulation 2 only is
0.1027, and when using simulation 1 and 2 is 0.0640.

Figure 5 depicts the reweighting’s interpolation into the signal region, where we in-
troduce an additional baseline SALAD-Switch, which uses k separate weight functions
wi(x,m) and switches among them in the reweighted loss function LS . We have plotted the
true density of the data distribution in the signal region, which consists of both background
and anomaly, and the reweighted estimate of the background data. In red, we plot the
absolute value of the difference in the densities between the true data and the reweighted
simulation. We find that the absolute difference in the densities is lower in regions of
no anomaly (e.g., away from N (−1.5, 0.2) and N (1.5, 0.2)) when using Multi-SALAD.
Note that the reweighting does not remove discrepancies caused by the signal. Therefore,
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Figure 4. Top left: SALAD reweighting using simulation 1 on sideband region. Top right: reweight-
ing using simulation 2. Bottom: reweighting using simulation 1 and 2 combined.

Multi-SALAD approximates the background data well, and so a classifier trained on
this reweighted simulation will be able to distinguish differences between background and
anomaly; on the other hand, a classifier trained on a high-variance reweighted simulation
will more likely learn distinctions coming from poor approximation, rather than anomaly.

With these observations, we present the signal efficiency to rejection rate of each
method in figure 6, where we compare Multi-SALAD against SALAD using simulation
1 only, SALAD using simulation 2 only, and SALAD-Switch. Table 1 contains the accu-
racy and AUC scores for each method. Averaged over 10 random seeds, Multi-SALAD
outperforms other methods. The signal efficiency to rejection rate for each of the 10 runs
is available in appendix F.

5 Conclusions and outlook

We extend two resonant AD approaches to incorporate multiple reference datasets. For
Multi-CWoLa, we draw from weak supervision models to handle multiple resonant fea-
tures. For Multi-SALAD, we combine multiple simulation datasets to best approximate
the background process. Future work includes 1) exploring Multi-SALAD’s applicability
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Figure 5. Top left: SALAD reweighting using simulation 1 on signal region. Top right: reweighting
using simulation 2. Bottom left: using both simulation 1 and 2 weights separately. Bottom right:
reweighting using simulation 1 and 2 combined.
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Figure 6. Signal efficiency to rejection of Multi-SALAD versus other baselines (weighted and
unweighted).
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Simulation 1 Simulation 2 Simulation 1 and 2
Method None SALAD None SALAD None SALAD-Switch Multi-SALAD
Accuracy 45.6±1.9 58.3±5.7 44.7±3.1 62.1±9.8 50.0±0.0 54.8±4.7 65.7±8.2

AUC 30.2±3.8 82.8±12.0 29.3±3.2 80.9±13.1 12.6±5.1 76.5±15.2 90.2±8.3

Table 1. Accuracy and AUC scores (%) for Multi-SALAD on two simulation datasets. We
compare to SALAD-Switch (different reweighting), as well as standard SALAD on individual
simulations and no reweighting. Performance is averaged over 20 random runs with one standard
deviation reported.

on real data and algorithms for sampling from simulation datasets 2) extending Multi-
CWoLa to model more complex relationships among resonant features and 3) using such
approaches together over multiple simulations and resonant features, effectively utilizing
as much information as possible.
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A Appendix organization

We provide a glossary of notation in B. We provide algorithmic details for Multi-SALAD
in section C. We present additional theoretical results on Rademacher complexities and
the asymptotic behavior of SALAD in section D. In section E, we provide proofs for our
theoretical results. In section F, we provide additional experimental details.
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B Glossary

The glossary is given in table 2.

C Additional algorithmic details

C.1 Multi-SALAD algorithm

Multi-SALAD is described in Algorithm 2. We have simulation datasets Dsim
1 , . . .Dsim

k ,
where Dsim

i = {(xj ,mj)}nsim
j=1 and all points belong to the background (y = 0). As discussed

in section 4, we propose using these simulation datasets by aggregating them into a single
simulation dataset Dsim, whether it be by concatenating the datasets, stratified sampling
— taking a fixed number of samples from each dataset — or something more advanced like
importance sampling or weighting. Then the rest of this section proceeds as follows and is
a review of the standard SALAD method.

Reweighting. First, we learn weights to correct for the bias of the simulated background
data. We split the both simulation and true data along m to produce sets Dsim

SR ,Dsim
SB and

DSR and DSB. We train a classifier over Dsim
SB and DSB to distinguish between simulation

and real data in the sideband region. That is, we train a binary classifier ĝ over points
(x,m, z) in the sideband where x,m is either from psim(·|y = 0) (z = 0) or p(·|y = 0)
(z = 1), where we recall that simulation data only contains y = 0, and no anomalies are
present in the sideband. Denote q as the joint density of (x,m, z). We define the weight
as the estimated likelihood ratio

ŵ(x,m) = ĝ(x,m)
1− ĝ(x,m) ≈

q(z = 1|x,m)
q(z = 0|x,m) = q(x,m|z = 1)

q(x,m|z = 0) ·
q(z = 1)
q(z = 0)

= q(x,m|z = 1)
q(x,m|z = 0) = p(x,m|y = 0)

psim(x,m|y = 0) . (C.1)

Here, we assume that q(z = 1) = q(z = 0) (i.e. balanced simulation and real dataset,
which we can always ensure by generating more or less simulation data). Equality is
obtained in the expression above when ĝ is Bayes-optimal.

Training. The above ŵ(x,m) is defined on the sideband region. Next, we interpolate
and correct the bias of the simulation in the signal region. Let Dsim

SR be the set of simulation
data in the signal region of size nSRsim, and let DSR be the set of true data in the signal region
of size nSRdata, for a total of nSR points. We train a classifier h to distinguish between the
reweighted simulated data, which approximates true background data, and the true data.
In particular, the loss function used is

L̂S(h, ŵ) = − 1
nSR

( ∑
x∈DSR

log h(x,m) +
∑

x∈Dsim
SR

ŵ(x,m) log(1− h(x,m))
)
. (C.2)

In expectation with an optimal w, we can see that minimizing this loss is equivalent
to minimizing the cross-entropy loss on a task that distinguishes between points drawn
from p and points drawn from p(·|y = 0) in the signal region. Therefore, h can be used for
anomaly detection. The procedure is summarized in Algorithm 2.
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Symbol Used for
x Discriminative feature x∈X .
m Resonant feature vector of length k, m= [m1, . . . ,mk]∈Rk.
y True unknown label y ∈Y = {0,+1}, where 0 is background and 1 is signal.
P,p Distribution and density of data (x,m,y).
Imi Interval along which ith resonant feature mi is thresholded to produce

signal region and sideband.
SR,SB Signal region and sideband. For an interval Imi , SRi = {(x,m) :mi ∈ Imi}

and SBi = {(x,m) :mi /∈ Imi}.
f Classifier f :X →Y used for anomaly detection.
D Unlabeled dataset D= {(xi,mi)}n

i=1 of discriminative and resonant features.
DSR,DSB Signal region and sideband of D, DSR =D∩SR, DSB =D∩SB.
ηSR,ηSB Mixture weights corresponding to p(y= 1|x∈SR) and p(y= 1|x∈SB).

It is assumed that ηSR >ηSB .
Mi(m) Noisy membership label for the ith resonant feature, equal to 0 if x∈DSBi

and 1 if x∈DSRi . M(m) =M1(m), . . . ,Mk(m).
ŷ Weak label drawn from estimated distribution on p(y|M(m)).
θy,θi Canonical parameters of graphical model on y,M(m) in (3.3).

θy scales with the class balance of y and θi scales with the accuracy of Mi(m).
Z Partition function used for normalizing distribution p(y,M(m)) in (3.3).
ỹ,M̃(m) y and M(m) scaled from {0,1} to {−1,1}.
αi Accuracy parameter αi = p(Mi(m) = 1|y= 1) for the membership label

of the ith resonant feature.
`C Loss function `C :Y×Y→R for training classifier f .
LC(f) Expected loss on labeled data using f , LC(f) =E [`C(f(x),y)].
f? Optimal classifier trained on infinite labeled data, f? = argminf∈F LC(f).
L̂C(f) Empirical loss on D with weak labels using f , L̂C(f) = 1

n

∑n
i=1 `C(f(xi), ŷi).

f̂ Classifier learned using Multi-CWoLa, f̂ = argminf∈F L̂C(f).
Dsim Simulation dataset used in standard SALAD, Dsim = {(xi,mi)}nsim

i=1 .
Has distribution Psim and density psim(·).

Dsim
SB , Dsim

SR Dsim
SB =Dsim∩SB, Dsim

SR =Dsim∩SR.
w(x,m) Density ratio between Dsim

SB and DSB used for reweighting,
w(x,m) = p(x,m|y=0)

psim(x,m|y=0) .
ĝ Classifier trained to classify Dsim

SB vs DSB , used for approximating w(x,m)
when |Dsim

SB |= |DSB |.
LS(h,w) Cross-entropy loss function used to classify Dsim

SR reweighted with w vs DSR.
ĥ Classifier trained using LS .
Dsim

1 , . . . ,Dsim
k k multiple simulation datasets used in Multi-SALAD.

D̃sim Dataset aggregated from Dsim
1 , . . . ,Dsim

k .
nSR nSR = |DSR|.
nSB nSB = |DSB |.
nSR

sim nSR
sim = |Dsim

SR |.
h? The optimal classifier h? = argminh∈H LS(h,w).
W The maximum ratio between the simulation and true background,

W = maxx,mw(x,m).

Table 2. Glossary of variables and symbols used in this paper.
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Algorithm 2 Multi-SALAD.
1: Input: simulation datasets Dsim

1 , . . . ,Dsim
k and real dataset D.

2: Construct overall simulation dataset Dsim = ⋃k
i=1Dsim

i .
3: Split each dataset into signal region and sideband region using resonant feature m to

get {Dsim
SR ,Dsim

SB} and {DSR,DSB}.
4: Learn weight ŵ(x,m) = ĝ(x,m)

1−ĝ(x,m) , where ĝ is a classifier that distinguishes data DSB
from simulation Dsim

SB in the sideband region.
5: Train a new classifier ĥ on the signal region to distinguish between points in DSR and

points in Dsim
SR reweighted by ŵ, using the following loss:

L̂S(h, ŵ) = − 1
nSR

( ∑
x∈DSR

log h(x,m) +
∑

x∈Dsim
SR

ŵ(x,m) log(1− h(x,m))
)
. (C.3)

6: Output: classifier output ĥ(x,m), which yields a score that is thresholded for anomaly
detection.

SALAD-Switch. Here, we formally describe the baseline SALAD-Switch. Rather
than combining the reference datasets, we keep them separate and learning a reweighting
function on each. That is, the ith weight ratio function is wi(x,m) = p(x,m|y=0)

psimi (x,m|y=0) for
x,m ∈ Dsim

i and i ∈ [k]. The SALAD-Switch objective function is

L̂switch(h, ŵ) = − 1
nSR

( ∑
x∈DSR

log h(x,m) +
k∑
i=1

∑
x∈Dsim

SR,i

ŵi(x,m) log(1− h(x,m))
)
. (C.4)

These two steps, learning wi and the new objective function, correspond to lines 4 and 5
in Algorithm 2.

D Additional theoretical results

D.1 The need for 3 resonant features

We show that to identify the model (3.3), we need at least k = 3 resonant features.

Lemma 1. If k = 1 or k = 2 in model (3.3), the parameters θ1 and θ2 cannot be recovered
from the observable quantities.

Proof. The strategy we use to show that the model cannot be identified for k = 1 or k = 2
is to prove that the observable distributions P (M̃1(m), . . . , M̃k(m)) are consistent with
multiple values of θ. We do so by direct calculation.

First, consider the case of k = 1. Set θy = 0 for simplicity. Then, the model is
1
Z exp(θM̃1(m)ỹ). Then Z = 2 exp(θ) + 2 exp(−θ), and

P (M̃1(m) = 1) = exp(θ) + exp(−θ)
2 exp(θ) + 2 exp(−θ) = 1

2 .

Thus, any θ value produces the same observable distribution, so that we cannot identify θ.
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Next, we consider k = 2. Again, set θy = 0. The model is now 1
Z exp(θ1M̃1(m)ỹ +

θ2M̃2(m)ỹ). We similarly compute

Z = 2(exp(θ1 + θ2) + exp(−θ1 + θ2) + exp(θ1 − θ2) + exp(−θ1 − θ2)).

The observable distribution is now P (M̃1(m), M̃2(m)). We have that

P (M̃1(m) = 1, M̃2(m) = 1) = 1
Z

(exp(θ1 + θ2) + exp(−θ1 − θ2)),

and
P (M̃1(m) = 1, M̃2(m) = −1) = 1

Z
(exp(θ1 − θ2) + exp(−θ1 + θ2)).

Note that we have P (M̃1(m) = −1, M̃2(m) = −1) = P (M̃1(m) = 1, M̃2(m) = 1) and
P (M̃1(m) = −1, M̃2(m) = 1) = P (M̃1(m) = 1, M̃2(m) = −1).

As a result, we have the same distribution P (M̃1(m), M̃2(m)) for the parameters
θ1, θ2 = a, b and for θ1, θ2 = b, a, where a, b are some non-negative values. If a 6= b, we end
up with at least two solutions that cannot be distinguished, completing the proof.

D.2 Rademacher complexity bounds

We present bounds on the Rademacher complexity Rn(F) of various models F . For all of
the F below, we obtain Rn(` ◦F) by computing Rn(F). These two Rademacher complex-
ities are equal when we assume that ` is 1-Lipschitz and apply Talagrand’s lemma.

• Linear models: we define fθ(x) = θ>x with ‖θ‖2 ≤ B and E[‖x‖22] ≤ C2, Rn(F) ≤
BC√
n
[44, Theorem 5.5].

• Two-layer feed-forward neural networks (MLPs): we define fθ(x) where θ =
(U,w) are the parameters for the weights for the two layers of an MLP. Here U ∈ Rm×d

and w ∈ Rm. Suppose ReLU is the activation function, ‖w‖2 ≤ Bw, ‖ui‖2 ≤ Bu for
all 1 ≤ i ≤ m, and that E[‖x‖22 ≤ C2. Then, Rn(F) ≤ 2BwBuC

√
m
n [44, Theorem

5.9].

• Kernels: let k : X × X → R be a continuous symmetric function so that for
x1, . . . , xn, the matrix given by Kij = k(xi, xj) is positive semidefinite. The class
of kernel estimators consists of functions f(x) = ∑n

i=1 αik(Xi, x). Suppose that∑
i,j αiαjk(Xi, Xj) ≤ B2; then, from [45], Rn(F) ≤ 2B

√
E[k(X,X)]

n . For particular
kernels it is easy to bound the term in the numerator above. For example, we consider
the RBF kernel which has maximum one, yielding Rn(F) ≤ 2B√

n
.

D.3 Bound on CWoLa’s generalization error

We present a result on CWoLa’s generalization error showing that for k = 1, there exists
an irreducible error due to the noise in using the resonant feature as the label.

For CWoLa, we train a classifier on noisy labels. We describe this objective func-
tion as L̂noisy(f) = 1

n

∑n
i=1 `C(f(xi), ŷi), where ŷi is the resonant feature of the ith

sample, M1(xi), and has error p := p(M1(x) 6= y). The CWoLa classifier is equal
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to f̂ = argminf∈F L̂noisy(f). We distinguish this from the clean objective function,
L̂clean(f) = 1

n

∑n
i=1 `C(f(xi), yi) over true labels, and its population-level equivalent,

Lclean(f) = E [`C(f(x), y)], which is equal to the LC(f) used in the main text. Let
ȳ be the flipped binary value of y, so that ȳ = 1 when y = 0 (and vice-versa). Let
L̂flipped(f) = 1

n

∑n
i=1 `C(f(xi), ȳi) be the empirical loss of f on flipped labels.

Theorem 3. For all f ∈ F , assume that |L̂clean(f)− L̂flipped(f)| ≤ ∆, the penalty incurred
from trying to predict the flipped label ȳ rather than the true label y. Then, with probability
at least 1− δ, the generalization error of Multi-CWoLa on D is at most

Lclean(f̂)− Lclean(f?) ≤ 2p∆ + 4Rn(` ◦ F) + 2

√
log 2/δ

2n .

Proof. We can write L̂noisy(f) as the mixture of L̂clean and L̂flipped; for all f , we have that

L̂noisy(f) = pL̂flipped(f) + (1− p)L̂clean(f), (D.1)

so that
L̂clean(f) = L̂noisy(f) + p(L̂clean(f)− L̂flipped(f)) (D.2)

We can think of the expression L̂clean(f)−L̂flipped(f) as the average penalty from trying
to predict the flipped label ȳ rather than the true label y. This penalty varies with the
function f ; let us consider an upper bound so that for all f ∈ F ,

|L̂clean(f)− L̂flipped(f)| ≤ ∆.

Now we can apply this idea to the generalization bound. We aim to bound Lclean(f̂)−
Lclean(f?). Using the exact same decomposition as in the proof of Theorem 1, we have

Lclean(f̂)−Lclean(f?)
= (Lclean(f̂)− L̂clean(f̂)) + (L̂clean(f̂)− L̂clean(f?)) + (L̂clean(f?)− Lclean(f?))

We can apply a standard Rademacher complexity bound to the first and third terms
in parentheses as was done in Theorem 1. The middle term L̂clean(f̂) − L̂clean(f?) can be
written as

L̂clean(f̂)− L̂clean(f?) ≤ L̂noisy(f)− L̂noisy(f?) + 2p∆ ≤ 2p∆. (D.3)

and so our overall generalization bound is

Lclean(f̂)− Lclean(f?) ≤ 2p∆ + 4Rn(` ◦ F) + 2

√
log(2/δ)

2n (D.4)

Note that unlike in the k ≥ 3 case, there is no way to reduce the 2p∆ term.
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D.4 Asymptotic behavior of SALAD’s L̂S(h, w)

Lemma 2. Assume that the reweighting function is Bayes-optimal, meaning that
ŵ(x,m) = w(x,m). Then,

lim
nSR→∞

L̂(h, ŵ) ∝ LCE(h),

where LCE(h) = Ex,m,z′=1 [− log h(x,m)] + Ex,m,z′=0 [− log(1− h(x,m))] is the cross en-

tropy loss on label z′ =

1 x,m ∼ P
0 x,m ∼ p(·|y = 0)

.

Proof. Let nSRdata be the number of points from D that belong to the signal region. Under
our assumptions, the empirical loss function can be written as

L̂(h, ŵ) ∝ −n
SR
data
nSR

· 1
nSRdata

∑
x∈DSR

log h(x,m)

− nSRsim
nSR

· 1
nSRsim

∑
x∈Dsim

SR

p(x,m|y = 0)
psim(x,m|y = 0) log(1− h(x,m)).

As nSR →∞, the first term approaches −Pr(z′ = 1) ·Ex,m∼P [log h(x,m)] = −Pr(z′ =
1) ·Ex,m|z′=1 [log h(x,m)]. For the second term, we can construct nSR,0data , the amount of data
where x is from p(·|y = 0), to be equal to nSRsim such that the expression asymptotically
approaches −Pr(z′ = 0) · Ex,m∼Psim

[
p(x,m|y=0)

psim(x,m|y=0) log(1− h(x,m))
]
. Performing a change

of expectation, this is equal to −Pr(z′ = 0) · Ex,m|z′=0 [log(1− h(x,m))]. Putting this
together, we have that

lim
nSR→∞

L̂(h, ŵ) ∝ −Pr(z′ = 1)Ex,m|z′=1 [log h(x,m)]− Pr(z′ = 0)Ex,m|z′=0 [log(1− h(x,m))]

= LCE(h).

E Proofs

E.1 Proof of Theorem 1

Proof. From Theorem 3 of [31], we have that LC(f̂)−LC(f?) is bounded by the traditional
ERM generalization gap of LC(f̄) − LC(f?), where f̄ = argminf∈F 1

n

∑n
i=1`(f(xi,mi), yi)

is the classifier learned on labeled data, plus the term c1
emina5

min

(√
k
n + c2k√

n

)
.

We can apply standard learning theory bounds on LC(f̄)−LC(f?). In particular, this
quantity is equal to

LC(f̄)− LC(f?) = (LC(f̄)− L̂C(f̄)) + (L̂C(f̄)− L̂C(f?)) + (L̂C(f?)− LC(f?))
≤ LC(f̄)− L̂C(f̄) + L̂C(f?)− LC(f?)
≤ 2 sup

f∈F
|LC(f)− L̂C(f)|,
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where we have used the fact that L̂C(f̄) ≤ L̂C(f?). Then, using Theorem 3.3 of [46], we
have that with probability 1− δ,

LC(f̄)− LC(f?) ≤ 2
(

2Rn(` ◦ F) +

√
log 2/δ

2n

)
.

Combining these two terms gives us our desired result.

E.2 Proof of Theorem 2

Proof. We define the true (cross-entropy) loss as

LS(h,w)=−Pr(z′ = 1)Ez′=1 [log h(x,m)]−Pr(z′ = 0)Ex,m∈PSR
sim

[w(x,m) log(1− h(x,m))] ,

where z′ = 1 for x,m ∼ P and 0 for x,m ∼ P(·|y = 0). Next, define w(x,m) = q(x,m|z=1)
q(x,m|z=0)

and let ŵ be the weight ratio learned by our model. Let ĥ = argminh∈H L̂S(h, ŵ), and let
h? = argminh∈H L(h,w?). Intuitively, h? corresponds to the true difference between PSRdata
and PSRdata(·|y = 0). We can first decompose the generalization error as

LS(ĥ, ŵ)− LS(h?, w) = [LS(ĥ, ŵ)− L̂S(ĥ, ŵ)] + [L̂S(ĥ, ŵ)− L̂S(h?, ŵ)] (E.1)
+ [L̂S(h?, ŵ)− L̂S(h?, w)] + [L̂S(h?, w)− LS(h?, w)]. (E.2)

We know that L̂S(ĥ, ŵ) ≤ L̂S(h?, ŵ), so

LS(ĥ, ŵ)− LS(h?, w) ≤ |LS(ĥ, ŵ)− L̂S(ĥ, ŵ)|+ |L̂S(h?, w)− LS(h?, w)|
+ L̂S(h?, ŵ)− L̂S(h?, w)
≤ sup

h,w
|LS(h,w)− L̂S(h,w)|+ |L̂S(h?, w)− LS(h?, w)|

+ L̂S(h?, ŵ)− L̂S(h?, w).

We first bound suph,w |LS(h,w) − L̂S(h,w)|. For notation, we rewrite LS(h,w) as
LS(h, g), where w(x,m) = g(x,m)

1−g(x,m) and g belongs to some function class G. Then,
using Theorem 3.3 from [46], we get that suph,w |LS(h,w) − L̂S(h,w)| ≤ 2RnSR(`S ◦
{H,G}) +

√
log 1/δ
2nSR with probability at least 1− δ, where `S ◦ {H,G} is defined as satisfying

`S(h(x,m), g(x,m), y) = −y log h(x,m)− (1− y) g(x,m)
1−g(x,m) log(1−h(x,m)) for h ∈ H, g ∈ G.

Next, we bound |L̂S(h?, w)−LS(h?, w)|. Let W = maxw(x,m) <∞ be the maximum
density ratio, and let B1 = maxx,m{− log h?(x,m),− log(1 − h?(x,m))}. Assume that
B1 < ∞. We can apply standard concentration inequalities here (Hoeffding) to get that
|L̂S(h?, w)− LS(h?, w)| ≤WB1

√
log 2/δ
2nSR with probability at least 1− δ.

Finally, we bound L̂S(h?, ŵ)− L̂S(h?, w). We can write L̂S(h?, ŵ)− L̂S(h?, w) as

L̂S(h?, ŵ)− L̂S(h?, w) = 1
nSR

∑
x∈Dsim

SR

(ŵ(x,m)− w(x,m)) · (− log(1− h?(x,m))). (E.3)
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Define η = max(− log(1 − h?(x,m))) ≥ 0 for x,m ∈ Dsim
SR , which is small as long as

h?(x,m) sufficiently classifies x and is hence a property of how separated the reweighted
simulation and true data is. Then,

|L̂S(h?, ŵ)− L̂S(h?, w)| ≤ η

nSR

∑
x,m∈Dsim

SR

|ŵ(x,m)− w(x,m)|. (E.4)

Recall that ŵ(x,m) = ĝ(x,m)
1−ĝ(x,m) and w(x,m) = g?(x,m)

1−g?(x,m) where g?(x,m) = Pr(z =
1|x,m), so |ŵ(x,m) − w(x,m)| = |ĝ(x,m)−g?(x,m)|

(1−ĝ(x,m))(1−g?(x,m)) . This denominator is greater than
(1− ĝmax)(1− g?max). Then,

|L̂S(h?, ŵ)− L̂S(h?, w)| ≤ η

(1− ĝmax)(1− g?max)nSR
∑

x,m∈Dsim
SR

|ĝ(x,m)− g?(x,m)|. (E.5)

We now look at the classifier for training g. The per-point cross entropy loss for
(x,m, z) is `(g(x,m), z) = − log g(x,m) for z = 1 and − log(1−g(x,m)) for z = 0. WLOG,
assume for some x and m, g?(x,m) > ĝ(x,m). Then |`(g?(x,m), 1) − `(ĝ(x,m), 1)| =
log g?(x,m)

ĝ(x,m) = log
(
1 +

(
g?(x,m)
ĝ(x,m) − 1

))
≥ g?(x,m)/ĝ(x,m)−1

g?(x,m)/ĝ(x,m) = g?(x,m)−ĝ(x,m)
g?(x,m) ≥ |g?(x,m) −

ĝ(x,m)| and |`(g?(x,m), 0) − `(ĝ(x,m), 0)| = log 1−ĝ(x,m)
1−g?(x,m) = log

(
1 +

(
1−ĝ(x,m)
1−g?(x,m) − 1

))
≥

(1−ĝ(x,m))/(1−g?(x,m))−1
(1−ĝ(x,m))/(1−g?(x,m)) = g?(x,m)−ĝ(x,m)

1−ĝ(x,m) ≥ |g?(x,m)− ĝ(x,m)|, where we use the inequality
log(1 + x) ≥ x

1+x for x > −1. Therefore, with probability 1− δ,

|L̂S(h?, ŵ)− L̂S(h?, w)| ≤ η

(1− ĝmax)(1− g?max)nSR
∑

x,m∈SR
|`(ĝ(x,m), z)− `(g?(x,m), z)|

≤ ηnSRsim
(1− ĝmax)(1− g?max)nSR

(
E [|`(ĝ(x,m), z)− `(g?(x,m), z)|] +B2

√
log 2/δ
2nSRsim

)
,

where B2 = maxx,y{`(ĝ(x,m), z), `(g?(x,m), z)} = − log(min{ĝmin, g
?
min}). We assume

that B2 is finite, so there exists a constant c such that

|L̂S(h?, ŵ)− L̂S(h?, w)| ≤ ηnSRsim
(1− ĝmax)(1− g?max)nSR

(
c|L(ĝ)− L(g?)|+B2

√
log 2/δ
2nSRsim

)
,

where L(g) = Ex,m∈SR [`(g(x,m), z)]. Since g?(x,m) is Bayes optimal, |L(ĝ) − L(g?)| =
L(ĝ)−L(g?) = L(ĝ)− L̂(ĝ) + L̂(ĝ)− L̂(g?) + L̂(g?)−L(g?) ≤ 2 supg∈G |L(g)− L̂(g)|. From
Theorem 3.3 in [46], this is bounded by 2RnSB (` ◦ G) +

√
log 1/δ
2nSB with probability at least

1− δ. Then, applying a union bound, with probability 1− δ, we have

|L̂S(h?, ŵ)− L̂S(h?, w)|

≤ ηnSRsim
(1− ĝmax)(1− g?max)nSR

(
4cRnSB (` ◦ G) + 2c

√
log 2/δ
2nSB +B2

√
log 4/δ
2nSRsim

)
.
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Figure 7. Distribution of each feature (background vs anomaly) for the Multi-CWoLa experi-
ments. The first three features are used in Multi-CWoLa as resonant features while the latter
two are used as discriminative features. The first feature (invariant mass of the dijet) is used as the
resonant feature in CWoLa.

Putting everything together with another union bound, with probability 1 − δ, the
generalization error is at most

LS(ĥ, ŵ)−LS(h?,w)≤ 2RnSR(`S ◦{H,G})+(1+WB1)

√
log8/δ
2nSR (E.6)

+ ηnSRsim
(1− ĝmax)(1−g?max)nSR

(
4cRnSB (`◦G)+2c

√
log4/δ
2nSB +B2

√
log8/δ
2nSRsim

)
, (E.7)

where we combine like terms
√

log(4/δ)
2nSR

and WB1

√
log(8/δ)

2nSR
into being upper bounded by

(1 +WB1)
√

log(8/δ)
2nSR

.

F Experiment details

F.1 Multi-CWoLa experiments

For the Multi-CWoLa experiment, we used the anomaly and simulation data from the
Pythia 8 simulations in the LHC Olympics Dataset to create an unlabeled dataset we
want to perform anomaly detection on [3]. We have k = 3, and construct Mi(m) based
on the thresholds [[3.3, 3.7], [0.09, 0.13], [0.3, 0.35]] on the first three features. For standard
CWoLa, only the first feature is regarded as the resonant feature, and it is thresholded
with the interval [3.3, 3.7] (see figure 7). We constructed training datasets of varying sizes
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Method SALAD 1 SALAD 2 SALAD-Switch Multi-SALAD
AUC 87.5± 9.7 72.4± 18.9 93.8± 2.1 94.6± 0.9

Table 3. AUC for imbalanced classifier, averaged over 5 runs.

with class balance Pr(y = 1) = 0.149. We used one test dataset with 65755 randomly
sampled anomaly points and 161658 randomly sampled background points.

All methods were trained using scikit-learn’s MLPClassifier with max_iter=5000. For
Multi-CWoLa’s weak supervision step, we learn the parameters of the graphical model
using SGD and PyTorch [47] with 30000 steps and learning rate = 1e − 6. We do not
assume the class balance Pr(y = 1) = 0.149 is known, and instead set a prior estimate
p̂(y = 1) = 0.25 to be used in the algorithm.

F.2 Multi-SALAD experiments

Setup. We use MLPs from Keras [48], each with 3 hidden layers of dimension 32, ReLu
activation, and trained with cross-entropy loss and the Adam optimizer. We train for 50
epochs, batch size 200, and default parameters otherwise. Finally, we evaluate our approach
on a new test set containing 200000 background points and 200000 anomaly points. This
test set is used to produce the signal efficiency to rejection rate. All experiments were run
on a personal laptop.

Additional results. In figure 8, we show our results on individual runs. This is because
computing the confidence intervals of these curves averaged across the 10 random runs is
too noisy due to the magnitude of the reciprocal 1/FPR.

Unbalanced data. When the simulation and true dataset are imbalanced, we adjust
our reweighting by q(z=1)

q(z=0) in (C.1), the ratio of real to simulated data. To examine our
approach in this setting, we use our synthetic experiment with 1000 points from the true
background, 50 points that are anomalies, and 5000 points each for Dsim

1 and Dsim
2 . Note

that the ratio of anomalies in the true data is the same as our original setting, but we
have increased the amount of simulation data by 5 times and adjust weights by 1

5 . Table 3
reports results over 5 random runs.
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Figure 8. Results on individual runs.
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