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1 Introduction

Previous studies of entanglement in field theory mostly address entanglement with respect
to partitions of the base space [1, 2]. Recall that in quantum field theory we speak of both
the base space and the target space. For instance, in standard d+ 1 scalar field theory, the
field φ(~x) take values in the target space R. The base space Rd parametrizes instead which
degree of freedom we are speaking of: it labels the ~x ∈ Rd of φ(~x). Colloquially, we refer
to the base space as the space the field “lives on”. To calculate the entanglement entropy
of a spatial partition, we partition the base space Rd; see figure 1.

– 1 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
1

Figure 1. Distinction between partitions of the base space (left) versus target space (right). We
illustrate the case of 2+1d scalar field theory for concreteness. At every point of the base space
(∼= R2) labeled by ~x, the local degree of freedom takes values in the target space (∼= R) with
coordinate φ. Previous studies of entanglement entropy have focused on subregions of the base
space where the values of ~x are restricted. Instead, we consider restrictions on the values of the
field φ.

Meanwhile, in promising theories of quantum gravity, a “spatial” partition may not be
associated with a partition of the base space, but rather a partition of the target space.1 For
example, in first-quantized string theory, a spacetime subregion corresponds to a restriction
of the embedding coordinates of the string. It is thus a partition of the target space, not
a partition of the base worldsheet.

Likewise, Matrix theory is a 0 + 1 dimensional theory that describes, in a particular
frame, quantum gravity in an 11-dimensional spacetime [7]. In this case, the “base space”
is nothing more than a point. Clearly, it is senseless to partition it. Instead, subregions of
the physical spacetime correspond to a subspace of the moduli space of D0 branes [8, 9].

Motivated by these examples, the main goal of this paper is to define reduced density
matrices and entanglement entropies of states with respect to subregions in target space.
The first challenge is that target space partitions do not correspond to tensor factorizations
of the Hilbert space, whereas the usual framework for entanglement entropy hinges upon
such a factorization. We therefore leverage the powerful algebraic formalism, which defines
a reduced density matrix relative to a subalgebra of observables, and treats tensor factor-
izations as a special case. This algebraic framework is by no means new, though it has only
recently gained widespread traction in the high energy community via the work of [10–12],
which offer excellent introductions to the subject. Our task therefore reduces to finding
which subalgebra most accurately reflects an agent having access only to observables con-
fined to the spatial subregion of interest. We then define target space entanglement entropy
as the entropy of the state restricted to this subalgebra. This circle of ideas is summarized
in figure 2.

1An interesting, related proposal is that of “entwinement”, which also seeks to quantify the amount of
entanglement between “internal”, non-geometric degrees of freedom. We refer the reader to [3–6] for further
details.
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Figure 2. (Top) For many of our most promising theories of quantum gravity, such as worldsheet
string theory or the BFSS matrix quantum mechanics, the emergent physical spacetime of interest
is encoded in the target space of the theory. (Bottom) To each subregion of the target space, we
associate a particular subalgebra of observables A. The reduced density matrix ρA is defined via
restriction of the state to the subalgebra A. We define the target space entanglement entropy as
the entropy of ρA.

A single particle on a line furnishes the simplest toy model. We may think of the
position of the particle x(t) as 0+1-dimensional QFT. The base space is a single point,
and the target space R is the physical space the particle is moving in. To define a notion
of spatial entanglement, we must partition the “target space”. First-quantized many body
quantum mechanics provides the ideal testing ground for our proposed definition because
we have a firm grasp on its second-quantized formulation — plain old QFT — where we
understand entanglement entropy well. Making a similar comparison in the string theory
context would require the intricacies of string field theory (see [13] for recent work directly
in that context).

In the non-relativistic case, our definition of entanglement entropy for the above
quantum-mechanical system agrees with the standard field theory definition. For rela-
tivistic quantum field theory, we find two ostensibly natural notions of locality and discuss
their relative merits. An explicit computation for one-particle excited states shows to what
extent the entanglement entropy associated to these different “spatial” partitionings can
be compared.

Further, we stress our framework is by no means limited to quantum mechanics. We
generalize our construction to partitions of the target spaces of arbitrary sigma models and
interacting field theories. We compute the entanglement entropy for a half (target) space
partition in the simplest example, a massive scalar field on two spatial lattice sites.

We conclude by discussing the important role played by reparametrization invariance
in theories such as worldsheet string theory and point out the limitations of our framework.
We then apply the lessons learned in section 5.2 to the case of 2d string theory and the
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“baby cousin” of the AdS/CFT correspondence, the holographic c = 1 matrix model.
There, we face multiple notions of emergent locality [9], and we sketch the possible role of
different factorizations of the Hilbert space.

2 Preview: particle on a line & the need for subalgebras

To handle partitions of target space, we will need the algebraic framework for entanglement
entropy. However, let us motivate it further by exploring in more detail the example of a
particle on a line.

The Hilbert space L2(R) = span{|x〉 : x ∈ R} may also be considered as the Hilbert
space of a 0+1-dimensional QFT, where the base space is a single point, and L2(R) =
span{|φ〉 : φ ∈ R} is the space of field values φ at that point. From the latter perspective,
we will call R the “target space”. Alternatively, from the perspective of quantum mechanics
on the line, R is simply the space in which the particle moves.

We can partition the target space R into a region A and its complement Ā; for instance,
we might choose half-spaces A ≡ {x : x ≤ x0} and Ā ≡ {x : x > x0}. This bi-partition
induces a decomposition of the Hilbert space into a direct sum,

H = L2(A ∪ Ā) = VA ⊕ VĀ (2.1)

where

VA ≡ span{|x〉 : x ∈ A}, (2.2)
VĀ ≡ span{|x〉 : x ∈ Ā}.

We emphasize that this decomposition is not a tensor factorization. Therefore one
might wonder how to define a subsystem, a partial trace and reduced density matrix, or an
entanglement entropy. To proceed, we thus review a more general notion of subsystems,
based on subalgebras rather than tensor factors.

3 Review of the algebraic definition of entanglement entropy

Traditionally, one defines the entanglement of a state |ψ〉 ∈ H relative to some bi-partition
of the Hilbert space H = HA ⊗ HĀ, where we have divided the degrees of freedom into
subsystem A and its complement Ā. We will consider pure states on H, in which case the
entanglement can be quantified by the von Neumann entanglement entropy of the reduced
state ρA = TrĀ(|ψ〉〈ψ|).

There are many ways to factorize a Hilbert space H as H = HA ⊗ HĀ, and different
factorizations may be appropriate for different purposes. Given a factorization, it is natural
to consider the algebra A of operators local to A, i.e. operators of the form OA ⊗ 1Ā.
These operators represent the observables and operations available to an observer confined
to subsystem A.

Even without a factorization of the Hilbert space, we can still choose a subalgebra of
“accessible” observables A and use this to define the subsystem A. We take an algebra
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A of operators on a Hilbert space H to be a subset A ⊂ B(H) that contains the identity
and is closed under addition, multiplication, scaling, and Hermitian conjugation, where
B(H) denotes the space of all bounded linear operators.2 By identifying any subalgebra
A ⊂ B(H) with an abstract “subsystem”, we generalize the notion of a subsystem beyond
tensor factors.

We review a few key facts about algebras of operators. For simplicity, in this section we
will treat all Hilbert spaces as finite-dimensional, and we will deal with finite-dimensional
“von Neumann algebras”, i.e. those satisfying the above-listed properties.3 The most im-
portant theorem is that given any algebra A ⊂ B(H), there exists a decomposition of the
Hilbert space as a direct sum of tensor products,

H =
⊕
i

HA,i ⊗HĀ,i (3.1)

such that the operators OA ∈ A are precisely those which take the form

OA =
∑
i

OA,i ⊗ 1HĀ,i (3.2)

for some OA,i ∈ B(HA,i). This follows from a pedestrian version of the Artin-Wedderburn
theorem. Schematically, we can write

A =
⊕
i

B(HA,i)⊗ 1HĀ,i . (3.3)

In the case that the above sum has only one term, A is called a “factor”, and indeed
the Hilbert space tensor factorizes as HA⊗HĀ. In infinite dimensions, the existence of this
tensor factorization hinges upon the “Type” of algebra; see section 7 for further details.

Given an algebra A ⊂ B(H), an important related algebra is the commutant A′ ⊂
B(H), the set of operators that commute with all the operators on A. Given the above
decomposition (3.1), Schur’s lemma allows us to easily write down the commutant, which
takes the form

A′ =
⊕
i

1HA,i ⊗B(HĀ,i). (3.4)

We can also define the center Z(A) ≡ A∩A′, the set of operators on A that commute with
all operators on A. The center may be expressed as

Z(A) = span{Πi}i (3.5)

where Πi are the projectors onto the direct sum sectors HA,i ⊗HĀ,i. In practice, we often
start out with A, then determine the minimal projectors spanning its center. This in turn

2Though we often refer to an algebra as an “algebra of observables”, not all of the elements are Hermitian.
3There are additional subtleties in infinite dimensions that we will not dwell on, though the facts pre-

sented in this section hold in a similar form for all Type I von Neumann algebras; see e.g. [14, theorem 1.31].
All the algebras explicitly treated in this paper may be formalized as Type I von Neumann algebras, but
the formalization is not crucial to the conceptual development. See section 7 for more discussion of infinite
dimensions.
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allows us to actually find the block decomposition of the Hilbert space laid out in eq. (3.1).
Note that when there is only one sector, i.e. A is a factor, the center contains only multiples
of the identity.

With these ingredients in hand, we can easily define the reduced density matrix with
respect to a subalgebra. Say we have a state ρ and want to define a reduced density state
ρA with respect to A. First recall that for an ordinary tensor factorization H = HA⊗HĀ,
the reduced state ρA can be defined as the unique state on HA such that Tr(ρAOA) =
Tr(ρOA) for all OA ∈ B(H). With that definition, one can show ρA is given by the familiar
partial trace.

Analogously, for the case of an algebra, we will define ρA to be the unique element of
A such that

Tr(ρAOA) = Tr(ρOA) (3.6)

for all OA ∈ A. Given the decomposition of eq. (3.1), it turns out one can easily express
ρA by using partial traces on each sector. Let

pi ≡ Tr(ΠiρΠi), (3.7)

ρi ≡
1
pi

ΠiρΠi. (3.8)

Then one can show ρA must be given by

ρA =
∑
i

pi TrĀ,i(ρi)⊗
1HĀ,i

dim(HĀ,i)
, (3.9)

where ρi is a state living on the i’th sector HA,i ⊗HĀ,i. The partial traces on each sector
are well-defined because each sector factorizes individually.

To define the entanglement entropy of ρ, we further consider the state

ρ̃A =
∑
i

pi TrĀ,i(ρi) (3.10)

on the Hilbert space HA ≡
⊕

iHA,i, where we have simply stripped off the identity fac-
tors. Then we define the entanglement entropy of ρ with respect to A as the ordinary
von Neumann entropy of the state ρ̃A on the Hilbert space HA.4 That is, we define

S(ρ,A) ≡ S(ρ̃A) (3.11)

= S

(∑
i

pi TrĀ,i(ρi)
)

(3.12)

= −
∑
i

pi log(pi) +
∑
i

piS(ρi) (3.13)

≡ S(ρ,A)classical + S(ρ,A)quantum. (3.14)
4This definition differs from the naive definition TrH (ρA log ρA) by the term ∆S =

∑
i
pi log

(
dim(HĀ,i)

)
.

To reproduce the standard entropy for the case of a factor, we must use the definition outlined in the main
text. See appendix A.7.2 of [11] or more broadly [15]. To avoid any confusion: throughout the text, when
we refer to the von Neumann entropy of ρA, we really mean S(ρ,A), or equivalently S(ρ̃A).
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We find that the entanglement entropy breaks into two pieces, a “classical” piece and
a “quantum” piece. S(ρ,A)classical is the Shannon entropy of the classical probability
distribution {pi} over the different blocks (often referred to as “superselection sectors”).
S(ρ,A)quantum on the other hand is the weighted sum of the quantum von Neumann entropy
of the reduced density matrices ρi within each block [10, 16].

Another simple way to define S(ρ,A) is to embed H into an extended Hilbert space
Hext which does have a tensor factorization. In particular, we define

HA ≡
⊕
i

HA,i, (3.15)

HĀ ≡
⊕
i

HĀ,i,

so that we can define the extended Hilbert space

Hext ≡ HA ⊗HĀ
=
⊕
i,j

HA,i ⊗HĀ,j

⊃
⊕
i

HA,i ⊗HĀ,i = H. (3.16)

Therefore we can also view the state ρ on H as a state ρext on the extended Hilbert space
Hext. Then S(ρ,A) is then precisely the “ordinary” entanglement entropy obtained by
taking the partial trace of ρ over HĀ and then computing the von Neumann entropy of
this reduced density matrix,5 i.e.

S(ρ,A) = TrHA (ρA log ρA) (3.17)
with ρA ≡ TrHĀ (ρext)

In the case that A corresponds to the set of operators on a tensor factor, the quantity
S(ρ,A) agrees with the standard von Neumann entanglement entropy. However, beyond
agreement with the “ordinary” case, what motivates this definition of S(ρ,A)? To answer
that question, we might first ask the motivation for ordinary von Neumann entanglement
entropy. Besides proving a useful tool for analyzing field theories and many-body physics,
the entanglement entropy affords several operational or information-theoretic interpreta-
tions. For instance, the von Neumann entanglement entropy between subsystems A and
Ā also equals the “distillable entanglement”, the number of Bell pairs that can be distilled
by observers on A and Ā using only local operations on A, Ā and classical communication.
The entanglement entropy S(ρ,A) with respect to an algebra A affords an analogous inter-
pretation as distillable entanglement, where observers on A and Ā are restricted to using
operations associated to A and A′, respectively. However, it turns out the distillable en-
tanglement is equal to the quantum piece S(ρ,A)quantum alone [17–19]. See equation (4.27)
for an elaboration of the operational interpretation.

5Readers familiar with the literature on entanglement entropy in gauge theory might object that the
“extended Hilbert space” and algebraic definitions famously disagree. However, the extended Hilbert space
construction in gauge theory differs from the one in eq. (3.16).
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4 Algebraic entanglement entropy for first-quantized systems

We first apply the algebraic definition of entanglement entropy to our example of a particle
on a line, spelling out the details on this first pass. We then proceed more generally to the
first-quantized quantum mechanics of N particles. Later in section 5.1, we will confirm that
our framework gives the same spatial entanglement entropy had we instead embedded the
first-quantized, N -particle Hilbert space into the N -particle sector of a second-quantized
Fock space, and defined the entanglement entropy using the tensor factorization associated
to the Fock space. Nonetheless, we develop the algebraic approach as a general tool,
applicable even when no obvious second-quantized theory exists.

4.1 Single-particle warm-up

We return to the particle on a line, introduced in section 2. The Hilbert space is simply
H = L2(R), and we can think of R alternately as the space on which the particle lives,
or the target space of a 0+1-dimensional QFT. For this section, we primarily adopt the
language of the former.

Partitioning the line R into a region A ⊂ R and its complement Ā, we obtain the
decomposition of eq. (2.1),

H = VA ⊕ VĀ, (4.1)

where VA = span{|x〉 : x ∈ A} and likewise VĀ = span{|x〉 : x ∈ Ā}.
Now we choose an algebra A ⊂ B(H) to associate to the region A. We propose the

following algebra,

A =
〈
{|x〉 〈x′| : x, x′ ∈ A} ∪ 1H

〉
. (4.2)

The angular brackets denote “the algebra generated by”, i.e. the algebra of all operators
generated by addition, multiplication, and scaling of the operators within the brackets. This
equation should be understood schematically, because |x〉 is not a normalizable state in the
Hilbert space, and therefore |x〉〈x′| is not a proper operator. While we use the physicist’s
style throughout for simplicity, the proper mathematical formulation is unproblematic; we
make some further comments in section 7.

To physically motivate this choice of A, note the Hermitian operators in A correspond
to what observers situated in the region A of the line could measure. Including the identity
is crucial. Physically, it corresponds to the fact that an observer should be able to act
trivially on the system.

It will also be useful to define the projector

ΠA =
∫
x∈A

dx |x〉 〈x| , (4.3)

which acts on the subspace VA as the identity 1A. We denote the orthogonal complement
as ΠĀ = 1Ā.

Written in the position basis, with the basis partitioned into elements in A and Ā, all
operators O ∈ A take the following form

O =
(
OA 0
0 c01Ā

)
(4.4)
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where c0 is an arbitrary constant and

OA = ΠAOΠA

=
∫
x,x′∈A

dx dx′O(x, x′) |x〉 〈x′| .

To analyze the structure of this algebra, we compute the commutant A′, again the
set of operators that commute with all those in A. By Schur’s lemma, A′ is given by all
operators of the form

O′ =
(
c11A 0

0 OĀ

)
(4.5)

with c1 some other arbitrary constant. Thus we could also denote A′ as the algebra Ā
corresponding to the complementary region Ā, with analogous definition

A′ = Ā ≡
〈
{|x〉 〈x′| : x, x′ ∈ Ā} ∪ 1H

〉
. (4.6)

Hence the center Z = A ∩A′ is given by

Z =
〈∫

x∈A
dx |x〉 〈x| ∪ 1H

〉
= span{ΠA,ΠĀ}. (4.7)

The center being non-trivial simply reflects the fact that A does not induce a simple tensor
factorization.

As guaranteed by the theorem of eq. (3.1), the algebra A induces a decomposition of the
Hilbert space. The decomposition is apparent from the form of A and A′ in eqs. (4.4), (4.5)
above. We have

H =
⊕
i=0,1

HA,i ⊗HĀ,i. (4.8)

where

HA,0 = C (4.9)
HĀ,0 = VĀ = span{|x〉 : x ∈ Ā} (4.10)

HA,1 = VA = span{|x〉 : x ∈ A} (4.11)
HĀ,1 = C (4.12)

so that

H = (C⊗ VĀ)⊕ (VA ⊗ C) (4.13)
= VA ⊕ VĀ, (4.14)

recovering eq. (2.1).
The decomposition here is slightly trivial, because the Hilbert spaces HA,0 and HĀ,1

happen to be the trivial space C. Each sector corresponds to the number of particles in
A. For example, HA,1 ⊗HĀ,1 is the sector where the particle is within A. It is the tensor
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product of HA,1, the space of wavefunctions on A, with the trivial space HĀ,1, whose single
ray represents the state of Ā with zero particles. Likewise, we can think of the sector
HA,0 ⊗HĀ,0 as the sector where the particle is within Ā.

Now we compute the reduced density matrix of a state with respect to A. Let ρ =
|ψ〉〈ψ| be a general pure state for

|ψ〉 ≡
∫
dxψ(x)|x〉 =

∫
x∈A

dxψ(x)|x〉+
∫
x∈Ā

dxψ(x)|x〉 (4.15)

≡ |ψA〉+ |ψĀ〉. (4.16)

We compute the reduced density matrix ρA using eq. (3.9), taking note of the decomposition
in eq. (4.8). First we project the density matrix ρ into each of the two sectors, yielding
|ψA〉〈ψA| and |ψĀ〉〈ψĀ|. Following eq. (3.7), define

p0 ≡ Tr(|ψA〉〈ψA|) = 〈ψA|ψA〉, (4.17)
p1 ≡ Tr(|ψĀ〉〈ψĀ|) = 〈ψĀ|ψĀ〉, (4.18)

and

ρ0 = 1
p0
|ψĀ〉〈ψĀ|, (4.19)

ρ1 = 1
p1
|ψA〉〈ψA|. (4.20)

Finally, plugging these into equations (3.9) and (3.11), we obtain

S(ρ,A) = −p0 log(p0)− p1 log(p1), (4.21)

and we find the entanglement entropy has a contribution only from the classical term. This
classical piece is the Shannon entropy associated to the probabilities of the single particle
appearing in A or Ā. In the multi-particle case, we will see that there is generically a
quantum piece as well.

4.2 General target spaces

Nothing in our construction relied on properties of the simple target line R. Indeed, we may
consider a particle moving on some general d-dimensional target space T , with coordinates
~x. The Hilbert space is given by L2(T ) and admits the same decomposition H = VA ⊕ VĀ
where A ∪ Ā = T . We can take A to as complicated a region as we would like. We define
the relevant subalgebra as

A =
〈
{|~x 〉 〈~x ′| : ~x, ~x ′ ∈ A} ∪ 1H

〉
, (4.22)

which will again have non-trivial center.
All subsequent steps follow through straightforwardly.
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4.3 Multiple indistinguishable particles

We consider now the general set-up of N particles propagating on a general target space T ,
for instance T = Rd. A large literature exists on the entanglement of identical particles [20],
including e.g. an algebraic approach in [21]. However, here we will study the entanglement
with respect to partitions of T , not the set of particles.

4.3.1 Bosons

We first study bosons. Denoting the single particle Hilbert space by H = L2(T ), the
physical Hilbert space is the symmetric quotient

HN ≡ Sym(H⊗N ) ≡ H
⊗N

SN
(4.23)

where the SN quotient arises from the indistinguishability of the N particles. That is, HN
consists of permutation-symmetric wavefunctions ψ(~x1, . . . , ~xN ).

Given a partition of the target space T into complementary regions A, Ā, we want to
associate a subalgebra of observables A ⊂ B(HN ) to A.

We propose the following algebra,

A ≡
〈
{PSN

(
|~x 〉1 〈~x

′|1 ⊗ 12 ⊗ · · · ⊗ 1N
)
PSN : ~x, ~x ′ ∈ A} ∪ 1HN

〉
, (4.24)

where PSN is the projection onto the symmetric subspace of H⊗N ,

PSN ≡
1
N!

∑
σ∈SN

Pσ, (4.25)

and where Pσ permutes the subsystems according to the permutation σ ∈ SN . The ap-
pearance of PSN in eq. (4.24) is crucial for generating all multi-particle operators. The
subscripts on the kets are particle labels, denoting which copy of H within H⊗N the oper-
ator acts on. For instance, unpacking the notation for the case of N = 2, we have

PS2

(
|~x 〉1 〈~x

′|1 ⊗ 12
)
PS2 = 1

2!
(
|~x 〉1 〈~x

′|1 ⊗ 12 + 11 ⊗ |~x 〉2 〈~x
′|2
)
. (4.26)

To motivate this algebra operationally, note that in ordinary quantum mechanics, if an
external apparatus X situated in region A were coupled to the system of identical particles
HN in a way that respected permutation symmetry and particle-number conservation, the
apparatus X could only be coupled with a Hamiltonian of the form

Hint =
∑
i

OXi ⊗OAi (4.27)

for operators OXi ∈ B(X ) and OAi ∈ A. (The fact that interactions must take this form
may be more obvious from the form of the algebra in eq. (4.28).) If observers on A and Ā
are allowed to perform operations only using such apparatuses, the amount of entanglement
distillable through local operations and classical communication (LOCC) will be equal to
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the (quantum piece of the) entanglement entropy with respect to A. This operational
interpretation follows as a corollary to the discussions in [17–19].

To better understand the above algebra, note that we can decompose

HN ≡
H⊗N

SN
= (VA ⊕ VĀ)⊗N

SN

=
N⊕
k=0

V⊗kA
Sk
⊗
V⊗N−kk
Ā

SN−k
. (4.28)

where we define V0
A = V0

Ā
= C. The sectors indexed by k in the sum correspond to states

with k particles in A and N − k particles in Ā. It turns out that when our algebra A
of eq. (4.24) above is decomposed in the general way of eq. (3.1), we obtain precisely the
above decomposition. That is, schematically, we have

A =
N⊕
k=0

L

(
V⊗kA
Sk

)
⊗ 1Sym(V⊗N−k

Ā
). (4.29)

To justify the above using the definition in eq. (4.24), see appendix A. The above demon-
strates the algebra decomposes according to the particle number “superselection” sectors
reviewed in [20].

We may now write down the reduced density matrix. Let Πk be the projector onto
the k’th sector in the decomposition of eq. (4.28); again, for an explicit expression, see
appendix A. Following the definition for the reduced density matrix in eq. (3.9), we have

ρA =
N∑
k=0

pk TrSym(V⊗N−k
Ā

) ρk ⊗
1Sym(V⊗N−k

Ā
)

dim(Sym(V⊗N−k
Ā

))
(4.30)

where
pk ≡ TrHN (ΠkρΠk) (4.31)

and
ρk ≡

1
pk

(ΠkρΠk) (4.32)

In particular, for a pure state, we have

pk =
(
N

k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN |ψ(x1, . . . , xN )|2, (4.33)

which is the probability of finding k particles in A.
We can immediately compute the classical part of the entanglement entropy,

∑
k−pk

· log(pk), corresponding to the Shannon entropy for finding varying numbers of particles
in A and Ā. Meanwhile, unlike for the case of a single particle, here the blocks ρk of the
density matrix are generically entangled between A and Ā, so the quantum term of the
entanglement entropy is nonzero.
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4.3.2 Fermions

All the machinery we have built generalizes quite simply to fermions. In that case, we need
to consider the algebra

AF =
〈
{PAsymN

(
|~x 〉1 〈~x

′|1 ⊗ 12 ⊗ · · · ⊗ 1N
)
PAsymN

: ~x, ~x ′ ∈ A} ∪ 1HN
〉

(4.34)

where PAsymN
is the projector onto the anti-symmetric subspace of H⊗N , defined via

PasymN
= 1
N !

∑
σ∈SN

(−1)σPσ. (4.35)

5 Target space entanglement entropy using second quantization

5.1 Comparison with embedding into second-quantized theory

To define entanglement in a first-quantized theory of many particles, rather than use an
algebraic definition, we could also translate to the second-quantized picture where a natural
tensor factorization does exist. Here, we consider the latter approach and confirm that it
agrees with the calculations of the previous sections.

In the second-quantized approach, we consider the N -particle Hilbert space

HN ≡ Sym(H⊗N ) (5.1)

as a subspace of the Fock space

HF ≡
∞⊕
N=0

Sym(H⊗N ). (5.2)

Let us rephrase the familiar process of second quantization as the process whereby, given
a basis of the single-particle Hilbert space H, we induce a tensor factorization of the Fock
space HF. For instance, choosing the position basis of H, we write the Fock space as

HF =
⊗
~x

H~x (5.3)

where H~x = span{|0〉~x, |1〉~x, . . . } is the countably infinite-dimensional Hilbert space whose
basis states |n〉~x indicate n particles occupying position ~x.6

For concreteness, using the factorization of eq. (5.3), the zero-particle state in the Fock
space looks like

⊗
~x |0〉~x ∈ HF, and the single-particle state |~y 〉 ∈ H1 embeds into the Fock

space as
(⊗

~x 6=~y |0〉~x
)
⊗ |1〉~y ∈ HF.

More generally, by defining raising and lower operators a†~x, a~x for each factor H~x such

that |n〉~x = a†
~x√
n! |0〉~x, we can neatly rewrite the embedding of the state

|ψ〉 =
∫
d~x1 . . . d~xNψ(~x1, . . . , ~xN ) |x1〉 ⊗ · · · ⊗ |xN 〉 ∈ HN (5.4)

6The above tensor product is purely formal; it’s a continuously indexed tensor product. However, if we
chose a countable basis for the single-particle Hilbert space H, rather than the naive basis of position kets,
the above tensor product would be countably indexed, so that it could be made rigorous.

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
1

as a state in the Fock space

|ψ〉F =
∫
d~x1 . . . d~xNψ(~x1, . . . , ~xN )a†~x1

. . . a†~xN (⊗~x |0〉~x) ∈ HF . (5.5)

The “target space” of the first-quantized theory thus becomes the base space of the
second-quantized theory. The partition of the target space in the first-quantized theory
becomes an ordinary partition of the base space for the second-quantized theory. Given
a region A, we want to check that the algebraic entanglement entropy S(ρ,A) of a pure
state ρ living on HN matches the ordinary entanglement entropy of ρ when viewed as a
state on HF.

For a region A, we decompose the single-particle Hilbert space as

H = VA ⊕ VĀ. (5.6)

Then we can define a Fock space for VA,

(VA)F ≡
∞⊕
N=0

Sym(V⊗NA ) (5.7)

=
⊗
~x∈A
H~x,

and likewise for Ā.
The entire Fock space therefore factorizes as

HF = (VA)F ⊗ (VĀ)F (5.8)

=
( ∞⊕
N=0

Sym(V⊗NA )
)
⊗
( ∞⊕
N=0

Sym(V⊗N
Ā

)
)

(5.9)

=
∞⊕

N,M=0
Sym(V⊗NA )⊗ Sym(V⊗M

Ā
) (5.10)

⊃
N⊕
k=0

Sym(V⊗kA )⊗ Sym(V⊗N−k
Ā

) = HN . (5.11)

where the last line uses the decomposition of eq. (4.28). Thus we embed HN ⊂ HF in a
way neatly compatible with the factorization into A, Ā.

Combining the above embedding with eq. (4.29), which illustrates the structure of the
algebra A in the first-quantized picture, and recalling the definition of S(ρ,A) in either
eq. (3.11) or (3.17), we conclude that

S(ρ,A) = S(ρF) (5.12)

where ρF indicates the state ρ embedded in the Fock space HF. S(ρF) is the ordinary
von Neumann entanglement entropy with respect to the factorization of eq. (5.8), i.e.

S(ρF) = TrA (ρA log ρA) . (5.13)
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5.2 Competing notions of locality in relativistic field theories

In section 5.1 we saw that the algebraic entanglement entropy in the first-quantized setting
agrees with the ordinary entanglement entropy in the second-quantized setting. However,
we must take care with relativistic field theories, where we find two competing notions of
locality. While one appears quite natural from the first quantized perspective, the other
serves as the standard in most QFT calculations of entanglement entropy.

Consider the free scalar field in d + 1 dimensions. We will discuss two alternative
factorizations of the Hilbert space, given a spatial partition. Similar discussion appears
already in [22]. Afterwards, we return to the subject of algebraic entanglement entropy.

Let us start by reviewing the “ordinary” spatial factorization of a quantum field theory,
ignoring subtleties associated to the continuum [12]. While the content may be familiar,
we must be explicit to avoid confusion between the alternative factorizations.

The Hilbert space formally factorizes as

HQFT =
⊗
~x∈Rd

P~x (5.14)

where

P~x ≡ span{|φ〉~x : φ ∈ R} ∼= L2(R) (5.15)

is the Hilbert space associated to the field degree of freedom living at base point ~x. This
is the ordinary tensor factorization of a field theory. When free field theory is viewed as a
collection of coupled harmonic oscillators, P~x is the Hilbert space of the harmonic oscillator
“living” at ~x.

The field operator φ̂(~x) living at a point ~x is local to the tensor factor P~x, and it acts
on states φ|φ〉~x ∈ P~x as

φ̂(~x )|φ〉~x = φ|φ〉~x. (5.16)

Given a field configuration φ : Rd → R denoted φ(x), one can then define a field
ket |φ〉 ∈ HQFT as the simultaneous eigenstate of the field operators φ̂(~x) with respective
eigenvalues φ(x). That is,

|φ〉 ≡
⊗
~x∈Rd

|φ(x)〉~x. (5.17)

Finally, the wavefunctional Ψ[φ] expands an arbitrary state in HQFT in terms of field
kets |φ〉. Given a region A ⊂ Rd and complementary region Ā, we obtain a bipartite
factorization

HQFT = HQFT,A ⊗HQFT,Ā (5.18)

where

HQFT,A =
⊗
~x∈A
P~x (5.19)

and likewise for HQFT,Ā.
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We will call this factorization of the Hilbert space the “ordinary” or “field-based”
factorization. It is the usual factorization used to define entanglement in relativistic field
theories, wherein the vacuum exhibits an area law divergence in entanglement entropy.
(Again, for a continuum field theory, this ordinary factorization does not actually exist as
a tensor product [12].)

Meanwhile, we also have a “Fock-based” factorization of the Hilbert space, akin to the
factorization expressed in eq. (5.3). We utilize the Fock structure of the free theory,

HQFT ∼= HF ≡
∞⊕
N=0

Sym(H⊗N ), (5.20)

where H is the single-particle Hilbert space. How do we identify the two Hilbert spaces
above? We can use the momentum basis H = span{|~p 〉} for the single-particle space. Let
a~p, a

†
~p be the ladder operators that raise/lower the occupancy of the |~p 〉 state in the Fock

space. If we identify |~p〉 ∈ H with the single-particle momentum eigenstate in the free field
theory, |~p 〉 ∈ HQFT, then the ladder operators are related to the field operators in the
usual way (taking d+ 1 = 3 + 1 for simplicity)

φ̂(~x) =
∫

d3~p

(2π)3
1√
2E~p

(
a~pe

i~p·~x + a†~pe
−i~p·~x

)
, (5.21)

E~p ≡
√
~p 2 +m2, (5.22)

using the normalization conventions of [23].
If we instead choose the position basis for the single-particle Hilbert space H =

span{|~x 〉}, with the momentum and position basis related by the ordinary Fourier trans-
form, we can define the corresponding ladder operators that raise/lower the occupancy of
the |~x 〉 state in the Fock space. These are given by

a~x ≡
∫

d3~p

(2π)3 e
i~p·~xa~p, (5.23)

a†~x ≡
∫

d3~p

(2π)3 e
−i~p·~xa†~p, (5.24)

and these ladder operators are local to the factors of the tensor factorization in eq. (5.3),

HF =
⊗
~x

H~x, (5.25)

where the local Hilbert spaces H~x = span{|0〉~x, |1〉~x, . . . } have basis states |n〉~x that count
the number of particles occupying single-particle state ~x.

This defines the “Fock-based” factorization referred to above. The ladder operators
a~x†, a~x raise and lower the particle number of the free theory. In this factorization, the
vacuum is just the zero-particle state

⊗
~x |0〉~x. Note this is a product state! The vacuum is

unentangled with respect to the Fock factorization. Clearly, the Fock-based factorization
differs from the ordinary field-based factorization.
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To sharpen the distinction between the factorizations, let us define ladder operators
α~x, α

†
~x associated to the “harmonic oscillator” Hilbert space P~x, the local degrees of freedom

in the ordinary tensor factorization. That is, take

α~x = 1√
2

(φ̂(x) + iπ̂(~x)), (5.26)

α†~x = 1√
2

(φ̂(x)− iπ̂(~x))

were π̂(~x) is the canonical conjugate of the field operator φ̂(~x), acting as −i δ
δφ(~x) on the

wavefunctional. Note these are not the same as the ladder operators a~x†, a~x associated to
the Fock-based factorization.

Any operator local to ~x in the ordinary factorization should commute with φ(~y ) for
all ~y 6= ~x, whereas

[a~x, φ̂(~y )] ∝ K(~x, ~y ), (5.27)

where K(~x, ~y) is the convolution kernel

K(~x, ~y) ≡
∫

d3~p

(2π)3 e
i~p·(~x−~y ) 1√

2E~p
, (5.28)

emphasizing that the operators a~x†, a~x local in the Fock-based factorization are slightly
non-local in the ordinary field-based factorization.

In one sense, the two factorizations are “close”, because the kernel K(x, y) is peaked
near ~x ∼ ~y. Thus an operator local to a region A in the Fock-based factorization will
be well-approximated by an operator local to a sufficiently larger B ⊃ A in the ordinary
factorization.

In another sense, the alternatives yield drastically different entanglement entropies:
the vacuum is unentangled in the Fock-based factorization, while it exhibits diverging
entanglement in the ordinary factorization. It turns out, as we show in the next section,
that multi-particle excited states yield a middle ground: if the wavefunctions of the particles
are sufficiently spread, the two factorizations will yield approximately equal entanglement
entropies, up to a correction which is precisely the vacuum entanglement.

Which factorization is “correct”? Of course they merely constitute different choices. If
we want to leverage the operational interpretation of entanglement entropy, we must ask
which algebra of observables is available to an observer who “has access to region A”? We
will not further pursue this question, but a point in favor of the ordinary factorization is
that the Hamiltonian is truly local with respect to this factorization. Moreover, only in
the ordinary factorization is there a strict lightcone, i.e. exact commutation of space-like
separated Heisenberg operators.

5.3 Computation of entanglement entropy for finite-particle states: Fock- vs.
field-based factorization

Our algebraic setup calculates the entanglement entropy relative to the Fock-based ten-
sor product factorization of the QFT. In this section, we show there is a sense in which
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the entanglement entropy of a multi-particle state decomposes into two pieces: (1) the
universal, divergent area-law piece, and (2) an additive contribution we can associate to
the wavefunction of the particles. The extra entanglement due to particle excitations has
been called the “excess of entanglement” above the vacuum [24, 25]. We will address the
simple case of single-particle excitations, but the account of finite multi-particle excitations
is similar.

Our calculation below of the entanglement entropy of single-particle excitations (with
respect to the ordinary tensor factorization) has precedent in the related calculations of [24,
25]. However, those arguments only apply to momentum eigenstates, whereas ours applies
to excited states with more general particle wavefunctions, as long as the wavefunctions
are sufficiently spread relative to the correlation length.

In the Fock basis, we can describe a single particle state as

|ψ〉 =
∫
d3xψ(x)a†~x |0〉 =

∫
d3p

(2π)3 ψ̃(p)a†~p |0〉 (5.29)

The entanglement entropy for a spatial subregion A, can be immediately computed as

H
({
p

(ax)
A , 1− p(ax)

A

})
= −p(ax)

A log
(
p

(ax)
A

)
−
(
1− p(ax)

A

)
log

(
1− p(ax)

A

)
(5.30)

with
p

(ax)
A =

∫
A
d3x|ψ(x)|2 . (5.31)

We wish now wish to compare this to the entanglement entropy computed relative to
the field-based factorization. First, let us rewrite the state |ψ〉 as

|ψ〉 =
∫
d3xf(x)φ̂(~x) |0〉 =

∫
d3p

(2π)3
f̃(p)√

2E~p
a†~p |0〉 . (5.32)

Eq. (5.29) therefore identifies ψ̃(p) = f̃(p)√
2E~p

, or alternatively, in position space ψ(~x) =∫
d~yK(~x, ~y)f(y).

Below, we give a proof (on the lattice) that we may well approximate the entanglement
entropy relative to the field-based factorization as

S(ρA) ≈ S0 +H({pA, 1− pA}) (5.33)

where S0 is the entanglement of the vacuum and H({pA, 1 − pA}) = −pA log(pA) − (1 −
pA) log(1 − pA) is the Shannon entropy of the classical probability distribution, but now
with pA =

∫
A d

3x|f(~x)|2.
Before delving into the mechanics of the proof, we stress we may meaningfully com-

pare the Shannon entropies H({pA, 1− pA}) and H
({
p

(ax)
A , 1− p(ax)

A

})
. When the kernel

K(~x, ~y) is narrowly peaked near ~x ∼ ~y, and the regions A are taken sufficiently large, these
quantities are in fact close (at least on the lattice). In fact,

H
({
p

(ax)
A , 1− p(ax)

A

})
→ H({pA, 1− pA}) (5.34)

precisely in the limit described in section 5.4 below, as the wavefunctions are spread over
large regions.
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5.4 Proof of result on excited state entanglement entropy

Consider a free, massive scalar field on a finite lattice in d spatial dimensions. The dis-
cretized field theory Hamiltonian is that of coupled harmonic oscillators,

H =
∑
xi

φ(xi)2 + π(xi)2 +
∑
〈xi,xj〉

m2(φ(xi)− φ(xj))2, (5.35)

for fields φ(xi) at site i and conjugate momenta π(xi). We consider the single-particle
excitation

|ψ〉 =
∑
xi

f(xi)φ(xi)|Ω〉, (5.36)

not necessarily an energy or momentum eigenstate, where |Ω〉 is the vacuum, and f(xi)
is some “wavefunction” of the discrete positions xi, normalized so that the overall state
is normalized.7 Partition the lattice into complementary, contiguous regions A, Ā, and
consider the reduced state ρA. We want to show that

S(ρA) ≈ S0 +H({pA, 1− pA}) (5.37)

where S0 is the entanglement of the vacuum, H({pA, 1 − pA}) = −pA log(pA) − (1 −
pA) log(1− pA) is the Shannon entropy of the classical probability distribution, and where

pA ≡
∑
xi∈A
|f(xi)|2 (5.38)

is essentially the probability of finding the particle in A (at least for large A, due to
subtleties about measuring particle position in this context). Eq. (5.37) will hold with small
error when the system has large volume and the wavefunction fi is not too concentrated
around the boundary of A, Ā. We will be more precise below.

To be more precise, let XR ⊂ A be the sub-region of A consisting of sites at a distance
larger than R lattice units from the boundary ∂A, and let BR = A\XR be the buffer region
between X and A. We can quantify the amount of the wavefunction f(xi) concentrated in
the buffer region as

pBR ≡
∑

xi∈BR=A\XR

|f(xi)|2. (5.39)

We will prove that for pBR sufficiently small for a choice of buffer size R sufficiently large,
and for total lattice volume sufficiently large, eq. (5.37) holds to arbitrarily good approxi-
mation. That is, we show eq. (5.37) holds exactly in the limit of a sequence of systems and
wavefunctions where |A|, |Ā| → ∞, and pBR → 0 for a choice of buffer sizes R →∞. One
could also prove the result with more fine-grained error analysis, but proving the simple
limit will serve our illustration.

7However, note the norm of |ψ〉 is not given by
∑

i
|f(xi)|2, because the states φ(xi)|Ω〉 are not orthogonal

for distinct i.
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Now we sketch the proof.

Proof sketch. Divide the state into two terms

|ψ〉 =
∑
xi∈A

f(xi)φ(xi)|Ω〉+
∑
xi∈Ā

f(xi)φ(xi)|Ω〉 (5.40)

≡ |ψA〉+ |ψĀ〉. (5.41)

We can approximate the state instead as

|ψ〉 ≈ |ψ̃〉 ≡
∑

xi∈XR

f(xi)φ(xi)|Ω〉+
∑
xi∈Ā

f(xi)φ(xi)|Ω〉 (5.42)

≡ |ψXR〉+ |ψĀ〉. (5.43)

Then

〈ψ̃|ψ〉 = 1− 〈ψBR |ψ〉 → 1 (5.44)

in the given limit where pBR → 0, so |ψ̃〉 approaches |ψ〉 in trace-distance. Then the entan-
glement entropy of |ψ̃〉 approaches the entanglement entropy of |ψ〉, using the continuity of
the entanglement entropy with respect to trace distance [26]. The continuity result of [26]
requires the same assumptions as those discussed in section 7, which the single-particle
states here satisfy.8 Thus we can examine the entanglement entropy of |ψ̃〉 rather than |ψ〉.
The reduced density matrix has four terms

TrĀ(|ψ̃〉〈ψ̃|) = TrĀ (|ψBR〉〈ψBR |+ |ψBR〉〈ψĀ|+ |ψĀ〉〈ψBR |+ |ψĀ〉〈ψĀ|) . (5.45)

Let’s start with the fourth term, call it σA ≡ TrĀ (|ψĀ〉〈ψĀ|). Note that the connected
correlation functions of local operators exponentially decay with distance in this massive
free lattice theory. Actually, we use the stronger fact that the mutual information I(BR : Ā)
in the vacuum tends to zero as the size R of the buffer region increases, which can be shown
with the methods of [1]. Then the connected correlation of any bounded operators on BR
and Ā must tend to zero for large R, using the fact that mutual information upper bounds
connected correlations, by Pinsker’s inequality. Thus for any operator OA on A with
operator norm 1,

Tr(σOA) = 〈Ω|OA

∑
xi∈Ā

f(xi)φ(xi)

2

|Ω〉 (5.46)

→ 〈Ω|OA|Ω〉〈Ω|

∑
xi∈Ā

f(xi)φ(xi)

2

|Ω〉 (5.47)

→ 〈Ω|OA|Ω〉(1− pA), (5.48)

8In a more detailed argument, some care must be taken with how the continuity bound depends on
lattice size.
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where again all limits are taken as described above.9 Thus the state σ/(1−pA) approaches
the reduced state of the vacuum.

Likewise, we have TrA (|ψBR〉〈ψBR |) /pA approaching the reduced state of the vacuum
as well. (Note the previous expression traces out A rather than Ā, but the entanglement
entropy will be the same the same whether we trace out A or Ā.)

Now we analyze the second and third terms of eq. (5.45). These terms are actually
equal by the Hermiticity of φ; call this term τ ≡ TrĀ(|ψĀ〉〈ψBR |). Similar to the above
calculation, we have

Tr(τOA)→ 〈Ω|OA|Ω〉〈Ω|
∑
xi∈Ā

f(xi)φ(xi)|Ω〉 = 0 (5.49)

for any fixed norm operator OA local to A, again using the fact that I(BR : Ā) → 0 in
the vacuum as R increases. The r.h.s. is zero above simply because φ has zero vacuum
expectation. So τ → 0, and we can discard these terms.

Finally, the first and fourth terms of eq. (5.45) tend to orthogonal operators, so the
entropy of their sum is the average of their entropies, plus the Shannon entropy associated
to their traces. We conclude

S(ρA)→ S0 +H({pA, 1− pA}) (5.50)

in the given limit, as desired.

6 Target space entanglement entropy for field theories

Above we considered the spatial entanglement in first-quantized many-particle systems, al-
ternatively interpreted as target space entanglement in a 0+1-dimensional theory. Now we
consider target space entanglement for a more general d+ 1-dimensional theory, i.e. with a
higher-dimensional base space. This quantity is more akin to what might be considered in
worldsheet string theory, if one desires to partition the target spacetime. However, world-
sheet string theory will offer further complications due to reparametrization invariance, as
further discussed in section 8.

Consider a d + 1-dimensional field theory defined on the base space B (for example,
B ∼= Rd), with its field φ taking values in the target space T . Referring again to the
ordinary base space factorization described in eq. (5.14), we have the formal expression

HQFT =
⊗
~x∈B
P~x

P~x ≡ span{|φ〉~x : φ ∈ T} ∼= L2(T ).

9Because the operators φ(xi) are not bounded, and the mutual information only upper bounds connected
correlations of bounded operators, we cannot directly apply the upper bound as stated. However, it turns
out the action of φ(xi) on the vacuum can be sufficiently well-approximated by the action of a bounded
operator for our purpose.
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Consider a partition of target space T into complementary regions A, Ā ⊂ T . We associate
the following algebra to the target space region A,

A ≡
〈
{|φ〉~x 〈φ

′|~x ⊗~y 6=~x 1P~y : φ, φ′ ∈ A, ∀~x ∈ B} ∪ 1HQFT

〉
. (6.1)

Defining the projector Π~x
A on local Hilbert space P~x at ~x as

Π~x
A ≡

∫
φ∈A

dφ |φ〉~x〈φ|~x. (6.2)

we can immediately write down the center of A

Z(A) =
〈
{Π~x

A ⊗~y 6=~x 1P~y : ∀~x} ∪ 1HQFT

〉
. (6.3)

These algebras resemble those of section 4.3.1 because we may view our QFT as the
first-quantized theory of many distinguishable particles, labeled by ~x, moving in target T
with coordinates φ.

With this definition in hand, we can calculate the target space entanglement entropy of
general field theories defined on the lattice. Unfortunately, the calculation does not appear
straightforward.10 We settle for the simplest non-trivial example: a massive scalar “field
theory” on two spatial lattice points, i.e. two coupled harmonic oscillators.

Consider two field degrees of freedom φ1 and φ2 at lattice points 1 and 2, with Hilbert
space H = L2(R)⊗ L2(R) and Hamiltonian

H = 1
2(π2

1 + π2
2 + (φ1 − φ2)2 +m2(φ2

1 + φ2
2)) (6.4)

where π1, π2 are the conjugate momentum operators and m the mass. The interaction term
(φ1 − φ2)2 comes from the lattice discretized spatial gradient of the field.

We choose to compute the entanglement entropy of the ground state, partitioning
the target space into the positive and negative half-lines, A ≡ {φ ∈ R : φ > 0} ⊂
R. In this case, the algebra A of eq. (6.1) has four sectors. Defining the projectors
Π1
A,Π2

A,Π1
Ā
,Π2

Ā
as in eq. (6.1), the four sectors of A are simply the images of the four

projectors Π1
AΠ2

A, Π1
AΠ2

Ā
, Π1

Ā
Π1
A, Π1

Ā
Π2
Ā
. The sector projected onto by Π1

AΠ2
A indicates

“the field on both lattice points takes values in A”, while the sector projected onto by
Π1
AΠ2

Ā
indicates φ1 ∈ A, φ2 ∈ Ā, and so on. Note there are four rather than three sectors

because the lattice sites are distinguishable.
The normalized ground state wavefunction for the Hamiltonian (6.4) is given by

ψ(φ1, φ2) =
(
ω+ω−
π2

)1/4
e−

1
2 (ω+φ2

+ +ω−φ−)2 (6.5)

10We find this quite reminiscent of the early days of base space entanglement entropy, where analytical
progress appeared similarly difficult. Both [27, 28] ultimately resorted to numerical methods to discover
the area law in the ground state of scalar field theory. What we need is a suitable analog of the powerful
path integral replica trick.

– 22 –



J
H
E
P
0
3
(
2
0
2
3
)
1
1
1

where φ± = (φ1 ± φ2)/
√

2, ω+ = m, ω− =
√
m2 + 2; see for instance the similar example

in [28].
We consider the state ρ = |ψ〉〈ψ| projected separately onto the four sectors described

above. In the sector where φ1, φ2 ∈ A, the Hilbert space factorizes in a trivial way, as in
the discussion surrounding eq. (4.8) for the particle on a line. Hence the projection of the
state onto this sector yields a product state, with no contribution to the quantum piece of
the entanglement entropy. The same holds for the sector associated to φ1, φ2 ∈ Ā. The
only contribution to the quantum part of the entanglement entropy thus comes from the
two sectors where φ1, φ2 are in different regions of the target space. Since the groundstate
is symmetric under the exchange of φ1 ↔ φ2 the contribution in each such sector will be
identical. Thus we need only consider one sector, say the image of Π1

AΠ2
Ā
.

The sector factorizes as V1
A⊗V2

Ā
, where V1

A ≡ span{|φ1〉 : φ1 ∈ A} and V2
Ā
≡ span{|φ2〉 :

φ2 ∈ Ā}. We need to take the state projected on this sector, Π1
AΠ2

Ā
|ψ〉〈ψ|Π1

AΠ2
Ā
, and trace

out the second factor V2
Ā
. We obtain the (non-normalized) density matrix σ on V1

A given by

σ(x1, y1) =
∫
x2∈Ā

dx2 ψ(x1, x2)ψ(y1, x2)∗. (6.6)

The integral above can be expressed in terms of error functions. To calculate the entangle-
ment entropy, it remains to diagonalize the above density matrix σ. Returning attention
to the full reduced state ρA, the classical part of the entanglement entropy is then given by

S(ρ,A)classical = H({p, p, 1− p, 1− p}) (6.7)

where H({·}) is the classical (Shannon) entropy of the probability distribution, and p =
Tr(σ), with σ given above. Meanwhile, the quantum piece of the entanglement entropy is
given by

S(ρ,A)quantum = 2pS (σ/Tr(σ)) . (6.8)

In lieu of an analytic method, we discretize the x1, y1 coordinates of eq. (6.6) and
numerically diagonalize the resulting finite matrix. We ensure that the discretization is at
sufficient resolution that the results converge when decreasing the spacing or increasing the
total number of discretized points. Section 7 guarantees convergence, the end result being
finite. Ultimately we produce a numerical answer for the quantum and classical piece of the
entanglement entropy of the ground state, as a function of the mass in the Hamiltonian.
The results are depicted in figure 3. Numerical error due to discretization appears to be
somewhat smaller than 10−3, but we do not include a rigorous analysis.

At high mass, the two harmonic oscillators approximately de-couple. The wavefunction
spreads equally between the four sectors, so that the classical piece of the entanglement
entropy gives two bits. Meanwhile, the quantum piece of the entanglement entropy tends
to zero, because the only sectors that can contribute must have φ1 and φ2 in different
regions A and Ā, and in these sectors, the wavefunction approximately factorizes due to
the de-coupling of the oscillators.
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Figure 3. Entanglement entropy with respect to a partition of target space, for two coupled
oscillators governed by the Hamiltonian in eq. (6.4).

Figure 3 also illustrates that the quantum term of the target space entanglement
entropy is not monotonic with respect to the mass parameter. The non-monotonicity is
associated with the fact that in eq. (6.8), the first factor p increases monotonically with
mass, whereas the second factor S(σ/Tr(σ)) decreases monotonically.

7 Finiteness of the entanglement entropy

The entanglement entropies discussed in this paper involve infinite-dimensional Hilbert
spaces and algebras. In infinite dimensions, we must take care that density matrices and
entropies remain well-defined. Fortunately, we will see that most of the infinities present
here are of a relatively tame variety.

In this section, we will take more mathematical care, recalling for instance that the
“position eigenstate” |ψ〉 is not a true state in the Hilbert space L2(R) as traditionally
defined.

The algebra associated to a region in multi-particle quantum mechanics (like eq. (4.24))
is a finite direct sum of factors, where each factor is an infinite-dimensional “Type I ” factor,
according to the type theory of von Neumann algebras [29]. Type I factors are algebras
which are isomorphic to the full algebra of bounded operators on some Hilbert space. The
Type I property of this algebra is therefore apparent from the schematic form of the algebra
in eq. (4.29).

Similarly, an algebra associated to a region in the target space of a lattice field theory
— like the algebra in eq. (6.1) on a finite lattice, or the algebra in figure 4 — is also a
direct sum of Type I factors, including when the target space is infinite-dimensional.

Even for these Type I algebras, we must take care with the entanglement entropy.
The formula for the algebraic entanglement entropy in eq. (3.11) requires defining the
von Neumann entropy of the partial trace of a pure state in a bipartite Hilbert space H1⊗
H2, where the factors H1,H2 may be countably infinite-dimensional. (The full algebraic
entanglement entropy was then a sum of such entropies in each sector of the algebra.) We
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Figure 4. Base (left) vs. Target (right) Space Partition & Associated Algebras for scalar field on
two lattice sites.

therefore focus on the question of ordinary von Neumann entanglement entropies of pure
states in bipartite Hilbert spaces. For any (mathematically legitimate, i.e. normalizable)
state |ψ〉 ∈ H1 ⊗H2, the partial trace ρ = Tr2(|ψ〉〈ψ|) can be taken using any (legitimate)
orthonormal basis. The result will be a trace-class Hermitian operator ρ. (To see that ρ is
trace class, we can take its trace in any orthonormal basis, and the resulting sum will be
convergent by the normalizability of |ψ〉.) Recall that a trace-class Hermitian operator ρ
has an eigen-decomposition

ρ =
∞∑
i=1

λi|vi〉〈vi| (7.1)

for some countably infinite set of eigenvectors {|vi〉} and eigenvalues λi. Thus we are in
the position to define the entanglement entropy

S(ρ) ≡
∞∑
i=1
−λi log(λi). (7.2)

However, the above sum may be infinite, even though a normalized state |ψ〉 guarantees∑
i λi = 1. In fact, the set of states |ψ〉 with infinite entanglement entropy is dense in the

total Hilbert space H1 ⊗H2, so in some sense the divergence is generic.
Yet, for states of interest, the sum is often finite. For instance, a finite energy condition

may imply finiteness. The authors of [26] prove that, for any non-interacting Hamiltonian
H = H1 ⊗ 12 + 11 ⊗H2 on H1 ⊗H2 with discrete spectrum such that Tr(e−βH) is finite
for all β > 0, any state |ψ〉 ∈ H that has finite expected energy 〈ψ|H|ψ〉 <∞ with respect
to this Hamiltonian will have finite entanglement entropy. Note the state |ψ〉 may have
nonzero overlap with energy eigenstates of arbitrarily high energy; as long as the expected
energy is finite, the theorem applies.

Although the theorem of [26] requires one to find a non-interacting Hamiltonian with
respect to which |ψ〉 has finite energy, this reference Hamiltonian need not bear any re-
lation to the dynamics of the system of interest. Rather, the assumption of finite energy
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with respect to the reference merely ensures that ρ, which might have infinite nonzero
eigenvalues, nonetheless has sufficiently accurate low-rank approximations. For instance,
if we have H1,H2 = L2(Rd) and one chooses H to be the Hamiltonian of two independent
harmonic oscillators,

H = ~p 2
1 + ~p 2

2 + ~x 2
1 + ~x 2

2, (7.3)

then any state |ψ〉 with a smooth spatial wavefunction that decays at spatial infinity at
least as fast as 1/r(d+3)/2 will have finite energy with respect to H, and hence the theorem
of [26] implies this large class of wavefunctions has finite entanglement entropy. (If one
tries to weaken this condition to include wavefunctions that are not smooth but decay,
or decay but are not smooth, counterexamples exist with infinite entanglement entropy in
both cases.) In particular, entanglement entropy of the density matrix in eq. (6.6) will be
finite, as corroborated by the convergence of the numerics used for figure 3.

Similarly, the algebraic entanglement entropies of section 5.1 will be finite for states
with smooth, decaying wavefunctions. The finiteness highlights the difference between the
two notions of locality discussed in section 5.2. Our first-quantized algebraic approach uses
Type I algebras and gives finite entanglement entropies, whereas the ordinary “factoriza-
tion” of field theory gives area-law divergences, associated to the Type III subalgebras
present in field theory.

8 Discussion

8.1 Worldlines, worldsheets & reparametrization invariance

This work has highlighted the largely unexplored realm of target space partitions and
their relevance in the quantum gravitational context. However, we remain far from our
original hope of using an algebraic approach to define target space entanglement entropy
in worldsheet string theory.

In ordinary field theory, our algebraic definition successfully captured the entanglement
entropy with respect to a certain factorization. However, as discussed in section 5.2, the
field theory admits at least two seemingly natural factorizations, which we called the “Fock-
based” and “field-based” factorizations. It is the entanglement with respect to the former
that is captured by our algebraic definition, whereas only the latter factorization exhibits
the divergent area law contribution. On one hand, the calculation outlined in section 5.2
demonstrates that the additional entanglement of particle excitations atop the vacuum can
be meaningfully compared between the two factorizations. On the other hand, the first-
quantized algebraic approach remains unable to analyze the area law contribution itself.

In fact, it might appear senseless to imagine a first-quantized particle description
teaching us anything about the spatial structure of the vacuum. The worldline framing
of QFT, however, suggests otherwise. Consider the relativistic free massive scalar field.
(Interactions can be incorporated but are not the focus of the argument.) The logarithm
of its partition function can be recast as the path integral of a point particle coupled to
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1-dimensional gravity on its worldline11 [30]:

logZQFT = log
∫
Dφe−

1
2

∫
ddx
√
g(gµν∂µφ(x)∂µφ(x)+m2φ(x)2)

= −1
2 Tr

[
log

(
−gµν∇µ∇ν +m2

)]
=
∫
ddx 〈xµ|

∫ ∞
ε

ds

2se
−s(pµpµ+m2) |xµ〉

=
∫
ddx

∫ yµ(s)=xµ

yµ(0)=xµ

Dyµ(τ)De(τ)
Vol(Diff) e−

1
2

∫ s
0 dτe

(
1
e2
∂τyµ(τ)∂τyν(τ)gµν(y(τ))+m2

)
.

This worldline approach to field theory is the most immediate field-theoretic analog
of worldsheet string theory. In the worldline setting, we know we can access the area law
entanglement pattern of the QFT via a replica trick Euclidean path integral. Schematically,
we can compute it as

SEE = (1− n∂n) logZQFT[n]
∣∣∣∣
n=1

. (8.1)

The right hand side of this equation, including the necessary field-theoretic UV -
regulator, may be completely recast in terms of worldline quantities. The euclidean path
integral immediately gives us the entropy. Its Lorentzian interpretation on the other hand,
remains elusive.

Indeed, while the area law manifests itself as above in the worldline formalism, it is
unclear there exists any partition of the point particle Hilbert space that yields this entropy.
An algebraic approach would require such a partition. However, hope remains. Two salient
features deserve further notice. Firstly, we see the spatial arguments of the fields, the xµ

in φ(xµ) appear as boundary conditions on the worldline trajectories. This is the familiar
statement that, in string theory, D-branes help us probe target space locality [31, 32]. Note
the states |xµ〉 do not belong to the physical subspace of the point particle Hilbert space,
as they do not satisfy the constraint p̂2 +m2 |ψ〉 = 0. In the language of [30], they do not
reside in the BRST cohomology of QBRST = c(p2 +m2). This simply reflects the fact that
reparametrization invariance breaks down at the endpoints of the worldline. Secondly, from
a more algebraic perspective, we know that any reduced density matrix reproducing all two-
point correlation functions 〈φ(xµ)φ(yν)〉, 〈φ(xµ)Π(yν)〉 and 〈Π(xµ)Π(yν)〉 for xµ, yν ∈ A
will gives us the field theory entanglement entropy relative to the φ(x) tensor product
factorization. These correlators can also be rewritten purely in terms of worldline variables:

〈φ(xµ)φ(yν)〉 =
∫ ∞
ε

ds 〈xµ| e−s(p2+m2) |yν〉 . (8.2)

We would therefore need to consider some sort of restriction on the set of allowable “D-
branes” for the worldline. While we have not succeeded in defining an associated reduced
density matrix, it is at least clearly a Lorentzian setup.

The single particle Hamiltonian
√
~p 2 +m2 considered in section 5.2 arises via gauge

fixing the relativistic point particle action. More precisely, it is the canonical Hamilto-
nian after choosing static gauge x0(τ) = τ . We feel there is something important about

11This might be more familiar under the guise of the “Schwinger paramterization” of Feynman diagrams.
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reparametrization invariance we have yet to pinpoint, and hope to explore this avenue in
future work.

8.2 Different factorizations and the c = 1 matrix quantum mechanics

The discussion in section 5.2, teasing out the subtle differences in our notion of “spatial
locality”, could appear somewhat artificial. Yet such competing notions of locality might,
in fact, be rather generic within the emergent spacetime paradigm. The c = 1 matrix
quantum mechanics provides a sharp holographic example. As highlighted in [9], there
exists at least two seemingly natural emergent spatial dimensions. On one hand, the matrix
quantum mechanics in the singlet sector can be recast as a local fermionic field theory on
matrix eigenvalue space. On the other hand, the low-energy target space dynamics, derived
from the worldsheet Liouville string theory, is most naturally formulated in terms of the
string embedding coordinates X0 (the c = 1 boson) and φ (the Liouville field).12 Section 11
of [34] shows precisely how bosonization of the matrix model’s fermionic field theory maps
onto the closed string tachyon dynamics in the target spacetime. In momentum space, a
simple multiplicative phase factor relates the two — the celebrated “leg-pole factor” —
in close parallel to the φ(p) ∼ (2Ep)−1/2a†p example discussed in section 5.3. In position
space, this gives a non-local map. Natsuume and Polchinski argued all the (admittedly
very simple) gravitational dynamics on the 2d target space were encoded in the matrix
model via this non-local map [35]. The prescient reference [36] and later [37] reproduced
the entanglement entropy of the bulk 2d tachyon by partitioning the matrix eigenvalue
space. It failed, however, in capturing any O(1/g2

st) contribution — the closest 2d relative
of Area/4G. One might blame this on choosing a notion of locality similar to the Fock space
factorization discussed above, thereby capturing only excitations around the background.
Making this precise might help guide future attempts at diagnosing emergent locality from
matrix degrees of freedom.
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A The algebra for bosons

Here we provide more details justifying eq. (4.24) using the definition of the algebra A in
eq. (4.29).

12[33] points out important subtleties in viewing the Liouville direction as spatial coordinate. They
consider instead yet another space on which they define a string field theory of loop operators, parametrized
by the length of the strings they create.
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First off, we can write down the commutant A′ as

A =
〈
{PSN

(
|~x 〉1 〈~x

′|1 ⊗ 12 ⊗ · · · ⊗ 1N
)
PSN : ~x, ~x ′ ∈ Ā} ∪ 1HN

〉
(A.1)

so that the center Z(A) is generated by

Z =
〈
{PSN

(∫
A
d~x |~x 〉1 〈~x |1 ⊗ 12 ⊗ · · · ⊗ 1N

)
PSN } ∪ 1HN

〉
. (A.2)

At this point we wish to identify the minimal projectors which span the center Z, as
in eq. (3.5). Here there are N + 1 such projectors, which we can write as

Πk =
(
N

k

)
PSN

ΠA ⊗ · · · ⊗ ΠA︸ ︷︷ ︸
k times

⊗ΠĀ ⊗ · · · ⊗ ΠĀ︸ ︷︷ ︸
(N−k) times

PSN . (A.3)

Physically, Πk is the projector onto the subspace with k particles in A and N − k

particles in Ā.
The algebra ΠkAΠk projected onto this subspace takes the form

ΠkAΠk =
〈
PSN

(
|~x 〉 〈~x ′| ⊗ΠA · · · ⊗ΠA ⊗ΠĀ ⊗ · · · ⊗ ΠĀ

)
PSN : ~x, ~x ′ ∈ A

〉
(A.4)

has trivial center on ΠkHN . To see this, we first write its commutant restricted to the
subspace

A′
∣∣
ΠkHN

=
〈
PSN

(
|~x 〉 〈~x ′| ⊗ΠĀ · · · ⊗ ΠĀ ⊗ΠA ⊗ · · · ⊗ ΠA

)
PSN : ~x, ~x ′ ∈ Ā

〉
(A.5)

so that indeed the center on this subspace is trivial

A ∩A′
∣∣
ΠkHN

= PSN

ΠA ⊗ · · · ⊗ ΠA︸ ︷︷ ︸
k times

ΠĀ ⊗ · · · ⊗ ΠĀ︸ ︷︷ ︸
N−k times

PSN = 1
∣∣
ΠkHN

. (A.6)

Since the algebra restricted to each subspace is a factor, we know there exists a tensor
product factorization in each block such that all O ∈ A take the form

O = ⊕Nk=0OAk ⊗ 1Āk (A.7)

What is this tensor product factorization? It is nothing but the decomposition

(HA ⊕HĀ)⊗N

SN
= ⊕Nk=0

(
H⊗kA
Sk
⊗
H⊗N−k
Ā

SN−k

)
(A.8)

where we define H0
A = H0

Ā
= C. In particular

ΠkHN = H
⊗k
A

Sk
⊗
H⊗N−k
Ā

SN−k
. (A.9)
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Finally, we stress the symmetric projectors PSN are crucial for A to contain multi-
particle operators. For example, in the case of N = 2, multiplying two basis algebra
elements can generate all symmetric 2-particle operators:

PS2

(
|~x 〉1 〈~x

′| ⊗ 12
)
PS2PS2

(
|~y 〉1 〈~y

′| ⊗ 12
)
PS2 = 1

2!PS2 |~x 〉1 〈~x
′| ⊗ |~y 〉2 〈~y

′|PS2 (A.10)

+ 1
2!δ(x

′ − y)PS2

(
|~x 〉1 〈~y

′| ⊗ 12
)
PS2 .
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