
Quorum-Based Secure Multi-party Computation

Donald Beaver 1 and Avishai Wool 2

1 IBM/Transarc; beaver�9
2 Bell Laboratories, Lucent Technologies; yash~resea rch .be l l - l abs , corn

A b s t r a c t . This paper describes efficient protocols for multi-party com-
putations that are information-theoretically secure against passive at-
tacks. The results presented here apply to access structures based on
quorum systems, which are collections of sets enjoying a naturally-
motivated self-intersection property. Quorum-based access structures in-
clude threshold systems but are far richer and more general, and they
have specific applicability to several problems in distributed control and
management. The achievable limits of security in quorum-based multi-
party computation are shown to be equivalent to those determined by
Hirt and Maurer in [HM97], drawing a natural but non-obvious connec-
tion between quorum systems and the extremes of secure multi-party
computation. Moreover, for both the general case and for specific appli-
cations, the protocols presented here axe simpler and more efficient.

1 I n t r o d u c t i o n

1.1 O v e r v i e w

Mult i -party computat ion - a means for groups to engage in joint computat ion
as though an absolutely t rusted third par ty were available to help them - has
enjoyed a great deal of at tention for several years, with much effort spent on
exploring the limits of robustness and efficiency [GMW86, GMW87, GHY88,
BGW88, CCD88, RB89, Bea91b, BG89, BH92, DDFY94, CFGN96]. Virtually
without exception, all solutions have been based on threshold secret sharing, and
hence they are themselves threshold-oriented. Recently, Hirt and Maurer charac-
terized tolerable adversary sets in general mul t i -par ty computat ions without re-
striction to purely threshold-based sets [HM97]. Our work explores and expands
on a non-threshold-based approach to mult i -party computat ion, investigating
quorum-based mult i -par ty protocols and providing more efficient solutions for
general and specific cases.
W h o m to T r u s t . The general motivation for mult i -par ty computat ion is sim-
ple: apply a decentralized approach to ensure robustness and security in joint
computat ions, increasing reliability by dissipating t rus t among many individuals.
Formally, a collection of n players wish to compute some function f(xl , . . . , xn)
of their respective, private inputs, revealing the final result but nothing more.
Ideally, they could resort to a t rusted third par ty to collect the inputs and return

o Part of this work was done at the DIMACS Research 8z Education Institute Cryp-
tography and Network Security Workshop (DREI'97), August 1997.

376

only the result; the goal of secure multi-party computation is to achieve the same
task without the existence of any such helper.

Thresho ld Schemes. Multi-party protocols are typically based on secret shar-
ing. In the past virtually all of them relied on some form of Shamir's polynomial-
based sharing scheme [Sha79, Bla79]. Because these sharing schemes are thresh-
old based - i.e., reconstruction of a secret depends on having some minimal num-
ber of shares, rather than some particular set of players - there is a natural limit
on the types of dishonest coalitions that can be tolerated by multi-party compu-
tations. In particular, an honest majority is necessary and sufficient for verifiable
sharing and multi-party computation [RB89, Beaglb] -]or threshold-based pro-
tocols. Conversely, as long as no dishonest coalition exceeds the threshold of size
[~ J , secure multi-party computation is achievable. This characterization of
tolerable adversaries is natural, elegant, and seemingly all that needs be said.

Weigh ted Thresho ld Schemes. The simplest generalization involves a
weighted approach, in which important players (such as CEO's and VP's) are es-
sentially granted more shares of the secret than the peons. The characterization
of tolerable adversaries remains simple; the weighted collection of shares held
by honest players (resp. dishonest players) must be a majority (resp. minority)
of all shares. Thus the characterization of what is achievable needs only slight
modification. A disadvantage of such a weighted approach is that the important
players have more shares so they need to perform more of the computational
work.

Q u o r u m Systems. The approach we take here is motivated by distributed
control and management problems such as mutual exclusion (cf. [GB85]), data
replication protocols (cf. [DGS85, Her84]) and name servers (cf. [MV88]). In these
applications certain operations are allowed only if they are authorized by a set of
members which is defined to be a quorum. The requirement from the quorum sets
is that every two quorums should have at least one member in common. The
existence of a common member helps prevent uncoordinated action between
two different groups, whether that action be committing to a newly-written
value or returning the latest version. Clearly, any threshold system (weighted or
not) whose threshold exceeds half the total population (or weight) qualifies as a
quorum system: the pigeonhole principle ensures that any two threshold-passing
sets will intersect nontrivially.

Adding Security. Secret sharing schemes for arbitrary access structures have
been developed by Ito, Saito, and Nishizeki [ISN87]. Schemes for structures rep-
resented by monotone formulas were proposed by Benaloh and Leichter [BL88].
More recently, Naor and Wool have designed schemes for structures which rep-
resent specific quorum systems [NW96]. The natural question to ask is whether
these sharing schemes are usable for multi-party computations as well. We an-
swer this question in the affirmative, and present several new protocols that use
quorum-based secret sharing schemes. In the process we also present some new
quorum secret-sharing schemes which we utilize in the protocols. Thus we are
able to support non-threshold access structures without resorting to weighted
threshold schemes. This allows us to escape the "honest majority" barrier to

377

some degree - - our protocols can tolerate some dishonest majorities of players.
However, this comes at a price: the protocols cannot tolerate certain dishonest
minorities.
At tack Model . In this work we focus on passive attacks, in which all the players
follow the protocol. However, dishonest players may pool their information in
order to learn some of the secret inputs of other players (this is sometimes called
the "honest but curious" model). The adversary is only permitted to choose a
dishonest coalition from the collection of coalitions that the protocol tolerates
(these will be the complements of quorum sets). On the other hand, our security
requirement is of the strongest type: that a dishonest coalition can learn nothing
about the other's secret inputs, in the information-theoretic sense.
Efficiency. Once the security of a protocol has been established, we are inter-
ested in two measures of its quality: the number of messages sent per multiplica-
tion, which captures the communication complexity of the protocol; and the size
of the shares each player holds, which captures the amount of local computation
each player needs to perform.

1.2 Connec t ing mul t i -pa r ty c o m p u t a t i o n and q u o r u m sys tems

Multi-party computation protocols have traditionally been defined and analyzed
in terms of the collection B of bad coalitions that they tolerate. For instance, for a
threshold-based protocol this collection is of the form "all the sets of cardinality
less than t." Early on it was discovered that there is a simple combinatorial
condition which precludes the existence of any protocol that tolerates certain
types of B's. The following lemma has been proved in several places [BGW88,
BG89, CK91] and follows from a direct reduction to two-party protocols.

L e m m a 1. A set system B is said to 2-cover the universe U if two sets B1, B2 E
B exist such that Bt UB2 = U. I f B 2-covers U, then no multi-party protocol that
tolerates B exists for computing the AND (or OR, or finite-field multiplication)
function.

Recently Hirt and Maurer showed that the converse of Lemma 1 is also true
(for honest-but-curious attacks), by describing a general protocol which tolerates
any collection B that does not 2-cover U. Their protocol involves a recursive
decomposition of the bad collection B into 3 sub-collections, and simulating the
2-of-3 threshold-based protocol of [BGW88] at each level of the recursion. Thus
they proved the following characterization.

T h e o r e m 2. [HM97] A multi-party protocol that tolerates 13 exists iff U is not
2-covered by 13.

The connection between this characterization and our work is captured by the
following observation.

L e m m a 3. Let 13 be a collection of bad coalitions over U. Let G = { G : U \ G E
B} be the collection of complements of the bad coalitions. Then B does not 2-cover
U if] ~ is a quorum system.

378

Proof: Consider some B1,B~ E •, and let G1,G2 E ~ be the complements of
B1,B2, respectively. If u r B1 U B2 then clearly u E G1 A G2, and vice versa.
Therefore every two sets of B do not cover U iff every two sets of G have a
non-empty intersection. |

Therefore multi-party protocols are characterized equivalently by the quorum
systems that they respect and by the bad coalitions they tolerate. However,
focusing on the positive, quorum-based view leads naturally to the use of quorum
secret sharing schemes, which form the foundation for our new protocols.

1.3 C o n t r i b u t i o n s

Our first result is a new secure multi-party protocol which respects any arbitrary
quorum system (and hence tolerates any collection of bad coalitions that does not
2-cover U). By this we show an alternative proof to the characterization of Hirt
and Maurer [HM97]. However our protocol is much more efficient; for a system
of n players and m minimal quorums our protocol sends O(n2m) messages per
multiplication, as compared to the ~(m 2"709) messages sent by Hirt and Maurer's
protocol. 3 Note that in general m = 2 ~(n), so it is of far greater importance to
reduce the dependence on m. Moreover, our protocol is much simpler to describe
and to analyze, since it involves neither recursion nor simulation of subprotocols.

We also describe several multi-party protocols which are based on specific
quorum systems. The quorum systems that we consider were devised for various
distributed control mechanisms and are shown (in the referenced papers) to have
favorable properties such as high availability and low load [NW94]. The quorum
systems we consider are the crumbling wall quorum systems of [PW97], the finite
projective plane (FPP) quorum system of [Mae85], and the 2-of-3 majority-tree
systems of [AE91] and [Kum91]. The protocols we provide for these systems are
all fully polynomial in n, with a complexity of O (n 2) messages per multiplication.
Thus to our knowledge they are the first non-threshold protocols which are as
efficient as the original protocol of [BGW88, CCD88].

For the crumbling walls and tree-based systems we use the secret sharing
schemes proposed in [NW96]. In the former scheme the shares are twice the size of
the secrets, while the latter is optimal (i.e., the size of the shares equals the size of
the secret). For the FPP system we present a new optimal secret sharing scheme,
which may be interesting in its own right. Thus the local computations that the
players perform in all these protocols are extremely efficient, typically consisting
of a constant number of multiplications and a linear number of additions and
random bit generations.

O r g a n i z a t i o n : In w we define quorum systems, secret scharing schemes, and
secure multi-party computation. In w we present our general quorum-based
protocol for arbi trary quorum systems. w describes our efficient (polynomial in
n) protocols for special quorum systems.

3 In their paper Hirt and Maurer only claim that their protocol is polynomial in m.
We provide a more detailed complexity analysis for their algorithm in the sequel.

379

2 D e f i n i t i o n s

2.1 Q u o r u m s y s t e m s a n d access spec i f i ca t ions

D e f i n i t i o n 4 . Let U denote a universe of players. A set system Q =
{ Q 1 , . . . , Qm} is a collection of subsets Qi c_ U. A quorum system is a set system
Q that has the intersection property: Qi A Qj ~ 0 for all Qi, Qj 6 Q. The sets
of the system are called quorums.

We use n = IU] to denote the number of players. Unless otherwise noted, the
quorums in all the quorum systems mentioned in this paper are minimal: Qi ~:
Q3 for every two quorums Qi, Q3 6 Q. We use m =]QI to denote the number
of (minimal) quorums.

D e f i n i t i o n 5. An access specification is a disjoint pair (G, B) of collections of
subsets, such that G is monotone increasing (that is, (VG1 6 G)(G1 C_ G2
G2 6 ~)), and B is monotone decreasing.

R e m a r k : The first collection, G, describes sets of players that are permit ted to
access secrets; the second collection, B, describes coalitions who should not learn
anything about such secrets. Sets in G are called good, while those in B are called
bad. Note that (G, B) need not be a partition; there may be sets that are neither
good nor bad. If, however, (Q, B) is a partition, namely ~ U B = 2 u, then we say
it is unambiguous.

D e f i n i t i o n 6. Let Q be a quorum system. Let G(Q) = {G D Q : Q 6 Q} be the
collection of sets containing some quorum, and let B(Q) = { B : U \ B 6 Q(Q)}
be the collection of sets whose complement contains a quorum. Then the quorum
access specification of Q is (G(Q), B(Q)).

R e m a r k : Quorum systems whose access specification is unambiguous have
many interesting properties. Such systems have at t racted at tention in several
contexts, and much is known about them. The terminology associated with
these systems differs from discipline to discipline, and a non-comprehensive
list of names includes "non-dominated coterie" [GB85]; "simple decisive game"
[Owe82]; "self-dual monotone boolean function" [IK93]; "ultrafilter" [BKK94];
and "~-critical hypergraph" [Fiir88].

2.2 S e c r e t s h a r i n g

D e f i n i t i o n 7. Let U = {1 , . . . , n} and let S be a finite set of secrets. A secret-
sharing scheme (SSS) is a m a p p i n g / / : S x R ~-~ $1 x . . . x Sn, where R is a set
of random strings, and for each i E U, S~ is a set of secret shares. YI is said to
realize an access specification (G, B) if it satisfies the following conditions:

1. The secret can be reconstructed by any subset in G- That is, associated with
every set G E G (G = { i l , . . . , i i a l }) there is a function ha : Sil x . . . x
S~,c , ~-+ S such that for every (s, r) 6 S x R, if II(s, r) = { S l , . . . , sn} then
hG(s~,.. . ,s~,c,) = s.

380

2. No subset in B can reveal any partial information about the secret (in the
information theoretic sense). Formally, for any subset B E 8, for every
two secrets a, b E S, and for every possible collection of shares {si}ieS :
Pr ({8i}ieB [a) = Pr ({8i}ie B]b), where the probability is taken over the ran-
dom string r.

2.3 Multi-party computation

The following formalizations are standard and based on commonly accepted
approaches [GMR89, BGW88, CCD88, Bea91a, MR91]. Let C be a circuit over
logical (or finite arithmetical) gates, having n inputs and one output , 4 and let
f (x l , . . . , xn) be the function it computes. A multi-party protocol is a set of n
interactive, probabilistic Turing machines, called players. A protocol computes
f if each player outputs f (x l , . . . , xn) at the end of execution.

An adversary class is a collection of subsets of U = (1 , . . . , n}. (Because we
generally discuss the passive case, we identify adversaries with sets of observed
players.) A partial S-view of an execution is the set of strings describing internal
computations, random tosses, and input-output transcripts for players in S, up
to some given round of interaction. We often overload the term view to mean a
specific string in a given execution, the distribution on strings over all executions,
or the partial view at some moment, as convenience dictates. An execution of
a protocol is characterized by a result-vector of n outputs along with the final
view of the adversary.

Let simulator S be given an adversary B as input and have access to an
ideal protocol in which a trusted, external party collects the inputs X l , . . . , xn
and returns the result, f (x l , . . . , x,~). In addition to providing progressive partial
B-views, the simulator produces a final result-vector (whose adversary-view is
the concatenation of the progressive partial B-views).

D e f i n i t i o n 8. A protocol that computes f is said to tolerate adversary class B
if there is a simulator S such that for any B E B and any x l , . . . ,x~, the result-
vector produced by S is identically distributed to that obtained by executing
the protocol. (The protocol is also said to tolerate each set B E B.)

Our constructions follow the conventional share-compute-reconstruct
paradigm introduced in [GMW86]. Thus we have additional properties to seek,
including whether particular sets are capable of reconstructing the final result.

D e f i n i t i o n 9. A multi-party protocol for f is said to respect a set G if at the
end of the computation phase, the members of G can collectively reconstruct
the function value. A protocol is said to respect a collection of sets if it respects
each set in the collection.

Definition 10. A protocol is said to securely implement an access specification
(~, B) if it tolerates B and respects G.

D e f i n i t i o n 11. Let Q be a quorum system. A protocol is said to be Q-private
if it securely implements the quorum access specification (G(Q), B(Q)).

4 This is easily generalized to multiple and private outputs.

381

The preceding commentary is easily generalized to families of functions. A
finite set of protocols is complete for some function family if it enables sharing
and reconstruction, and through finite composition can evaluate any finite cir-
cuit securely. Our approach is standard [GMW86, BGW88, CCD88]: to provide
efficient protocols for sharing, reconstruction, addition (linear combination), and
multiplication.

3 A g e n e r a l p r o t o c o l

In this section we present a general multi-party protocol which is Q-private for
any quorum system Q. Let Q be a quorum system, and let C be a circuit which
computes a function f . To describe a Q-private protocol which computes f , we
need first to show a secret sharing scheme that realizes (~(Q), B(Q)) . Then it
suffices to show how the players can compute sums and products Q-privately
using the shares. The computation of] is performed by simulating the circuit
C gate by gate.

3.1 T h e G e n - S S S sec r e t s h a r i n g s c h e m e

Consider a quorum system Q = {Q1 , . . . ,Qm} of minimal quorums, and let
x be the value to be shared. First x is represented randomly as a sum-share

m x = Y~j=I x3" This can be done by assigning uniformly chosen random values to
m - - 1 xj for j = 1 , . . . , m - 1 and assigning xm = x - ~ j = l xj . We call the values

x l , . . �9 xm the parts of x to differentiate them from the shares of the scheme.
The share s~(x) of player u is the set of parts corresponding to the quorums
that contain u:

s (x)

P r o p o s i t i o n 12. Gen-SSS is a secret sharing scheme realizing the quorum ac-
cess specification (G(Q), B(Q)).

Proof: Consider some set G E G(Q) which contains the quorum Q~ E Q. By the
intersection property, Qi N Qj r 0 for all j = 1 , . . . , m , so for every quorum
Q / t h e r e exists a player u E Qi which has the corresponding part xj . Therefore
the players in Qi collectively have all the parts {xj}~= 1 and can reconstruct the
secret x.

Now consider a set B ~ B(Q). Then by definition there exists some quorum
Qi E Q such that Qi c_ U \ B. Only members of Q~ receive the part xi, and
therefore no player in B has xi.

Let (= be a specific assignment of Gen-SSS shares which encodes a secret
value x. Then for any other possible value y there exists a secret-sharing ~Y,
which encodes y, such that the projections of (~ and (u on the set B are identical.
~u is constructed from ~= by replacing the part xi by xi + (y - x), and thus the
change only affects the shares held by members of Qi. Therefore

Pr ({s~(x)}~es lx) = Pr ({s~(Y)}~eslY) ,

so the union of the shares of all the players in B gives no information about x.
!

382

3.2 T h e G e n - M P p r o t o c o l

The Gen-MP protocol for evaluating a circuit obliviously is the direct composi-
tion of protocols for linear combination and multiplication, described below.

C o m p u t i n g a l i nea r c o m b i n a t i o n Assume that two secrets x = ~ i ~ j xj and

Y = y~,m__j YJ are shared among the players according to the Gen-SSS scheme. Let
m

cz and/~ be fixed constants. The players represent z = ~ x + BY as z = ~ j = l zj
as follows. Each player u locally computes

s~(z) +- {zj +- ~x~ + ~y~}Q,~.
It is easy to see that the new s~,(z) shares are valid Gen-SSS shares for z,
and since the computation did not involve the exchange of any messages the
computation is Q-private.

m X m C o m p u t i n g a p r o d u c t As before let x = ~ j = l J and y = ~ j = l Y3 be shared
among the players according to Gen-SSS. The players aim to compute the prod-

rn rn
uct z = x .y = ~ i=1 Y~- xiy j . j = l

The protocol depends on a mapping p : [1 . . . m] x [1 . . . m] ~+ U, for which
p(i , j) E (Qi N Qj). Such a mapping p exists since by the intersection property
we have (Qi N Qj) r 0. We say that a player u is in charge of computing the
term x iy j if p(i , j) = u. In order to compute the product, each player u performs
the following steps:

1. Player u locally computes the sum of all the terms she is in charge of:
w~ +- ~ xiyj.

i,j:p(/,j)=~
2. Player u secret-shares the value w~ among all the players using the Gen-

SSS scheme. Namely, u computes a randomized sum-share version of w~ by
m

w~ = ~3=1 w~j, and sends the part w,,j to every player v E Qj.
3. After player u receives the parts (wvj}veU, Q~ou, she computes her share:

s~(z) ~ {z~ +- E ~v;}Q,~.
vEU

L e m m a 13. Protocol Gen-MP computes correct Gen-SSS shares of z = x . y.

Proof: Consider some quorum Qk. As before, by the intersection property the
members of Qk hold all the parts {zj}~_l, so they can compute the reconstruction

m function Y~j=I zj . Plugging in the expressions for w~ and w~, 3 we have that

m ~ m

Z z J = Y. woj = Z E = Z = Z Z x y;,
j = l j = l uEU uEU 3 = 1 uEU uEU i , j :p(i , j)=u

and since by the definition of p exactly one player is in charge of computing
every term xiy j , the last sum is equal to

~ x~y~ = x . y . |
z , j = l

T h e o r e m 14. Protocol Gen-MP computes x . y Q-privately.

383

Pro@ We wish to show that the information gained by B is no different than
if the input pieces were given to a trusted party who reconstructs x and y
then shares xy. It suffices to provide a simulator that can construct a perfectly
accurate view for B using only the z-shares returned to B by such a trusted
party.

By definition there exists some quorum Q E Q that is untainted, namely
Q M B = 0. Note, incidentally, that the trivial case in which Q is of size 1 is
easily dealt with - - the single, uncorrupted party behaves as a trusted monarch
and the protocol collapses, securely.

Let ~(B) = {k : QkMB ~ 0} be the collection of (indices of) tainted quorums.
Consider an n • m table of all the w~j values appearing in the protocol, whose row
sums correspond to the players' wu values and whose column sums correspond
to the final zj parts. Define the compromised region in this table to be

WB : {(U,j)Iu E B} U {(u,j)Jj e ~(B)}.

Along with the compromised values {w~,}~eB, WB indexes the values that B is
permitted to observe (within dishonest players or as received from good ones) in
the multiplication protocol. The remaining region of {wuj}, namely the values
indexed by WB, is not included in B's view, nor are {w~J~r

We describe how to simulate an execution and then show that the fake view
can be modified as needed when constraints on x, y or xy are made.

(1) Using the partial inputs {x3,yj}jc~(B) , we first calculate {w~,}~,eB di-
rectly. We run "bad" players in B honestly on these values, deriving a perfectly
accurate distribution for values {w~ 3 } for all u E B and all j. The remaining
compromised region lies in rows corresponding to uncompromised players. When
the {zj}jeZ(B) values are obtained from the imaginary trusted host, this compro-
mised region is generated uniformly at random, subject to column constraints:
~ u E u Wuj ~ Zj.

(2) In an actual execution, the values of {w~}~S are determined by the
input shares, then give rise to the sum-shares {w~j}, which B then partially
observes (i.e., those in WB). The values of {w~,}~eS are likewise determined
by input shares, but also revealed to B. For j E ~(B), the column sums are
determined by values revealed to B; for j !~ ~(B), the column sums include the
uncompromised region, which is chosen uniformly at random (subject to row
sums matching the uncompromised {w~}uCs).

Observe ("notably") that the second stage of experiment (1) is identical to
setting arbitrary values in {w~}~r and then choosing the compromised region
uniformly at random subject to row and column constraints. By the properties
of sum-sharing, this in turn is equivalent to setting parts x~ and Yi for i r ~(B)
to arbitrary values, executing honest programs on the results, and reporting only
the compromised portion {Wuj}u~B,jE~(B). (The B-view for rows in B is clearly
identical in both cases.)

Thus, experiments (1) and (2) provide identical distributions. As long as there
exist appropriate settings to the uncompromised values, the "notable" observa-
tion (previous paragraph) that shows the distributions are identical continues
to hold. Further, burdensome inspection shows that such settings always remain

384

possible, even when B learns further information, as when the final output value
is revealed or when gates are tied together in composition. (Indeed, B may be
able to calculate some secrets and uncompromised entries along the way, even
though it does not see them directly. The important point is that such entries
can always be found when facing the simulated views.) |

3.3 Communicat ion complexity

1 m P r o p o s i t i o n l S . Denote the average quorum size by q -- -~ ~-~3= 1 IQjl. Then
protocol Gen-MP sends nmq messages.

This and several other propositions are proved in the Appendix.

C o r o l l a r y 16. The communication complexity of protocol Gen-MP is O(n2m).

Our protocol performs quite favorably in comparison to the general construc-
tion of Hirt and Maurer [HM97], whose communication complexity appears to
be ~ (m 2 " 7 ~

To see this, observe that [HM97] involves a recursive construction in which a
set of players is replaced by three overlapping sets of players, each with size 2/3
of the original. The depth h of the recursion is thus determined by (2/3)hm <
3, which gives h ~ - l og3m/ (l og32 /3) > 2.7091og3m. The size (and hence
communication complexity) thus exceeds 3 h = f2(m2"7~

Because m grows with the number of coalitions and is therefore generally
exponential in the number of players, it is of far greater importance to reduce
dependence on m. Our protocol incurs only a linear factor of m, with a small
polynomial term in n.

4 E f f i c i e n t p r o t o c o l s f o r p a r t i c u l a r s h a r i n g s c h e m e s

4.1 T h e c r u m b l i n g wall protocol

The Crumbling Walls (CW) are a family of quorum systems due to [PW9?]. This
family includes, among others, the CWlog system (see Figure 1). The players in
a wall are logically arranged in rows of varying widths. A quorum in a wall is
the union of one full row and a representative from every row below the full row.
The best crumbling walls are those in which the top row has width nl = 1 and
every other row has width ni > 2. In [PW97] it is shown that such walls are
non-dominated coteries, i.e., their quorum access specification is unambiguous
(recall Definition 6). Note that many of the quorums in a crumbling wall are
small minorities - - in the wall depicted in Figure 1 the smallest quorums are of
size O(log n).

T h e C W - S S S s e c r e t s h a r i n g s c h e m e Our multi-party protocol is based on
the following secret sharing scheme, called CW-SSS, due to [NW96]. Consider a
wall CW of d rows, with row 1 having width nl = 1 and n, _ 2 for all i > 2. The
basic secret unit s is a single bit, therefore all the arithmetic in this section is over
GF(2) . This secret s is first randomly split into d bits such that al + ' " + ad = S.
Using these a~ bits we can define their partial parities, ti +-- al + . . �9 + a~-i, and

385

Fig. 1. A CWlog with n = 49 elements and d -- 15 rows, with one quorum shaded. In
this system row i has width [log 2iJ.

tl = 0. For a row i, split ti randomly into ni bits A~ such that AI + . . . + A ~ ' = ti.
J of the j ' t h element in row i contains two bits: ai and A{. The share s i

A quorum Q, which contains a full row i and a representative in each row
k > i can reconstruct the secret bit s from the shares {s~} generated by s =

+ (Ek_> ak)

T h e C W - M P p r o t o c o l Let secret x be shared using pieces (ar A~) and let
secret y be shared using (bi, B~). Linear combinations (z = c~x + BY) are trivial:
each player (i , j) performs the operation locally on the corresponding pieces:
(aai + ~bi, ~A~ + j3B~).

Multiplication is somewhat more complex, but it can be achieved through
appropriate application of sum-sharing. We use (i, j) to denote the j ' t h player
in row i.

J +- aiB~ + b~A~. 1. Local multiplication: Player (i, j) locally computes e i
J He then 2. Randomization: Player (i, j) in row i > 2 flips a random value r i .

J to the top player (1, 1), and 2a. sends r i
J J to all other players (i, k) in his row. 2b. sends e i + r i

3. Partial reconstruction:
nl j

3a. The top player (1, 1) sets c1 +-- albl - ~-~i>2 ~ j = l ri"
n l 3b. Player (i , j) in row i ~ 2 sets ci +-- a~b~ + ~-~j=l(e~ + r~).

It is not hard to verify that all the members of each row i compute the
d same value ci, and that ~'~i=1 ci = xy. We now want to share the progressive

parities of the ci's in the successive rows.
4. Sharing across rows below: In each row i -- 1 , . . . , d - 1 player (i ,1) sum-

nk shares ci into ci = ~ j = l t (i , k , j) for every row k = i + 1 , . . . ,d and sends
the share t(i , k , j) to player (k , j) .

386

5. Comput ing par i ty of rows above: Player (i , j) in row i > 2 sets C j
i - - 1 ~k=l t(i, k, j). Thereby each row i has secretly computed (without recon-

struction) the sum-share of the partial par i ty cl + .. �9 + ci-1.

The communication complexity of this protocol is clearly O(n 2) bits and
O(1) rounds of message exchange.

Proposition 17. The preceding protocols securely compute shares of z = c~x+fly
(resp., z = x . y) Q-privately according to the CWoSSS scheme.

4.2 The finite projective plane protocol

In this section we describe an efficient O(n 2) protocol for the case where the
underlying quorum system is a finite projective plane (FPP) [Mae85]. For a
prime r let t = r k for some integer k. Then the finite projective plane of order t
is a quorum system with n = t 2 + t + 1 players and m = t ~ + t + 1 quorums of size
t + 1. Moreover, each player is a member of t + 1 quorums, and the intersection
of every two quorums consists of a single player.

Note tha t since n = m and the average quorum size q ~ v ~ the general
protocol of section 3 already has a polynomial message complexity of O(n 2"5) for
the F P P system. However, here we can use a much more efficient secret sharing
scheme: The size of the share held by each player is 1 or 2, in comparison to
the O(m)-sized shares used in Gen-SSS. Thus the local computat ions in the
F P P - M P protocol take constant time.

The FPP-SSS secret sharing scheme In this section all the ari thmetic is
performed in the ring Zt, where t is the order of the finite projective plane. Let
x be the secret to be shared. As in Gen-SSS, x is represented randomly as a

m sum-share x -- ~ :=l xj (mod t). Then the share of player u is the sum of the
par ts corresponding to the quorums that contain u:

a~(x) +-- ~ xj (mod t).
Q: 9u

Proposition 18. FPP-SSS is a secret sharing scheme realizing the quorum ac-
cess specification (6(FPP), B(FPP)).

The F P P - M P protocol Assume tha t x and y are shared among the players
according to the FPP-SSS scheme. In order to compute z = c~x + fly Q-privately
the players locally compute a~(z) ~- ~a~(x) +/3a~(y). I t is clear tha t the resul-
tant shares are valid and no information was revealed by this computat ion.

To compute the product xy, each player u performs the following steps:

1. Player u locally computes the product w~ +-- au (x) �9 au (y).
2. Player u secret-shares the value w~ among all the players using the FPP-

SSS scheme. Namely, u computes a randomized sum-share version of w~ by
m Wu = ~ j = l wuj. Then for every v E U u computes auv = ~ Q j ~ v w~j and

sends ~uv to v.

387

3. After player u receives all the values {avu}.eu, she computes her share a , (z)

as a.(z) E. u

Lemma 19. Protocol F P P - M P computes correct F P P - S S S shares of z = x �9 y.

Proposition 20. The preceding protocols securely compute shares of z = ax+/3y
(resp., z = x �9 y) Q-privately according to the F P P - S S S scheme.

Remark: In the above scheme the arithmetic modulus t is tied to the system
size n since n = t2+ t + 1. To disconnect this tie, we devised a variant of the FPP-
SSS scheme in which the modulus can be arbitrary (e.g., we can use GF(2)) .
The price we pay for this extra freedom is tha t the share held by every player
will include an additional correcting term. We omit the details in this abstract.

4.3 Hierarchical quorum protocols

In the hierarchical quorum system (HQS), due to [Kum91], the individuals are
the leaves of a complete ternary tree in which internal nodes are 2-of-3 majori ty
gates. The related Tree quorum system [AE91] employs full ternary trees, but
the center child of each tree is a leaf. The HQS and Tree systems enjoy high
availability and tow load.

The HQS-SSS secret sharing scheme A secret sharing scheme for HQS
appears in [NW96]; here we give only a brief description of the construction,
which is essentially recursive Shamir sharing.

If p is a node in a ternary tree, let p.1, p.2 and p.3 be its children (if any).
This gives a natural labeling for nodes, e.g. "root.l.3.1.2." Let s p l i t (x) be
a distribution over GF(4) 3 obtained by selecting a random a and computing
(f(01), f (10) , f (l l)) where f (u) = au + x.

Sharing value v for secret x is straightforward recursion from the root:
S h a r e (x , v , p) sets x[p] +-- v if p is a leaf; otherwise set (Vl,V2,V3) @ s p l i t (v) ,
then recurse on Share(x, v~,p.i) (i = 1, 2, 3).

The HQ-MP protocol Let secret x be shared using pieces x[p] and let secret
y be shared using y[p]. To perform a linear combination (z = ax +/~y), players
simply perform the operation locally: zip] +-- ax[p] +/3y[p].

Although intuitively obvious, a recursive construction for multiplication us-
ing [BGW88, CCD88] requires some care. In particular, the internal nodes are
"virtual," namely represented by sets of players; thus otherwise obvious steps
such as "p sends m to q" are ill-defined when p and q are not leaf nodes.

The steps needed to apply [BGW88, CCD88] include linear combination and
multiplication of local values, and sending messages. (Sharing, reconstruction,
selecting random values, and degree reduction can be built with these primitives.)
It remains to be seen, therefore, how messages are sent from p to q.

There are four cases. I fp and q are leaves, m is sent directly. I fp is a leaf while
q is internal, p runs Share(mpa, m, q); mpa is the label for the secret message,
held by players under q. I fp is internal while q is a leaf, players under p send their

388

shares of m to q for reconstruction. If p and q are internal, then p.i recursively
"sends" its share of m to q.i (for i = 1,2, 3).

The communication cost of the overall construction is O(n 2) per gate. Be-
cause [BGW88, CCD88] can be executed with one multiplication per virtual
player, the primary concern is to measure the cost of "sending" messages.
Straightforward arguments show that the worst case trees are those that are
least balanced (e.g., all the subtrees lie under left children). In this extreme, the
cost of sending a message at height H from the bot tom is ~2(Hn). Multiplication
requires O(1) simulated messages for any particular troika; thus the net cost of
multiplication is O(n2).
R e m a r k : This protocol can be seen as a particular instance of the [HM97] con-
struction, if certain unconstrained choices are cleverly made; thus, a security
argument can be derived from [HM97, BGW88, CCD88]. Note, however, that
the constructive argument in [HM97] permits several degrees of freedom, most
of which lead to an exponential algorithm for these quorum systems.

Acknowledgments
We are very grateful to Daniel Bleichenbacher for many highly useful discussions,
and for introducing the result of Hirt and Maurer to us. We also thank Martin
Hirt and Ueli Manrer for discussions and comparisons of their work.

References

[AEgl]

[Bea91a]

[Bea91b]

[BG89]

[BH92]

[BGWSS]

[BKK94]

[BL88]

[Bla79]

D. Agrawai and A. E1-Abbadi. An efficient and fault-tolerant solution for
distributed mutual exclusion. ACM Trans. Comp. Sys., 9(1):1-20, 1991.
D. Beaver. Foundations of secure interactive computing. In Advances
in Cryptology - CRYPTO'91, LNCS 576, pages 377-391. Springer-Verlag,
1991.
D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. J. Cryptology, 4(2):75-122, 1991.
D. Beaver and S. Goldwasser. Multiparty computation with faulty majority.
In Proc. 30th IEEE Syrup. Foundations of Comp. Sci. (FOCS), pages 468-
473, 1989.
D. Beaver and S. Haber. Cryptographic protocols provably secure against
dynamic adversaries. In Advances in Cryptology - EUROCRYPT'92, LNCS
658, pages 307-323. Springer-Verlag, 1992.
M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Syrup. Theory o] Computing (STOC), pages 1-10, Chicago, Illinois,
2-4 May 1988.
S. Ben-David, M. Karchmer, and E. Kushilevitz. On ultrafilters and NP.
In Proceedings o] the 9th Annual Conference on Structure in Complexity
Theory, pages 97-105. IEEE Computer Society Press, 1994.
J. Benaloh and J. Leichter. Generalized secret sharing and monotone func-
tions. In Advances in Cryptology - CRYPTO'88, LNCS 403, pages 27-36.
Springer-Verlag, 1988.
G. 1%. Blakely. Safeguarding cryptographic keys. Proc. AFIPS, NCC,
48:313-317, 1979.

389

[CCD88]

[CFGN96]

[CK91]

[DDFY94]

[DGS85]

[Fiir88]

[GB85]

[GHYS8]

[GMR89]

[GMW86]

[GMW87]

[Her84]

[HM97]

[IK93]

[ISN87]

[Kum91]

[Mae85]

[MR91]

[MV88]

[NW94]

D. Chaum, C. Cr~peau, and I. Damgs Multiparty unconditionally secure
protocols. In Proc. 20th ACM Syrup. Theory of Computing (STOC), pages
11-19, Chicago, Illinois, 2-4 May 1988.
R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure mul-
tiparty computation. In Proc. 28th ACM Syrup. Theory of Computing
(STOC), pages 639-648, 1996.
B. Chor and E. Kushilevitz. A zero-one law for Boolean privacy. SIAM J.
Discrete Math., 4:36-47, 1991.
A. De Santis, Y. Desmet, Y. Frankel, and M. Yung. How to share a func-

tion securely. In Proc. 26th ACM Syrup. Theory of Computing (STOC),
pages 522-533, 1994.
S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned
networks. ACM Computing Surveys, 17(3):341-370, 1985.
Z. Ffiredi. Matchings and covers in hypergraphs. Graphs and Combina-
tomcs, 4:115-206, 1988.
H. Garcia-Molina and D. Barbara. How to assign votes in a distributed
system. J. ACM, 32(4):841-860, 1985.
Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In Advances in Cryptology -
CRYPTO'87, LNCS 293, pages 135-155. Springer-Verlag, 1988.
S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of in-
teractive proof systems. SIAM J. Computing, 18(1):186-208, 1989.
O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design. In Proc.
27th IEEE Syrup. Foundations of Comp. Sci. (FOCS), pages 174-187. IEEE,
1986.
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game,
or a completeness theorem for protocols with honest majority. In Proc. 19th
ACM Syrup. Theory of Computing (STOC), pages 218-229, 1987.
M. P. Herlihy. Replication Methods for Abstract Data Types. PhD thesis,
Massachusetts Institute of Technology, MIT/LCS/TR-319, 1984.
M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation. In Proc. 16th ACM Syrup. Princip. of
Dist. Comp. (PODC), pages 25-34, August 1997.
T. Ibaraki and T. Kameda. A theory of coteries: Mutual exclusion in dis-
tributed systems. IEEE Trans. Par. Dist. Sys., 4(7):779-794, 1993.
M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing gen-
eral access structure. In Proc. IEEE Global Telecommunication Conf.
(Globeeomm 87), pages 99-102, 1987.
A. Kumar. Hierarchical quorum consensus: A new algorithm for managing
replicated data. IEEE Trans. Comput., 40(9):996-1004, 1991.
M. Maekawa. A v ~ algorithm for mutual exclusion in decentralized sys-
tems. ACM Trans. Comp. Sys., 3(2):145-159, 1985.
S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology
- CRYPTO'91, LNCS 576, pages 392-404. Springer-Verlag, 1991.
S. J. Mullender and P. M. B. Vits Distributed match-making. Algorith-
mica, 3:367-391, 1988.
M. Naor and A. Wool. The load, capacity and availability of quorum sys-
tems. In Proc. 35th IEEE Syrup. Foundations of Comp. Sci. (FOCS), pages
214-225, 1994. To appear in SIAM J. Computing 1998.

390

[NW96] M. Naor and A. Wool. Access control and signatures via quorum secret
sharing. In Proc. 3rd ACM Con]. Comp. and Comm. Security, pages 157-
168, New Delhi, India, 1996. Also available as Theory of Cryptography Li-
brary record 96-08, h t tp : / / t heory . l cs . mit. edu /~ tc ryp to l /1996 , html.

[Owe82] G. Owen. Game Theory. Academic Press, second edition, 1982.
[PW97] D. Peleg and A. Wool. Crumbling walls: A class of practical and efficient

quorum systems. Distributed Computing, 10(2):87-98, 1997.
[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority. In Proe. 21st ACM Syrup. Theory of Computing
(STOC), pages 73-85, 1989.

[Sha79] A. Shamir. How to share a secret. Comm. ACM, 22(11):612-613, 1979.

Appendix
Proof of Proposition 15: The only messages sent by the protocol are the

shares w~j sent in step 2. Each player u sends the par t wuj to every player

v E Qj, giving: n ~ IQjl = nmq. I
j = l

Proof of Proposition 18: The reconstruction function for a quorum Qj is
the sum of all the shares held be the members of Qj. From the definition of the
shares, we know: ~ au(x) = ~ ~Q,~u x,. Since every two quorums intersect

uEQj uEQ~
in a single player, the par t xi appears once in the double summat ion for every
i ~ j . The par t xj itself appears t + 1 times, but since the ari thmetic is mod t,
the last sum equals x. Hence every quorum Qj can reconstruct x.

Now consider a set B E B(FPP) . Then by definition there exists some quorum
Qi e F P P such tha t Qi c_ U \ B. The par t x, appears in the sum au(x) only for
u E Qi. Therefore xi is independent of the shares held by members of B. From
this it is easy to see tha t the union of the shares of all players in B gives no
information about x. I

Proo] o] Lemma 19: First we show tha t the wu's sum up to z.

uEU uEU Q,~u Qi~u uE Qi~ ~' Q~ ~u

The te rm xiyj appears in the sum once for every u E Qi M Qj. Therefore x~yj
appears once when i ~ j and t + 1 times when i = j . Since we are working

mod t we conclude that ~ a~,(x)a~(y) = ~ xiyj = xy. Now consider some
uEU i , j=l

quorum Q,. Plugging av (z) into the reconstruction function for Qi we get

vCQi vEQ, uEU vEQ, uEU Qjgv uEU vEQ, Qigv

Now we use a similar trick (this t ime holding Qi fixed). For any u, the par t wuj
appears in the sum once for every v E Qi M Qj. Since we are working rood t,

uEU j = l uEU uEU

