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Abst rac t .  In this paper we describe a new recognition method that 
uses a subspace representation to approximate the comparison of binary 
images (e.g. intensity edges) using the Hausdorff fraction. The technique 
is robust to outliers and occlusion, and thus can be used for recogniz- 
ing objects tha~ are partly hidden from view and occur in cluttered 
backgrounds. We report some simple recognition experiments in which 
novel views of objects are classified using both a standard SSD-based 
eigenspace method and our Hausdorff*based method. These experiments 
illustrate how our method performs better when the background is un- 
known or the object is partially occluded. We then consider incorporating 
the method into an image search engine, for locating instances of objects 
under translation in an image. Results indicate that all but a small per- 
centage of image locations can be ruled out using the eigenspa~ce, without 
eliminating correct matches. This enables an image to be searched effi- 
ciently for any of the objects in an image database. 

1 Introduction 

Appearance based recognition using subspace methods has proven successful in 
a number of visual matching and recognition systems (e.g. [2, 6, 4, 3]). The 
central idea underlying these methods is to represent images in terms of their 
projection into a relatively low-dimensional space which captures the important  
characteristics of the objects to be recognized. The most effective applications of 
these methods have been to problems in which objects are fully visible, against 
a uniform background, and are nearly correctly registered with each other. For 
example, a particularly successful application is the recognition of faces from 
mugshots, where the head is generally about the same size and location in the 
image, and the background is a fixed color [4]. The main reason for these limita- 
tions is that  when extraneous information from the background of an unknown 
image is projected into the subspace, it tends to cause incorrect recognition 
results. This is a common problem in any window-based matching technique, 
where background pixels included in a matching window can significantly alter 
the match. 

In this paper we describe a new subspace recognition method that  is designed 
to handle objects which appear in cluttered images and may be part ly hidden 
from view, without prior segmentation of the objects from the background or 
registration of the image. This method is based on using subspace techniques to 
approximate the generalized Hausdorff measure [i], which measures the degree 
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of resemblance between binary images (bitmaps). We present some simple exper- 
iments which demonstrate that  the method performs well when the background 
is unknown or when the object is partially occluded, including in cases where 
methods based on the SSD break down. More importantly, we can detect when 
the approximation to the generalized Hausdorff measure is likely to select an 
incorrect match. In addition, we need not assume that  the location of the un- 
known object in the image is known. Instead we can incorporate our eigenspace 
matching methods into an image search engine, enabling the vast majori ty of 
image locations to be ruled out for all of the models in a large database. 

2 S u b s p a c e  a p p r o x i m a t i o n  o f  S S D  

Let I denote a two-dimensional image with N pixels, and let x be its represen- 
tation as a (column) vector in scan line order. Given a set of training or model 
images, Irn, 1 < m < M, define the matrix X = [xl - c , . . . ,XM -- c], where xm 
denotes the vector representation of I,~, and c is the average of the x,~'s. The 
average image is subtracted from each xm so that  the predominant eigenvectors 
of X X  T will capture the maximal variation of the original set of images. In many 
applications of subspace methods, the xm's are normalized in some fashion prior 
to forming X, such as making [IxmN = 1, to prevent the overall brightness of the 
image from affecting the results. 

The eigenvectors of X X  T are an orthogonal basis in terms of which the xm's 
can be rewritten (and other, unknown, images as well). Let hi, 1 ~ i ~ N, 
denote the ordered (from largest to smallest) eigenvalues of X X  T and let e~ 
denote each corresponding eigenvector. Define E to be the matrix [ e l , . . . ,  eN]. 
Then g m =  E T ( x r n -  c) is the rewriting of x,~ - c  in terms of the orthogonal basis 
defined by the eigenvectors of X X  T (the original xm is just the weighted sum of 
the eigenvectors). It is straightforward to show that Ilxm - x ,  II 2 = Ng,n - g~ll 2 
[3], because distances are preserved under an orthonormal change of basis. That  
is, the sum of squared differences (SSD) of two images can be computed using 
the distance between the eigenspace representations of the two images. 

The central idea underlying the use of subspace methods is to approximate 
xm using just those eigenvectors corresponding to the few largest eigenvalues, 
rather than all N eigenvectors, 

k 

Xrn ~ ~ g r n , e l  "~ C 
i--1 

for k < <  N (where gin. denotes the i-th element of the vector gin). This 
low-dimensional representation is intended to capture the important  charac- 
teristics of the set of training images. Let f m =  (gml, . . . ,g ,~k,  0 , . . . ,  0) and 
rrn ~- (0 , . . - ,0 ,  gmk+l,.. ",gmN), SO that  g m =  fm + rm. That  is, fm is the vec- 
tor of coefficients corresponding to the first k terms in the sum, and r m is the 
vector of remaining coefficients. The SSD, Ilxm -xn l ]  2, is then approximated as 
IIfm - f~ll 2. As this representation uses just the k predominant eigenvectors, it 
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is not necessary to compute all N eigenvalues and eigenvectors of X X  T (which 
would be quite impractical as N is usually many thousands). 

3 A p p r o x i m a t i n g  t h e  H a u s d o r f f  F r a c t i o n  

In this section we describe a subspace method for approximating the generalized 
Hausdorff measure. Note that we are now restricting the discussion to binary 
images, which can be thought of as representing sets of feature points on a grid 
(i.e., a binary image is 1 for points in the set and 0 otherwise). First we review 
the generalized Hausdorff measure. Given two point sets ~ and Q, with m and n 
points respectively, and a fraction, 0 < f < 1, the generalized Hausdorff measure 
is defined in [1, 5] as 

h f(~:~ Q) __. f th  minl lP-  qll, (1) 
pET ~ q~Q 

where th f~eT~g(P) denotes the f- th quantile value of g(p) over the set :P. For exam- 
ple, the 1-th quantile value is the maximum (the largest element), and the �89 
quantile value is the median. Equation (1) generalizes the classical Hausdorff 
distance, which maximizes over p E 7 ~. In other words, the classical distance 
uses the maximum element rather than some chosen rank. 

The generalized Hausdorff measure is asymmetric (as is the classical dis- 
tance). Given a fraction, f ,  and two point sets, 7 ~ and Q, h] (7 ~, Q) and h.f (Q, 7 ~) 
can attain very different values. For example, there may be points of P that are 
not near any points of Q, or vice versa. We can also use a bidirectional form 
of this measure, hyg(T', Q) = max(h/(7 ~, Q), hg(Q, P)). The bidirectional form 
is not robust to large amounts of image clutter, but it is useful in uncluttered 
images and for verification of hypotheses. 

The generalized Hausdorff measure has been used for a number of matching 
and recognition problems. One means of using the measure is to specify a fixed 
distance, d, and then determine the resulting fraction of points that are within 
that distance. In other words, to find the largest f such that hy(P, Q) _ d. 
Intuitively, this measures what portion of ~ is near Q, for some fixed neighbor- 
hood size, d. This has been termed "finding the fraction for a given distance." It 
measures how well two sets match, with larger fractions being better matches. 

The subspace method that we present in this paper is based on finding the 
fraction for a given distance. Assume that the points of :P and Q have integral 
coordinates and let P be a binary image denoting the set P, with a 1 in P 
corresponding to a point that is in :P and a zero otherwise. Similarly for Q and 
Q. We are interested in what fraction of the l 's in P are near (within d of) l 's in 
Q. Let Qd be the dilation of Q by a disk of radius d (i.e., each 1 in Q is replaced 
by a "disk" of l 's of radius d). The fraction for a given distance d is then 

q~d(P, Q) = •(p i% Qd) #(p) (2) 

where #(S)  denotes the number of l 's in a binary image S, and A denotes the 
logical and (or the product) of two bitmaps. This measure has also been termed 
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the Hausdorff fraction. It is the fraction of points in P that  lie within distance 
d of points in Q. 

Given two binary images, I..  and I . ,  if we let xm be the representation of 
Im as a column vector and xn be the representation of I~ (the dilated In) then 
#d(Im, In) can be computed as follows, 

O d ( I ~ ,  1 . )  --  ~ n  

The Hausdorff fraction, #~, can be approximated using the subspace approx- 
imation to the correlation. First we look at the relation between the correlation 
of two images and their representations in eigenspace, where, as above, gm and 
g.  are the rewriting of xm and x .  in the new coordinate system defined by the 
eigenvectors/3 of X X  T. 

~ .  _- ( ~  - ~ + ~)T(~n - c + ~) 
= ( ~  - c ) T ( ~ .  -- c) + (~r~ -- c ) %  + ( ~ .  -- c )Te  + Ilcll 2 

= g ~ g .  + ~ T ~  + ~T c _ ilcll ~ 

The last step follows from gTg,~ = (x,n -- C)T /3ET(x ,  -- C) = (Xm -- C)T(X, -- C) 
(i.e., dot products are preserved under an orthogonal change of basis). 

As in the SSD-based eigenspace methods, we approximate gm and g,~ using 
just the first k coefficients, which we denote by fm and f,~. Thus we note that  

= = f ~ f n  + rTmrn, because all the cross terms are 
zero. Hence the error in using f~f,~ as an approximation for g~g,T is r T r , .  While 
we cannot compute this error term efficiently we can bound its magnitude by 
Ilrmll' IIr~ll which can be computed efficiently. Therefore the true correlation 
z ~ x ,  lies in the range fT~f,~ + xTc + xTc _ Ilcll 2 + IIr-,ll' IIr~ll. 

To construct the Hausdorff eigenspace for a set of binary "model" images, 
x l ,  �9 . . ,  XM, form the matrix X = [xl - c , . . . ,  ZM -- c], where c is the centroid 
of the xm's. Compute and save the first k eigenvectors of X X  r (i.e., those 
corresponding to the k largest eigenvalues). For each of the x,~'s, compute fr~ = 
( g m ~ , . . . ,  9ink), where g,~, = eT(xm --c). Then compute x T c  and llx,~ll 2. Save 
this vector and two scalars for each xm. This is all the information needed to 
match the set of models to each unknown image. 

Once the above information has been computed and saved for each model 
image, an unknown image is processed by dilating it by d, forming the vector x~ 
from this dilated image, and computing fn and xTc. An explicit search of all of 
the models can be performed by computing the approximation to the Hausdorff 
fraction for each Xm and the (dilated) unknown xn, 

::m = f T  frt -4- XTmC + XTnC -- Ilcll = 

Note that each of the terms in this expression was computed and stored in 
forming the eigenspace, except for fTmfn. Thus the matching only requires a dot 
product of two k length vectors (just as in the traditional eigenspace matching 
techniques), plus a division and a few additions. 
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Fig. 1. Error introduced by the subspace approximation. (a) The dilated edges of an 
unknown image. (b) The edges after they have been projected into the eigenspace and 
then reconstructed using only the first 76 eigenvectors. 

3.1 Error in the Approximat ion  

The amount of error in -Prn as an approximation to ~d can be bounded by 
grn = (llrmH" HrnH)/(llXmH2), so  ~5 d lies in the interval [t~rn - e r n ,  F m §  em] (of 
course the true fraction can never be greater than 1). 

One issue with approximating the Hansdorff fraction is that  the unknown 
image is not necessarily well approximated by the eigenspace, because all of 
the model images are undiluted and the unknown image is dilated. For "thin" 
features like intensity edges, the dilated images are quite different in appearance 
and thus are not necessarily well represented by the eigenspace. Empirically 
we have determined that there is a smaller residual error in the reconstructed 
images when the model images are dilated and the unknown image is not dilated 
than when the reverse is the case. Thus, we approximate the Hausdorff fraction 
q~d(P, Q) : # i  F A Qd)/~(p) by ~r A Q)/~(P). This approximation is quite 
good for small d, which is generally the case as we use d -- 1 in order to allow 
for uncertainty in the edge pixel locations. 

In practice, the errors in the estimated fraction are considerably smaller than 
the error bound given above would predict. This is because the error bound is 
the worst case, which occurs when the two vectors are pointing in exactly the 
same direction and all of the errors multiply together. For cases where the true 
Hausdorff fraction is not large, the estimated fraction is typically very close 
to the true fraction (within d:.05). In order to examine the errors in the sub- 
space approximation to the Hausdorff fraction, we ran an experiment using a 
subset of the image set from [3]. This set of images consists of 20 different 
three-dimensional objects. 60 views of each object were created by placing each 
object on a turntable and capturing an image at regularly spaced rotations of 
the turntable. We downsampled these images to 64 • 64 pixels and used the 
even numbered views as the model image set and the odd numbered views as 
the unknown image set. In these experiments we used the 76 most significant 
eigenvectors to approximate the set of training images. Fig. 1 shows an example 
of a dilated image from this data set and the reconstruction of this image after 
projecting it into the eigenspace. Fig. 2 shows a plot of the approximate ttaus- 
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Fig. 2. Plot of the correct fraction versus the estimated fraction in the image subspace 
for an experiment with 100 model images and 100 unknown images. 

dorff fraction versus the true Hausdorff fraction for 10,000 pairs of model images 
with unknown images (that were not part of the training set). 

Note that  as the true fraction, ~d(Im, In), becomes large, the approximate 
fraction, F,~, sometimes underestimates the correct value. The reason for this is 
that,  in closely correlated images, rm and rn will have similar directions, which 
results in -Fro being less than ~d(Im, In). In the extreme case, if the dilated model 
image was exactly the same as the unknown image, then ~d(Im, In) would be 

underestimated by ~ r ' ~  ~ since rm and r~ would be the same. Of course, we will 
never reach this extreme since the model images are dilated and the unknown 
images are not. 

4 Matching experiments  

We now consider some experiments to evaluate the discrimination ability of 
these matching techniques. We are particularly interested in comparing the per- 
formance of these techniques with previous techniques using grey-level images 
(e.g., [3]) when the background is unknown or when the object is partially oc- 
cluded. These experiments used the image set from [3], with 30 evenly spaced 
views of each of 20 objects as the model set and 30 other evenly spaced views of 
each of the same objects as the set of unknown images. The backgrounds in all 
the images are dark black. 

Each of the 600 unknown views (not used in constructing the eigenspace) was 
classified as one of the 20 objects by finding the closest matching model view 
in the eigenspace. That  is, a trial was considered successful if the best match 
was from the same object as the unknown, regardless of the viewpoint of the 
unknown image and the best matching model image. For the grey-level matching 
both the model images and unknown images were normalized such that  each has 
a magnitude of one. We selected as the best match for an unknown image, the 



542 

(a) (b) 

Fig. 3. An example where the directed Hausdorff fraction yields an incorrect match, 
but the bidirectional measure does not. (a) The unknown image. (b) The incorrect 
match. 

model image with the minimum approximate SSD computed using the method 
described in Section 2 For the binary matching we computed edge maps for each 
image and selected the model image with the largest approximate ttausdorff 
fraction F~n as the best match for each unknown image. 

First it should be noted that using the actual Hausdorff fraction, ~d, to select 
the best matching view did not exhibit perfect performance in selecting the cor- 
rect object. It was successful in 96% of the trials (575 of 600). The reason that 
the true Hausdorff fraction was unsuccessful was typically due to unknown im- 
ages that had dense edges, such that the fraction of model pixels that were near 
image pixels was very high. This is because of the asymmetry of the ttausdorff 
distance, which only measures how well the model is accounted for by the image, 
and not vice versa. Fig. 3 shows an example. In this case, the sparse edges of the 
incorrect match were well matched by the unknown image, but reverse was not 
true. The bidirectional Hausdorff measure yields better results for this case (99% 
correct), since the images are uncluttered. This is anMogous to the SSD perform- 
ing better in uncluttered images; both the SSD and the bidirectional Hausdorff 
measure take advantage of the excess clutter to rule out possible matches, which 
results in neither being robust to significant image clutter. 

Using the unperturbed images the grey-level matching techniques have per- 
fect performance, while the I-Iausdorff subspace matching techniques are success- 
ful in 551 of 600 trials. Of the 49 unsuccessful trials, 23 were also unsuccessful 
when the true Hausdorff fraction was used to find the best match. One model ac- 
counted for 28 of the unsuccessful trials, with 8 other models accounting for the 
remaining unsuccessful trials. It is important to note that we can detect when 
the approximate Hausdorff match is likely to be incorrect. For the successful tri- 
als, the difference between the largest/~rn for a view of the correct object and the 
largest Fm for a view of any other object was .234 on average. In contrast, for the 
unsuccessful trials this difference was .015 on average, with a maximum value of 
.090. We should thus consider not only the match with the largest approximate 
Hausdorff fraction, but also any matches with approximate Hausdorff fractions 
that are nearly as large. The subspace version of the bidirectional measure was 
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Directed Bidirectional 
Image change  Grey- leve l  Hausdortf Hausdorff 
Unperturbed . . . . .  
Background=50 
Background=100 
Shift by 50 
Shift by 100 
25% occlusion 
50% occlusion 

100%(600) 
94%(564) 
41% (248) 
95% (568) 
48% (291) 
52% (314) 
49%(291) 

92%(551) 
93%(556) 
90% (542) 
92% (551) 
92% (551) 
87%(524) 
83%(5Ol) 

98%(589) 
97%(580) 
91%(546) 
98%(589) 
98%(589) 
94% (565) 
85%(507) 

Table 1. Summary of results for the subspace image matching experiments using the 
normalized correlation of grey-level images and the Hausdorff fraction of edge images. 
The results show the percentage (number) of trims out of 600 that were successful. 

successful in 589 of 600 trials. 
We next considered unknown images where the background had been changed 

to a uniform non-zero value. The overall image was still normalized to be a 
vector of unit length. When the background of the unknown images was changed 
changed to 50, the grey-level techniques were successful in 564 of 600 trials. 
When the background value was changed to 100, the grey-level techniques were 
successful in only 248 of 600 trials. These changes yielded little difference for the 
Hausdorff techniques, yielding 556 and 542 successful trials, respectively. When 
the grey-levels in the entire image were shifted up by 50 and 100 values, the 
grey-level techniques were successful in 568 and 291 trials, respectively. Such a 
shift had no effect on the the Hausdorff matching techniques. 

FinMly we returned to images with a uniform background, but in which the 
object had been occluded. We occluded 25% of the object by setting the upper, 
left quarter of the image to the background color in the grey-level images and 
by erasing the edge pixels in this region for the edge images. In this experi- 
ment, the grey-level techniques were successful in 314 trials, while the Hausdorff 
techniques were successful in 524 trials. When the entire left half of the im- 
age was occluded, the grey-level techniques yielded 291 successful trials and the 
Hausdorff techniques yielded 501 successful trials. 

Table 1 summarizes the subspace results for the grey-level matching tech- 
niques and for both the directed and bidirectional Hausdorff matching tech- 
niques. The Hausdorff matching techniques have uniformly good performance, 
whereas the grey-level techniques break down when the background or the total 
brightness is changed and when the object is partially occluded. 

5 Image search 

In many applications the positions of the object(s) that may be present in an 
image are not known. Moreover, current segmentation methods cannot reliably 
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Fig. 4. A cluttered image with some occlusion that was used to test the image 
search. (a) The original image. (b) The edges detected in the image. (c) The best 
matching view of the Anacin box. (d) The edges of the Anacin box overlaid on 
the full edge image at the location of the best match. 

determine the regions of an image that correspond to separate objects, except 
in very simple cases. In this section we consider the simple experiment of using 
the eigenspace approximations to rule out those locations (translations) in an 
unknown image that are a poor match in the subspace. As long as the vast ma- 
jority of the locations and models are eliminated, without eliminating the correct 
matches, we can use standard techniques to check the remaining hypotheses. We 
depend on the fact that the approximate Hansdorff fraction is nearly always 
close to (within 4-0.05 of) the true fraction to avoid ruling out correct matches 
(see Fig. 2). 

Fig. 4 shows an example of the kind of image that was searched in these 
experiments. The instance present in this image is the Anacin box, which is 
partially occluded. In this case the best match shown in the figure yielded a true 
Hausdorff fraction of 0.702 and the subspace methods yield an estimated fraction 
of 0.727. When we eliminate all translations that yield a best estimated fraction 
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below 0.7, 99.3% of the search space is pruned. A number of additional images 
yielded similar results. These experiments indicate that the subspace matching 
techniques can be used to eliminate most of the possible positions of the model 
images in a large unknown image without performing the full correlation at these 
positions. We thus expect these techniques to yield a considerable improvement 
in the speed of image matching techniques using the Hausdorff fraction. 

6 Summary 

We have considered a subspace method of approximating the Hausdorff fraction 
between two binary images. The use of edge images rather than grey-level im- 
ages has yielded robustness to lighting changes and unknown backgrounds and 
the Hausdorff fraction is robust to clutter and occlusion. The use of subspace 
matching allows individual matches to be processed much faster than a system 
that considers the full image space. This combination of techniques thus yields 
a system with the speed of subspace methods and the robustness of the Haus- 
dorff measure. In addition, we can incorporate these matching techniques into 
an image search engine. This allows us to perform matching between a library of 
model images and a large unknown image that may have clutter and occlusion 
and in which the positions of the model images are unknown. 
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