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Summary. In this paper we investigate the nature of the adapted ;solutions to 
a class of forward-backward stochastic differential equations (SDEs for short) in 
which the forward equation is non-degenerate. We prove that in this case the 
adapted solution can always be sought in an "ordinary" sense over an arbitrarily 
prescribed time duration, via a direct "Four Step Scheme". Using this scheme, we 
further prove that the backward components of the adapted solution are deter- 
mined explicitly by the forward component via the solution of a certain quasi- 
linear parabolic PDE system. Moreover the uniqueness of the adapted solutions 
(over an arbitrary time duration), as well as the continuous dependence of the 
solutions on the parameters, can all be proved within this unified framework. Some 
special cases are studied separately. In particular, we derive a new form of the 
integral representation of the Clark-Haussmann-Ocone type for functionals (or 
functions) of diffusions, in which the conditional expectation is no longer needed. 

Mathematics Subject Classification (1991) �9 60H10, 60H20, 60G44, 35K55 

1 Introduction 

Let (f~, ~-, P; {Yt}t => o) be a filtered probability space satisfying the usual conditions. 
Assume that a standard d-dimensional Brownian motion { W~}~ __> o is defined on this 
space. Consider the following forward-backward stochastic differential equations: 

t t 

(1.1) X, = x + f b(s, Xs, Y~,Zs)ds + f ~(s, Xs, Ys, Z ~ ) d ~ ,  
0 0 

T T 

(1.2) ~ = g ( X T ) +  fb(s,X~, Y,,Zs)ds+ f e(s, Xs, Y~,Zs)dW~, t e [ 0 ,  T ] ,  
t t 
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where (X, Y, Z) takes values in IR" x IR ~ x IR m• d and b, b, a, d and g are smooth 
functions with appropriate dimensions; T > 0 is an arbitrarily prescribed number 
which stands for the time duration. Our objective is to find a triple (X, Y, Z) which is 
{fft}-adapted, square integrable, such that the eqs. (1.1), (1.2) are satisfied on [0, T], 
P-almost surely. Such an adapted solution, if it exists, will be called an ordinary 
adapted solution (here the term ordinary is inherited from our previous paper [6], in 
which the adapted solution can have a relaxed form). One should note that it is the 
extra process Z that makes it possible for (1.1) and (1.2) to have an adapted solution 
(cf. [6,9,11]). 

In [6] we studied the solvability of such forward-backward equations over an 
arbitrarily prescribed time duration [0, T]. We showed, by designing an appro- 
priate relaxed stochastic control problem, that the solvability of the forward- 
backward SDEs (1.1) and (1.2) is equivalent to the non-emptyness of the nodal set 
of the viscosity solution to a certain Hamilton-Jacobi-Bellman equation. Using 
this new approach, we proved the solvability and non-solvability of a special class 
of forward-backward SDEs and we described exactly the nodal set of the corre- 
sponding HJB equation. We should note, however, that in general the adapted 
solution can only be found in a "wider" sense (cf. [6]). More precisely, the 
component Z is replaced by an adapted measure-valued process and the probabil- 
ity space is subject to change when necessary. Also, we note that the uniqueness of 
the adapted solution over an arbitrary duration was not studied in [6] since it 
basically requires the uniqueness of the optimal relaxed control, which is far from 
obvious. Therefore, the natural questions are: To what extent can one actually find 
an "ordinary adapted solution" over an arbitrarily prescribed time duration? Will 
such an adapted solution be unique? Also, in light of the result obtained in [6], we 
observe that sometimes the backward components Y and Z are determined 
completely by the forward component X via the nodal surface. On the other hand, 
in a special case when the forward equation does not depend on the backward 
components, Pardoux and Peng [10] discovered recently that the components of 
the adapted solution (X, I1, Z), whenever it exists, are explicitly related via the 
Malliavin derivatives; and the solution of the backward SDE is closely related to 
a class of quasilinear parabolic partial differential equations. Thus, one can hope to 
find an explicit solution (in some sense) for the strongly coupled forward-backward 
Eq. (1.1) and (1.2) via a certain quasilinear parabolic PDE system. This paper is 
devoted to answering these questions. 

We will show that for a fairly large class of forward-backward SDEs in which 
the forward equation is non-degenerate (that is, the coefficient a is non-degenerate), 
there do exist explicit relations between Y, Z and X in terms of a classical solution 
of a certain parabolic PDE system; and when such relations hold we not only 
obtain the ordinary adapted solutions of the forward-backward SDEs, but we also 
find the explicit form of the solutions. We carry out this idea by designing a generic 
scheme (which we call the "Four Step Scheme" in the sequel) to construct explicitly 
the adapted solution for forward-backward SDEs. With this scheme we can prove 
the uniqueness of the adapted solution over an arbitrary interval, which is not 
obtainable by the contraction mapping theorem (see [1]) and which seems not 
possible by a pure control theoretic argument like that of [6]. The continuous 
dependence of the solution on the parameters is also proved within this framework. 
It is worth noting that solving the parabolic system, which presumably gives the 
nodal surface of the viscosity solution to the corresponding HJB equation (cf. [6]), 
is already sufficient for our scheme to work. That is, one does not have to verify 
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whether or not it is really the nodal surface. Thus the technical difficulties are 
reduced in this special case. Finally, we would like to point out that the non- 
degeneracy of o- is essential for the existence of an adapted solution over an 
arbitrary time interval [0, T]; in fact, Antonelli's counterexample in [1_7 shows that 
otherwise the adapted solution may not even exist when the time duration T is 
large (see also [6] for other non-existence results). 

This paper is organized as follows. In Sect. 2 we formulate the problem and give 
some preliminaries. In Sect. 3 we study the solvability of the two essential steps in 
our "Four  Step Scheme". In Sect. 4 we give our three main theorems; and in Sect. 5 
we prove the continuous dependence and differentiability of the adapted solutions 
with respect to the parameters. In Sect. 6 we discuss the applications of our 
results to an integral representation theorem and compare it with the c l a r k -  
Haussmann-Ocone formula. 

2 Formulations of the problem 

In this paper we will only seek ordinary adapted solutions to the forward-backward 
equations, which we now describe. 

Let (fLo~, P) be a probability space carrying a standard d-dimensional 
Brownian motion W = {Wt: t > 0}, and let {0%} be the o--field generated by W(i.e., 
@t = a{W~: 0 _< s _< t}). We make the usual P-augmentation to each ~ t  so that ~-, 
contains all the P-null sets of ~ .  Then, {o~t} is right continuous and {0%} satisfies 
the usual hypotheses. Let us consider the following forward-backward SDEs: 

X, = x + f b(s, Xs, Ys, Zs)ds + f a(s, Xs, Ys)dWs, 
(2.1) o o t e [0, T3 

T T ' 

Y, = g(xT) + f &s, Ks, Ys, Zs)ds + f ~(s, Xs, Y~, Z~)dW~. 
t t 

Here, the processes X, Y and Z take values in IR", IR m and IR m• a, respectively; and 
the functions b, b, o-, ~ and g take values in IR", IR", IR "• IR m• and IR m, 
respectively. In what follows, we use the usual Euclidean norms in IR" and IR"; and 
for z ~ IR m • (resp. IR" • we define [zl = {tr(zzr)} 1/2, where "r , ,  means transpose. 
Then, IR m• (resp. IR "• is a Hilbert space. 

Definition 2.1 A triple of processes (X, Y, Z): [0, T] x f~ --+ IR ~ x IR m x R "• is 
called an ordinary adapted solution of the forward-backward SDEs (2.1), if it is 
{~t}-adapted and square-integrable, such that it satisfies (2.1) P-almost surely. 

Since we are looking only for ordinary adapted solutions in this paper, the term 
"ordinary" will be omitted from now on. Moreover, the adaptedness of the solution 
enables us to rewrite (see also [6]) (2.1) in a pure forward differential form: 

dX, = b(t, X,, Yt, Zt)dt + a(t, X~, Yt)dWt , 

(2.2) dYt = - b(t, Xt, rt, Z,)dt - e(t, Xt, Yt, Z t )dWt ,  t ~ [0, T ] ,  

Xo = x, YT = g(XT) . 

It is clear that (2.2) is a stochastic two point boundary value problem. 
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Let us first give a heuristic argument. Suppose that (Xt, Y,, Z,) is an adapted 
solution to (2.1) or equivalently (2.2). In light of the special case studied in [6], we 
assume that Y and X are related by 

(2.3) Yt = O(t, Xt) ,  Vt ~ E0, T ] ,  a.s. P ,  

where 0 is some function to be determined (in [6], 0 is the nodal surface of some 
HJB-equation). Suppose that all the functions involved are smooth, say at least C2; 
then by applying It6's formula, we have for 1 < k _< m: 

(2.4) dY~ = dOk(t, Xt) = {Okt(t, Xt) -4- <Okx(t, X t ) ,  b(t, Xt, O(t, Xt),Zt) > 

1 k + ~tr EO~(t, x,)~r(t, x~, O(t, xt))a(t, x~, O(t, xt))  Tj }dt 

+ <o~(t, x3,~(t, x~, o(t, x,))dW~>. 

Comparing (2.4) and (2.2), we see that if 0 is the right choice, then it is necessary 
that, for k = 1 , . . . ,  m, 

(2.5) 

and 

(2.6) 

- bk(t, Xt, O(t, Xt) ) = O~(t, Xt) + ( O~(t, Xt) , b(t, Xt, O(t, Xt) , Zt) > 

+ �89 [0~(t,  X,)a(t, X,, O(t, Xt))a(t, X~, O(t, XT)) T] ; 

O(T, XT) = g(XT) , 

Ox(t, xt)~(t, xt,o(t, x t ) )  = - ~(t ,  x~,  ~ ,  z d .  

The above arguments suggest that we design the following "Four  Step Scheme" to 
solve the forward-backward SDE (2.1). 

Four Step Scheme 

Step l Find a "smooth" (see Remark 2.1) mapping z: [0, T] •215215 
iRm •  _~ IR m • d satisfying 

(2.7) pa(t, x, y) + 8(t, x, y, z(t, x, y, p)) = O, 

V(t, x, y, p) ~ [0, T]  x IR" x IR m x IR ~ • 

Step 2 Using the function z above, solve the following parabolic system for O(t, x): 

f Okt + �89 x, O)a(t, x, O) T) + (b(t, x, O, z(t, x, O, Ox)), 01> 

(2.8) +bk(t,x,O,z(t,x,O,O~))=O, k =  1 , . . .  ,m, ( t , x )~(O,T)x]R n, 

O(T,x)=g(x) ,  x~ IR" .  

Step 3 Using 0 and z, solve the following forward SDE: 

t t 

(2.9) Xt = x + fff(s, Xs)ds + f ~(s, Xs)dW~ , 
0 0 

where/~(t, x) = b(t, x, O(t, x), z(t, x, O(t, x), O~(t, x) ) ) and 5(t, x) = ~(t, x, O(t, x) ). 
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Step 4 Set 

(2.10) 
{ ~ = o(t ,  x , ) ,  

z ,  = z(t, x , ,  o(t, x,), ox(t, x , )  ) . 

Then if this scheme is realizable, (Xt, Yt, Zt) would give an adapted solution of (2.1). 
The above Four  Step Scheme provides a generic method which of course can be 

applied to any forward-backward equation (e.g., to those systems in 'which a de- 
pends on z and z can take values in any Euclidean space IRe). However, in order to 
ensure that every step goes through, some restrictions on the data are inevitable. 
For instance in order for the parabolic system (2.8) to have a classical solution, and 
for the Eq. (2.7) to be solvable, we should have at least two reasonable assumptions: 
(1) the uniform parabolicity of (2.8); (2) the surjectivity of the mapping & We now 
give the standing assumptions of this paper. 

Standing assumptions. (AI) d = n; and the functions b, 19, a, 6 and g are smooth 
functions taking values in IR", IR", IR"• IR"• IRm, respectively, and with first 
order derivatives in x, y, z being bounded by some constant L > 0. 

(A2) The function o- satisfies 

(2.11) a(t ,x ,y)cr(t ,x ,y)r>v(ly])I ,  V ( t , x , y ) e [O ,T]x IR ' x IR  m, 

for some positive continuous function v('). 

(A3) For each fixed (t, x, y, z) e [0, T]  x IR" x IR m x IRm • the linear map d:~(t, x, y, z) 
5r . . . .  ) (the space of all linear transforms on IR m• is invertible with the inverse 
~( t ,  x, y, z)- 1 satisfying 

(2.12) ] la~( t , x ,y , z ) - l l l .~ (~ . )  < . t( lyl) ,  

(t,x,y,z) e [0, T]  x IR" x IRmx" X IR ~x" , 

for some continuous function 2(-). Moreover, for any (t, x, y) e [0, T]  x IR" x IRm, 

(2.13) {0(t, x, y, z) l z ~ IR"• = IR,~x, ; 

and there exists a positive continuous function K('), such that 

(2.14) sup{Izl l#( t ,x ,y ,z)=O) < x ( l Y l ) ,  V(t,x,y)erO, T]x IRnxIR  m �9 

(A4) There exists a function # and constants C > 0 and c~ e (0, 1), such that g is 
bounded in C2+'(IR m) and for all (t, x, y, z) e [0, T]  x IR" x IR" x IR, x,,, 

(2.15) Icr(t,x,y)t < C,  

(2.16) Ib(t,x,y,O)l < ~ ( l y l ) ,  

(2.17) Ib(t, x, O, z)l < C .  

Remark 2.1 Throughout  this paper, by "smooth" we mean that the involved 
functions possess partial derivatives of all necessary orders. We prefer not to 
indicate the exact order of smoothness for the sake of simplicity of presentation. 
Also, the boundedness of the first order derivatives in x, y, z requires only the usual 
uniform LipsChitz condition in these variables, which is close to necessary in order 
to have global well-posedness for any differential equations. From (2.12), we see 
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that  for any (t, x, y), there exists a unique z satisfying d(t, x, y, z) = 0. Thus, the 
"sup" on the left side of (2.14) can actually be removed. 

3 Solvability of (2.7) and (2.8) 

It is readily seen that  among all steps in our  Four  Step Scheme, the first two (i.e., the 
solvability of (2.7) and (2.8)) are essential. Thus we devote this section to these two 
steps, which can also be viewed as the preliminaries of our  main theorems in the 
following section. 'The first proposi t ion concerns the solvability of (2.7). 

Proposition 3.1 Suppose that (A1), (A2) and (2.12) hold. Then (2.7) admits a unique 
smooth solution z: [0, T ]  x IR" x IR" x IR m• --+ IR '~• if and only if (2.13) holds. 

In particular, (2,7) is solvable if the followin 9 holds: 

tr(d(t, x, y, z)z r) 
(3.1) lim = + 0 %  V ( t , x , y ) ~ [ O , T ] x l R " x I R  m. 

In addition, if (2.14) holds, then, the solution z(t, x, y, p) of  (2.7) satisfies 

(3.2) Iz(t ,x,y,p)l  < ~c([y[) + 2( ly l )a ( t , x , y ) l  Ip[, 

V( t , x , y ,p )~  [0, T ]  x 1R" x lRm x IR T M .  

Proof Recall that a solution of (2.7) is a mapping z: [0, T]  x IR" x IR m x IR "• -+ IR "x" 
satisfying 

(3.3) pG(t, x, y) + d(t, x, y, z(t, x, y, p)) = O, 

V(t, x, y,p) ~ [0, T ]  x IR" x IR m x IR T M  . 

Since all the functions involved are smooth and dz(t, x, y, z) is invertible as an 
element of s215 whenever a solution z( t ,x ,y ,p)  of (3.3) exists, it must  be 
smooth.  Moreover ,  such a solution is unique due to (2.12). Indeed, suppose for 
some (t,x,y), there exist z l , z2  ~IR m• with zl 4= z2, such that  ~(t,x,y,  zl) 
= ~(t, x, y, z2). Let  

(p(r) = @(t, X, y ,  r z  I q- ( 1  - -  r ) z 2 )  , r e 1-0, 1] . 

Since ~o(0) = ~o(1), there exists some r s (0, 1) such that  ~o'(r) = 0. In other  words, 

@z(t ,x ,y ,  rzl + (1 - r ) z 2 )  , z I - -  z 2 >  = 0 , 

contradicting (2.12). It is evident that  if (2.13) holds, then such a function z will exist. 
Conversely, because of (2.11), for any fixed (t, x, y), the range of the matrix function 
p ~-+pa(t, x,y) is all of 1R m• Thus, (2.13) has to hold if (3.3) has a solution 
z(t, x, y, p). Thus we proved the first par t  of the proposit ion.  

Now noting that  IR ~• under the norm I zl = (tr(zzr)) 1/2 is isometric to IR'% the 
condit ion (3.1) implies that  the map z ~-~(t ,  x, y, z) is surjective (cf. [2, Theorem 
1.3.3]) for each (t, x, y). This gives (2.13) and hence (2.7) is solvable. 

Finally, it follows immediately from (3.3) and (2.12) that, for ( t ,x ,y ,p)  
[0, T ]  x IR" x IR m x IR "• 

(3.4) ~pp (t, x, y, p) < ~.( I y l)o-(t ,  x, Y) I , 

whence (3.2) follows from (2.14) and (3.4). [] 
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We now turn to the solvability of (2.8). Resolving this step relies heavily on the 
theory of parabolic systems. Our main references are [5] and [13]. Let us first try 
to apply the result of [5]. Consider the following initial boundary value problem: 

f 0 k+ ~ aij(t,x,O)Ox, x j+ ~ bi(t,x,O,z(t,x,O, Ox))Ok~ 
i , j = l  i = 1  

(3.5) + 7)k(t' x, O, z(t, x, O, 0~)) = O, 1 < k < m, (t, x) e [0, T] x BR, 

0 I~B, = g(x), Ixl = R, 

O(T,x) = g(x), x s Be, 

where BR is the ball centered at the origin with radius R > 0 and 

I (aij(t, x, y)) = �89 x, y)cr(t, x, y)r, 

(bl(t,x, y, z),. . . , b,(t, x, y, z)) r = b(t, x, y, z), 

(bl(t, x, y, z), , bin(t, X, y, Z)) T = b(t, x, y, z). 

Suppose (A1) (A3) hold, then by Proposition 3.1, the solution z(t, x, y, p) of (2.7) 
exists and is smooth. We now give a lemma, which is an analogue of [5, Chap. VII, 
Theorem 7.1]. 

Lemma 3.2 Suppose that all the functions ai~, bi, ~k and g are smooth. Suppose also 
that for all (t, x, y) e [0, T] x IR" x IR m and p e IR m• it holds that 

(3.6) v( lY l ) I  < (aij(t, x, y)) < ,u(I y[)I ,  

( 3 . 7 )  ]b(t ,x ,y,z(t ,x ,y,p))] < g([y])(1 + [p]), 

(3.8) ar x, y) + ~ ar x, y )  < #(]y]),  

for some continuous functions #(') and v('), with v(r) > 0; 

( 3 . 9 )  [b(t ,x,y,z(t ,x,y,p))[ <=[~(lYl)+ P([Pl, lYl)](l  + lp[2), 

where P(]p], lYl)--' 0, as IPl--' ~ and ~(lYl) is small enough; 

(3.10) ~ bk(t ,x ,y ,z( t ,x ,y ,p))y  k < L(1 + lyI2), 
k - 1  

for some constant L > O. Finally, suppose that g is bounded in C2+~(IR ") for some 
e (0, 1). Then (3.5) admits a unique classical solution O(t, x). 

It is not hard to see from the proof that in the case g is bounded in C2 +~(IR"), the 
solution of (3.5) and its partial derivatives O(t, x), Or(t, x), O~(t, x) and Oxx(t, x) are a l l  
bounded uniformly in R > 0 since only the interior type Schauder estimate is used. 
Using Lemma 3.2, we can now prove the solvability of (2.8) under our standing 
assumptions. 

Proposition 3.3 Let (A1)-(A4) hold. Then (2.8) admits a unique classical solution 
O(t, x) which is bounded and Or(t, x), Ox(t, x) and Ox~(t, x) are bounded as well. 
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Proof We need check only that all the required conditions in Lemma 3.2 are 
satisfied. First, by Proposition 2.3 we know that there exists a smooth function 
z(t, x, O,p) satisfying (3.3) and (3.2). By (2.15), we further have 

(3.11) I z ( t , x , y , P ) I ~ ( l Y l ) +  ~( lY l )~( lY l ) IP l ,  

V( t ,x ,y ,p)  6 [0, T] x IR" x IR" x IR "• 

Now, we see that (3.6) and (3.8) follow from (A1), (2.11) and (2.15); (3.7) follows from 
(A1), (2.16) and (3.11); and (3.9)-(3.10) follow from (A1) and (2.17). Therefore by 
Lemma 3.2 there exists a unique bounded solution O(t, x; R) of (3.5) for which 
Ot(t , X; R ), Ox(t, x; R) and Oxx(t, x; R) together with O(t, x; R) are bounded uniformly 
in R > 0. Using a diagonalization argument one further shows that there exists 
a subsequence O(t, x, R) which converges to 0(t, x) as R ~ 0% and 0(t, x) is a classi- 
cal solution of (2.8), with O~(t, x), O~(t, x) and O~(t, x) all being bounded. 

Finally, noting that all the functions together with the possible solutions are 
smooth with required bounded partial derivatives, the uniqueness follows from 
a standard argument using Gronwall's inequality. [] 

Remark 3.4 Note that the solution z(t, x, y, p) of (2.7) is not bounded in general. 
Thus, (3.10) almost implies that b(t, x, y, z) is bounded for fixed (t, x, y) uniformly in 
z. This leads to our assumption (2.17) in the present framework. This assumption 
could be relaxed if we had some more information about l)(t, x, y, z) and the 
function z(t, x, y, p). 

4 Main theorems 

In this section we state and prove our main theorems concerning the existence and 
uniqueness of the (ordinary) adapted solution to the forward-backward SDEs (2.1). 
By slightly changing the conditions on the data, we can derive different forms of the 
results. We shall therefore consider three cases. 

1. The general case 

Theorem 4.1 Let (A1)-(A4) hold. Then the forward-backward SDE (2.1) admits 
a unique adapted solution (X, Y, Z) which has the expression (2.10) with z(t, x, y, p) 
and O(t, x) being the solutions of(2.7) and (2.8). 

Proof By Proposition 3.1 we know that there exists a unique smooth function 
z(t, x, y, p) satisfying (3.3). Next by Proposition 3.3, one can find a classical solution 
O(t, x) of the uniform parabolic system (2.8). Now we consider the forward SDE 
(2.9). Since under our conditions both b'(t, x) and 6(t, x) are uniformly Lipschitz 
continuous in x, we see that for any x e IR", (2.9) has a unique strong solution. Then, 
by defining Yt and Zt via (2.10) and applying It6's formula, we can easily check that 
(2.4) is satisfied. Hence, (X, Y, Z) is a solution of (2.1). 

It remains to show the uniqueness. First, we claim that any solution (X, I7, Z) of 
(2.1) must be of the form we constructed using the Four Step Scheme. Let (X, Y, Z) 
be any solution of (2.1). We define 

(4.1) ~ = O(t, Xt), Zt = z(t, Xt, O(t, Xt),Ox(t, Xt)) . 
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By applying It6's formula to O(t, X,) we have the following: 

(4.2) d ~  = dOk(t,X,) = (Okt(t,X,) + (O~(t,X,),b(t, Xt,Yt, Zt)) 

1 k + ~tr [O~x(t, Xt)(r(t, Xt, Yt) a(t, Xt, y,)T] }dt 

+ (O~(t, Xt),a(t, Xt, Yt)dWt) �9 

Thus, 

(4.3) d l L -  Yt[ 2 = ~ { 2 ( ' ~ -  ~){O~(t, Xt) + (O~(t,X,),b(t, Xt, Yt, Z,)) 
k = l  

1 k + ~tr[0~x(t, X~)a(t, X ,  Y,)a(t, X,, y~)T] + bk(t, X ,  Y~, Z3}dt  

+ tr[-(a(t, Xt, Yt)To~(t, Xt) + d(t, Xt, Y ,  Zt)). 

(a(t, X,, Yt)rO~(t, Xt) + d(t, Xt, rt, Zt))r]dt 

+ 2(~t -- Y~t)(a(t, Xt, rt)rox(t, X,) -- ~(t, Xt, Yt, Zt))dWt} �9 

Then, it follows that (note (2.7) and (2.8)) 

T n 

E l f , -  Y,I 2 - E  f Y" {2(I7~ - k k = r;){(Os(s,X~),b(s,X,, Y,,Z,) b(s,X~, Ys,2,)} 
t k = l  

+ �89 [O~(s, Xs)(ar X~, r~) - aaT(s, X~, I7,))] + bk(s, X~, Y~, Z~) 

- bk(s, Xs, IVs, Z~)} + tr [(a(s, X~, Ys) r -- a(s, Xs, Y~))O~(s, X~) 

+ ~(s, Xs, Y~, Zs) - a(s, x~, Y~, z~) ] .  

[(o-(s, x~, L )  ~ - ,~(s, x , ,  L))O~(s, x~) 

(4.4) + &(s, X~, Y~, Z s ) -  d(s, X~, Ys, Z,)]T}ds . 

Hence, by the boundedness of 0x, 0x~ and the boundedness of a and the first 
derivative of b, o-, b, #, we have 

T 

(4.5) Elf-t - Ytl 2 + f Eld(s,X,,  Ys, Z s ) -  4(s, Xs, f,,iZ~)j2ds 
t 

T 

< C f E I Y , -  Y~I(I L -  Yst + 1 2 , - Z ~ l ) d s .  
t 

By (A3) we see that for any fixed (t, x, y) (we suppress these three arguments below) 

(4.6) [z - ~[ = [e- le(z)  - d-l~(z) ] 

) ~2 ~(~(z -) + z(~(z) - e(zO))d~(e(z) - e(e)) 
0 

<2(Jyl)Jd(z)-~(z ' ) [ ,  V z , ~ I R  "• 

We now estimate the right side of (4.5). Using the Lipschitz condition of d, 
the uniform boundedness of ITt = O(t, Xt), and the fact that lab[ < ~aZ+ ~b  2 
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for any e > 0, we see that 
T 

(4.7) f E [ I Y s -  Y~l ( I rs -  Y~l + l Z s - 2 ~ l ) ] d s  
t 

T 

< f{E[IY~ - ?~12 + E[IY~ - ?,l;~(Ifsl)lO(s, Xs, ? s ,Z~) -  ~(s,X~, Ys, NA[3)ds 
t 

T 

< f {C'EIY~ - LI  2 + C'E[IY,  - 2"~lld(s, Xs, Y~,Zs) -  ~(s, Xs, f~,2~AI]}ds 
t 

r 1 
< f {C'EIY, - ?sl 2 + ~EIO(s ,X~ ,  Y~,Zs) - O(s,X,, ?~,2AI2}ds, 

t 

where C is the constant appearing in (4.5) and C' is a generic constant which may 
vary from line to line. Thus it follows from (4.5) that 

t 

1 fE l~(s ,X~ ,  Y~,Zs) - ~(s,X,,  ~s, Ys)lZds (4.8) El Yt -- Y, ] 2 + 

T 

< C ' f E t Y s -  y~12ds. 
t 

By using Gronwall's inequality, we conclude that 

(4.9) Yt = I~,, 4(t, Xt, Yt, Zt) = #(t, Xt, "~t, 2~t), a.s.P. 

An argument similar to that in Proposition 3.1 shows that Zt = Z~, a.s.P.; Thus any 
solution of (2.1) must have the form that we have constructed, proving our claim. 

Finally, let (X, I1, Z) and (X, IT, Z) be any two solutions of (2.1). By the previous 
argument we have 

(4.10) Yt=O(t,  Xt), Z t=z ( t ,  Xt, O(t, Xt),O~(t, X t ) ) ,  

?, = o(t,s 2~ = z(t,~,,o(t, YO, o~(t,s 
Hence Xt and 2~t satisfy exactly the same forward SDE (2.9) with the same initial 
state x. Thus we must have Xt = )(t, Vt ~ [-0, T], a.s.P., which in turn shows that 
Yt  = Y t ,  Z t  = Z't, '7't ff [-0, T], a.s.P, by (4.10). The proof is now complete. [] 

2 Special case I: b has linear growth in z 

Although Theorem 4.1 gives a general solvability result of the forward-backward 
SDE (2.1),the condition (A4) is rather restrictive; for instance, the case that the 
coefficient b(t, x, y, z) is linearly growing in z is excluded. This case, however, is very 
important for applications in optimal stochastic control theory. For example in the 
Pontryagin maximum principle for optimM stochastic control, the adjoint equa- 
tion is of the form that the corresponding b is affine in z. Thus we would like to 
discuss this case separately. 

In order to relax the condition (A4), we compensate by considering the follow- 
ing special forward-backward SDE: 

X, = x + f b(s,X,, G, Zs)ds + f ~(s, Xs)dWs,  
(4.11) o o t E [0, T] 

T T 

Y, = g(xT) + f b(s, x~, Ys, ZAds + f O(s, xs,  Y~, ZAdW~. 
t t 
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We assume that a is independent of Yt and Zt, but we allow b to have linear 
growth in z. In this case, the parabolic system looks like the following (compare 
with (2.8)): 

( 0~ + �89 x)a(t, x) r) + (b(t, x, O, z(t, x, O~ 0k)), 0~5 

(4.12) + t)k(t, X, O, z(t, X, O, Ox)) = O, 1 < k <_ m, (t, x) ~ [0, T] x IR n, 

O(T, x) = g(x),  x ~ IR". 

Since now b has linear growth in z, the result of [5] does not apply. We use the 
result of [13] instead. To this end, let us rewrite the above parabolic system in 
divergence form: 

?1 

I O~ + ~ (aij(t,x)O~)~, =fk(t,x,O, Ox), (t,x) E [0, r ]  xlR m, 
(4.13) i,~=1 k =  1 , . . . , m ,  

O(T,x)=g(x),  x~IR", 

where 

(4.14) 

(aij(t, x)) = �89 x) r , ~, 

fk(t, X, y, p) = aij~j(t, x)p~ -- bi(t, x, y, z(t, x, y, p))p~ 
i , j = l  i = 1  

-- bk(t, x, y, z(t, x, y, p)). 

From [13], we know that for any T > 0, (4.13) will have a unique classical solution, 
global in time, provided the following conditions hold: 

(4.15) vI < (aij(t,x)) <= #I, V(t,x) 6 [0, T] x IR", 

(4.16) ykfk(t, x, y, p) <= e0ipl 2 + C(1 + ]yl2), 
k = l  

V(t ,x ,y ,p)~ [0, T] x IR" x lRm x IR "xm , 

where v, #, C, to are constants with to being small enough. (To fit the framework of 
[13], we have taken H = ]y]2,  c k __ 0 and r k -- O, k = 1 , . . . ,  m. See [13] for details). 
Therefore, we need the following assumption: 

(A5) There exist positive constants v, it, such that 

(4.17) vI < 6(t, x)a(t, x) r < #I, V (t, x) ~ [0, T] x IR ~ , 

(4.18) Ib(t,x,O,O)l, Ib(t,x, 0,0)l < ~, V( t ,x)e  [0, T] xlR".  

Moreover, (A2)-(A3) hold with 2 being independent of y and ~c(]yl) having no 
more than linear growth in l yl. 

Theorem 4.2 Suppose that (A1) and (A5) hold. Then (4.11) admits a unique adapted 
solution (X, Y, Z). 
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Proof In the present case, similar to Proposition 3.1, there exists a unique smooth 
function z(t, x, y, p) satisfying 

(4.19) pa(t, x) + ~(t, x, y, z(t, x, y, p)) = O, 

V ( t , x , y , p )~  [0, T]  x IR" x lRm x IR TM. 

Moreover, we have the estimate (see (3.2)) 

(4.20) Iz( t ,x ,y ,p) l  < C(1 + lY[ + Ipl) 

V( t , x , y ,p )  e [0, T]  x IR" x lRm x IR . . . .  

Therefore conditions (4.15) and (4.16) hold, which will lead to the existence and 
uniqueness of classical solutions of (4.13) or (4.12). Next, applying an argument 
similar to the one we used in the proof of Theorem 4.1, we can show that there 
exists a unique adapted solution (X, Y, Z) of (4.11). 

Remark 4.3 It is not hard to see that since b(t, x, y, z) is uniformly Lipschitz 
continuous in (y, z) (see (A1)), (4.16) gives that 

(4.21) Ib( t ,x ,y ,z) l  < C(1 + lYl + IPl) ,  

V( t , x , y , z )  e [0, T]  x 1Rn x IRm x IR m• 

In other words, the function b is allowed to have a linear growth in (y, z). 

3 Special case II: m = 1 

Unlike the special case I, this is the case in which the existence and uniqueness 
result can be derived for a more general system than (2.1). The main reason is that 
in this case, the function O(t, x) is scalar valued, and the theory of quasilinear 
parabolic equations is much more complete than that for parabolic systems. 
Consequently, the corresponding results for the forward-backward SDEs will 
allow more complicated nonlinearities. Remember that in the present case, the 
backward component is one dimensional, but the forward part is still n dimen- 
sional. This is exactly the case when we discuss the integral representation formula 
in the next section. 

We can now consider more general forward-backward SDEs: 
t t 

I x ,  = x + fo b(S, Xs,  Y ,zs)ds + of Xs, Ys, z )dW, , 
(4.22) t e [0, T]  

T T 

Y, = g(Xr)  + f b(s, X~, gs, Zs)ds + f #(s, Xs, Ys, Z~)TdWs �9 
t t 

Here Wis an n-dimensional standard Brownian motion, b, a, b, ~- and g take values 
in IR", IR "x", IR, IR" and IR, respectively. We use the convention that all vectors are 
column vectors (thus we have &(t, Xt,  Y,, Z,) T in the above). We note that (4.22) is of 
the same form as (1.1)-(1.2); and the difference between (4.22) and (2.1) is that we 
now allow a to depend on Z. In what follows we will try to use our Four  Step 
Scheme given in Sect. 2 to solve (4.22). To this end, we first need to solve the 
following equation for z: 

(4.23) a(t, x, y, z)Tp + d(t, X, y, Z) = 0 .  
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Let us make the following assumptions. We keep the assumptions (A1), (A3) with 
m = 1 and replace (A2) by the following: 

(A2)' There exist a positive continuous function v(.) and a constant C > 0, such that 

(4.24) v(]yl ) I  < a(t,x, y ,z)a( t ,x ,  y,z)r < CI , 

V(t ,x ,y ,z)  s l-0, t ] x  IR" x IR xlR".  

We have the following result. 

Proposition 4.4 Let (A1), (A2)' and (A3) hold. Then there exists a unique smooth 
function z(t, x, y, p) that solves (4.23) and satisfies (3.2). 

The proof is the same as that of Proposition 3.1. 

Theorem 4.5 Let (A1), (A2)' and (A3) hold. Let the function 9 be bounded in C 2 +~(IR") 
for some ~ ~ (0, 1) and suppose that there exists a constant C > 0 such that for all 
(t ,x)s [0, T] xlR", 

(4.25) Ib(t,x,O,O)l + Ib(t,x, 0,0)l + [e(t,x, 0,0)[ < C .  

Then, there exists a unique adapted solution (X, Y, Z) of (4.22). 

The proof is omitted here because it is similar to that of Theorem 4.1. We should 
note that the well-posedness of (2.8) in the present case (m = 1) follows from 
[5, Chap. V, Theorem 8.1].^We see that the condition (4.25) together with (A1) 
means that the functions b, b and ~ are allowed to have linear growth in y and z. 

5 Dependence of solutions on parameters 

In this section we study the dependence of the solution of forward-backward SDEs 
(2.1) on parameters, which will be useful in applications. We show that all the tasks 
can be accomplished under a unified framework--the Four Step Scheme. Consider 
forward-backward SDE with a parameter: 

t t 

(5.1) ( xt = x(~) + f b(~,s, Ys, Z,)ds + f ~(~,s, Y~)dWs ; 

Yt = o(~, Xr) + f b(~, s, Xs, Ys, Z~)ds + f ~(~, s, Xs, Y~, Zs)dV/~, 
t t 

where e is a parameter taking value in a metric space, say A. The solution of (5.1), 
whenever it exists, will be denoted by (X(c~), Y(e), Z(e)). Let us make the following 
basic assumption: 

(A6) The functions b(~ . . . . . . . .  ), b(~ . . . . . . . .  ), a(e . . . . . . . .  ), d(~ . . . . . . . .  ) and 9(~, .) 
satisfy the standing assumptions (A1)-(A4), uniformly in c~ e A. 

It is readily seen that under the assumption (A6), for each c~ ~ A and any T > 0, 
the adapted solution (X(c~), Y(e), Z(e)) of (5.1) exists and is unique on [0, T]. 
Furthermore, let us introduce the notion of 5 ~ (resp. 5O(B)-) continuity and 
differentiability of Krylov (cf. [41). 
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Definition 5.1 An IR<valued process { ~t(c~): t > 0} with parameter c~ s A is called 
5f-(resp. 5~(B)-) continuous at ~o ~ A if 

(5.2) ~ o l i m E { f l ( G ( ~ ) - G ( ~ ~  = 0 " o  

(resp. 

(5.3) ~-~olim E{o_<t<rsup ] ~t(a)--~,(Cto)lZ} = O) �9 

~(c~) is called ~ -  (resp. 54'(B)-) differentiable at :~o if for all I e IR e, the limit 

(5.4) 

(~)-limr ir {[((~o + rl) - ~(eo)] 

resp. (~(B))- [~(C~o + rl) ~(c%)31 
1 \ 

lim 
r~*O r / 

exists. In this case, the limit process is called the ~-(resp. ~(B)-)  derivative of ~(c~). 
Our main result of this section is the following. 

Theorem 5.2 Suppose that (A6) holds. I f  for each t ~ [0, T], the functions b, 1), a, 
and g together with their first order partial derivatives in x, y, z are continuous with 

respect to ~; and x(c~) is continuous at c% ~ A, then the adapted solutions (XdcQ, Yt(c~), 
Zt(o~)) of (5.1) is ~ ( B ) -  (whence S - )  continuous at c%. 

Moreover, if x(~), g(~, x) are i times continuously differentiable in ~ and x, and for 
fixed t, the functions b, b, a and ~ are all i + 1 times continuously differentiable with 
respect to the variables ~, x, y and z; and all the derivatives (up to order i + 1) above 
are at most polynomial growth in x, y and z, uniformly in t and ~, then the solution 
(X(cO, Y(oO, Z(o:)) is i times ~s with respect to o~. 

Proof (i) Continuous dependence. We shall check our main scheme step by step. 
First of all, if o-(., t, x, y) and ~(-, s, x, y, z) are continuous at ~o, then obviously, the 
implicit function z(s, x, y, p; ~) of the equation 

(5.5) pa(~, t, x, y) + ~(~, t, x, y, z(t, x, y, p; ~)) = 0 ,  

which always exists by (A6), will be continuous (in c 0 at ~o c A. 
Next consider the parabolic system with parameter: 

I 
0t k + �89 t, x, O)a(a, t, x, O) T) "3v (b(a, t, x, O, z(t, x, O, Ox; ~)), 0~} 

(5.6) + dk(a, t ,x ,O,z( t ,x ,O,  Ox;~))=O, k =  1 . . . .  ,m, 

o(r,x)=g(~,x), x~iR". 

Using the assumptions of the theorem it is easy to see that the solutions of (5.6), 
denoted by O(t, x; ~), will be continuous in e at eo for fixed (t, x)E [0, T] x IR". 
Moreover, it is not hard to check that Ox(t, x; c 0 is continuous at eo as well. 

Now we turn to the third step. Consider the forward SDE: 

(5.7) Xt = x(oO + f 5(~, s, X,)ds + ~(~, s, X,)dW,, 
0 0 
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where 

{ b(a, t, x) = b(a, t, x, O(t, x; o:), z(t, x, O(t, x; ~), Ox(t, x; c0;~)); 

(5.8) 6(c~, t, x) = a(a, t, x, O(t, x; o0 ) . 

Let us denote the solution of (5.7) by X(c~). Theassumption of the theorem and the 
results from the last two steps show that both b and 6 are continuous in ~ at c% for 
fixed (t, x) E [-0, T] x IR". Hence by a continuous dependence theorem (cf. [4]), we 
have 

(5.9) A~ - lim Xt(a)= Xt(c%). 

Finally, recall from Theorem 4.1 that the adapted solution of (5.1) must have the 
form 

(5.10) YJ~) = O(t, Xt(c(); e); Zt(~) = z(t, Xt(cO, O(t, Xt(~); ~), O~(t, Xt(c(); e); c0, 

the conclusion follows immediately from (5.9). 

(ii) Differentiability. We again follow the Four Step Scheme. First, by our assump- 
tion, the solution z(t, x, O, p; ~) will be i times differentiable with respect to x, 0, p 
and c~ for each fixed t. Second, the solution O(t, x; ~) (together with Ox(t, x; ~)) of the 
parabolic system (5.6) will also be i times differentiable for fixed t, with respect to 
x and c~. Therefore the functions b'and ff defined by (5.8) are all i times continuously 
differentiable with respect to e and x; and their derivatives (up to order i) are at 
most polynomially growing in x, uniformly in t and c~. Thus, by [4, Theorem 2.8.4], 
the solution X(e) of(5.6) is i times L*~ fact 2'(B)-) differentiable. The conclusion 
then follows easily from the expression (5.10) for Y(e) and Z(a). The proof is now 
complete. [] 

6 An integral representation formula 

In this section we consider a special case: b - 0 and ~ = - z. We shall derive an 
integral representation formula for functions (or functionals) of diffusions via our 
explicit solution of forward-backward SDEs. The forward-backward Eqs. (2.1) now 
take the form: 

(6.1) { 

From our Four Step Scheme, we know that if we define 

(6.2) z(t, x, y, p) = pa(t, x, y), V(t, x, y, p) E [0, T] x IR" x IR" x ]R m • , 

and let O(t, x) be the classical solution of the following parabolic system: 

{ Okt + �89 x, O)a(t, x, O) T] + (b(~, x, O, z(t, x, O, Ox)), 0~) = O, 

(6.3) k = 1 . . . . .  m; 

O(T, x) = g(x),  

t t 

X~ = x + f b(s, Xs, Y~,Zs)ds + f a(s, Xs, Ys)dW,, 
0 0 

T 

Y, = o ( x ~ )  - f Z s d W ~  , t ~ [0, T]. 
t 
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then we can derive the (unique) adapted solution of (6.1) by first solving the 
following forward SDE: 

(6.4) 

where 

t t 

x,  = x + f ~(s, Xs)ds + f 6(s, X,)dV~, 
0 0 

f b(t, x) = b(t, x, O(t, x), Ox(t, x) a(t, x, O(t, x))); 
(6.5) 

~(t, x) a(t, x, O(t, x)) ,  

and then setting Y, = O(t, X,) and Zt = O~(t, X,)a(t, Xt, O(t, Xt)). Further ,  letting 
t = 0 in the second (backward) equat ion in (6.1), we get 

T 

(6.6) Yo = 9(XT) -- f O~(S, X,)a(s, X,,  O(s, X,))dWs . 
0 

Note  from (6.1) that 

(6.7) Yt = E{g(XT)[O~t} , t ~ [ 0 ,  T ] ,  

and since fro is a trivial a-field, Yo is non-random,  hence Yo = E Yo = Eg(XT) and 
(6.6) can be rewritten as 

T 

(6.8) g(XT) = Eg(XT) + f O~(s, XAa(s, X~, O(s, X~))dW~ . 
o 

We see that (6.8) provides an integral representat ion for g(XT). A more  general 
formula is the C l a r k - H a u s s m a n n - O c o n e  formula, which is (in this case): 

T 

(6.9) g(XT) = Eg(XT) + f E{D,g(XT)I~}dW~ , 
0 

where D is the "Malliavin derivative" opera tor  (cf. [7] or [8]). To  see the relation- 
ship between (6.8) and (6.9), note  that  since X is the solution of (6.4), which is 
actually a diffusion, we can calculate E{Dsg(XT)Io~,} as follows: 

Dsg(Xr) = g~(XT)D~XT , 

and 

t ) 
D~(XT) = if(s, Xs) + f K~(r, Xr)DsXrdr + ~Tx(r, Xr)DsX, dW, , 

s s 

for 0 < s _< t _< T. Thus fixing s and letting ut = DsXt, we have that  u is the solution 
of a linear SDE. Fo r  simplicity, we now assume that  m = n = 1. Then  it is known 
(cf. [12]) that  ut has an explicit form: 

(6.10) u, = ~ ( z ) , ~ ( s ,  Xs), 

where d~ denotes the Dol6ans -Dade  stochastic exponential  of Z and 

t t 

Z, = fff~tr, X,)dr + fax(r,  X,)dW~. 
s s 
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In other  words, 

(6.11) g(Z)~ = exp { Z ~ -  ~-[Z, ZJt}  

= exp 6x(r, Xr)dWr + b~(r, X~) - ~ 
s 

Therefore  (in the case m = n = 1) we have 

(6.12) E{D~g(XT) I~~} = E{g~(XT)D, XTIo~,} = E{g~(XT)e(Z)T I ~-,}~?(s, X~). 

Fur thermore ,  if we let ~o(x; s, T)  denote  the flow of X from s to T given Xs = x (cf. 
[12, Sect. V-7] ), then 

~{a~(x~)e(z)~  I g~} = I-I(Xs, s, r ) ,  

where 

{ IT H(x, s, T) = E gx(~o(x; s, T))exp f 6~(r, ~o(x; s, r))dWr 

~r~(r, q~(x; s, r) dr , 
8 S 

and we are able to conclude (for m = n = 1): 

T 

(6.13) g (Xr)  -~ Eg(Xr) + f H(Xs, s, T)f(s, Xs)dW~ 
0 

directly from the Ocone  formula. The function H(x, s, T) is however  not  amenable  
either to closed form expression nor  to simple computat ions.  But if we compare  
(6.13) and (6.8), then we have H(Xs, s, T) = Ox(s, Xs). 

For  general m and n, we have that  DsXt solves a linear system of  SDEs, and 
hence it has a closed form solution (see [12, p. 271]), and we can again obtain 
informat ion from the Ocone  formula, but  it will be more  complicated (a simpler 
argument  without  using Malliavian derivatives is given at the end of this section). 
The next theorem shows that  in this case, our  formula is simpler. 

Theorem 6.1 Under assumptions (A1)-(A4), let X solve (6.8). Then 

T 

g(Xr)  = Eg(Xr) + f E{Dse(XT)I~}dW~ 
0 

T 

= Ee(Xr) + f Ox(s, Xs)~(s,X,)dW,. 
0 

Consequently, E { D~g(X r) ] ~ ,  } = Ox(s, Xs)~(s, X,), dP | &-almost surely. 

Proof The first equality is the Ocone  formula (cf. [9]); the second is (6.8), and 
subtract ion gives 

T T 

f E{D~g(XT)S~}dW, = f O~(s, Xs)~(s, Xs)dW,. 
0 0 
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Subtracting one stochastic integral from the other yields the zero local martingale, 
hence 

T 

f (E {D~g(Xr) l~s} - Ox(s, X~)g(s, X~))2ds = O, 
0 

and so we have the third equality dP | dt-amost surely. [~ 

We can simplify the assumptions of Theorem 6.1: 

Theorem 6.2 Let W be an n-dimensional Brownian motion, let b, a, and g be C 1 with 
bounded first derivatives and suppose that g is bounded. Suppose further that the 
function ~ is invertible for each (t, x) and that a-~(t, x) is bounded. Let X be the 
solution to the SDE: 

j~  t 

(6.14) X~ = x + b(s, X,)ds + f ~(s, Xs)dWs. 
0 0 

Then it holds that 

T 

(6.15) q(Xr) = Eg(Xr) + f Ox(s, X~)a(s, XOdW~ , 
0 

where 0 is the classical solution of the following PDE: 

f Ot + �89 x)a(t, x) r] + (b(t, x), 0~) = O, 
(6.16) \ O(T,x) = g(x).  

Proof Let us consider the following uncoupled forward-backward SDE: 

Xt = x + f b(s, X,)ds + f a(s, Xs)dWs, 
(6.17) o o 

T 

Yt = g(Xr) - f & d W ,  , t e [0, T]  . 
t 

We again use our Four  Step Scheme to get the explicit solution of(6.17). To do this, 
note that now m = 1, so we need only to apply Theorem 4.5; but in this case it is 
easily seen that the conditions of Theorem 4.5 are reduced to ones given in the 
theorem, therefore the result is a direct consequence of the argument at the 
beginning of this section. [] 

To end this section, we discuss a little bit about the process p, ~ Ox(t, X,). Such 
a process is of independent interest; for example, in stochastic control theory. The 
following proposition gives an important  property of p. 

Proposition 6.3 There exists an lR"• adapted process {Kt: t >= 0} such that 
(p, K) is the unique adapted solution of the following backward SDE: 

T T 

(6.18) Pt = gx(Xr) + f [bx(s, Xs)Tps + ax(s ,X~)|  f K, dWs,  
t t 

where ax| K ~ (tr(ax~ K) . . . . .  tr(a~ K)) T. In particular, if the function 0 is C 3, then 
K, = Ox~(t, Xt)a(t, Xt) for t >= O. 
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Proof. We first assume that  0 is C 3. Taking one more  derivative in the x variable 
for Eq. (6.16) and doing a little computat ion,  we get, for every d = 1 . . . . .  n; 

i = 1  i = 1  

+ �89 O~x~x~ ~= 
(6.19) ~ i,j=a k 

i , j=l  k = l  

O(T, x) = g(x). 

On the other hand, if we apply It6 's  formula to 0~r from t to z (0 __< t =< z), then we 
have for every d = 1 . . . .  , n: 

(6.20) Oxe(z'XO= O~e(t'Xj + t ) {Ox/(s, Xs)+ i=, ~ O~ex(s'Xs)b~(s'Xs) 

+ 2i, j=l k=J 

Using (6.19) and denot ing 
that 

?1 
Kgtk ~- 2 i = 1 0 x d x i ( t '  Xt) ffik(t' Xt), w e  o b t a i n  f r o m  (6.20) 

(6.21) ox,(z, xr)  = G,(t, x,) 

- #ka~ (s, XAds f Ox~ b~ + Ox,xj k 
t i = 1  i , j=l  -- 

-}- / k ~ = l ( i = ~ l O X E x i ( S ' X s ) ( T i k ( S ' X s ) )  dWks " 

t i = i  i ,k=l  

+ * ~ s - , , s  , d =  1 . . . . .  n .  
t k = l  

N o w  setting p~ = Oxt(t, Xt) and z = T, and rewriting (6.21) in vector form, we 
obtain (6.18) immediately. 

To show the general case, let t e [0, T ]  be fixed and define Q~ = P( .  Io~J(co), co s f l .  
Fo r  any rat ional  ~ E IR", and (P-almost) every co e f~, define a diffusion process X(~) 
(on the probabil i ty space (f~, ~-, Q~)) by 

(6.22) x~(~) = ~ + f b(~,xx~))d~ + f o(~,Xs(r t _< ~ _< r .  
t t 
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By a s tandard argument,  one shows that for P - a.e. co s f~, 

sup x 12t ____ cj - (6.23) X t ( c o )  12 . 
t . t  e [t, T] ) 

Moreover ,  if we define (~(~) = X~(~) - X~, t _< ~ _ T, then ((~) satisfies 

(6.24) ~ ( ~ ) :  (~ - X t ) +  / bx(s, Xs)(s(~)ds + ~ ? a~(s,X~)(s(~)dVv~ + ~(~,~), 
t i = 1  t 

for t _< ~ _< T, where a(~) is the i-th column of a; and (6.23) would lead to 

(6.25) E a ~  sup ]e(z,{)] t = o(1~ - Xt(co)]) , 
k z ~  [t, T] ) 

for P-a.e. co e f~. We now consider the backward SDE (6.18) on the probabil i ty 
space (~, ~ ,  QO,) for ~ e It, T] .  It is known (cf. [9]) that  it has a unique adapted 
solution under  our  assumptions. We shall prove that  0~(t, Xt(co)) = pt(o~), t ~ [0, T],  
for P-a.e. co e f~. To  this end, first note  that  an application of It6's formula to 
(p~, (~({)) from t to T, together  with (6.25), leads to 

(6.26) EOO{(pr, ~ T ( ~ ) ) }  ~--- (Pt, r - -  X t ) ( c o )  ~- o ( ]  r - -  X t [ ( c o ) )  , P-a.e. co s ~ .  

Next, for P-a.e. co E f~, we have 

O(t, ~) - O(t, Xt(co))= E{g(Xr(~)  - g(Xr)1o~,} (CO) ---- Er176 -- g(Xr)} 

= EQ~ <Ox(X~), ~(~)>}  + o(I ~ - x t  I(co)) 

(6.27) = (pt,  ~ - xt)(co) + o(] ~ - xt]  (e))) 

Therefore,  by the definition of the derivative, we see that for P-a.e. co e f~, 
Ox(t, X~(co)) = pC(co) (a similar argument  can also be found in [14]). The proposi t ion 
is proved. [] 

As a final remark, we wish to point  out  that  (6.26) actually gives an adjoint 
relation between the backward SDE (6.18) and the linear forward SDE 

(6.28) d~t = bx(t, X,)~t + ~ a~)(t, Xt)~tdW[ . 
i = 1  

More  precisely, if ~ and p are the (adapted) solutions of (6.18) and (6.28) respective- 
ly, then 

(6.29) (PT,~T)  = (P,, ~,) + m r -  mr, 

where m stands for some {~,}-martingale.  Therefore,  upon taking a condit ional  
expectat ion E{ ' I~- ,}  on both  sides of (6.29), we obtain that 

(6.30) E { ( p T , ~ T ) [ ~ ' t } = ( P t , ( t ) ,  t 6 [ 0 ,  T ] ,  a .s .P .  

Note  that PT = gx(Xr) and that  (6.30) is true for any solution ( of (6.28). If we let 
�9 (z, t) (t -< v -< T) be the fundamental  matr ix of the linear SDE (6.28) satisfying 
~b(t, t) = I, then (6.30) leads to 

E{g~(Xr)rq~( T, t) lo~t} = Pt = O~(t, Xt), t ~ [0, T] ,  a .s .P.  
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N o t i n g  tha t  if m = n = 1, �9 is actual ly  the s tochast ic  exponent ia l  as defined by  
(6.11), and  compar ing  with (6.12), (6.13) and Theo re m 6.1, we see tha t  this aga in  
proves  the H a u s s m a n n  fo rmula  in our  special  case. 
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