Skip to main content
Log in

Mass-spectroscopic study of the influence of nozzle material on high-pressure SF6 arcs

  • Invited Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The interrupting capability of a gas-blast high-voltage circuit breaker (CB) is mainly determined by the self-induced pressure rise caused by the thermal arc energy, the composition of the arc plasma and the chemical reactions occuring during and after current interruption. We have studied the nozzle materials boron nitride (BN), quartz (SiO2), polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene (ETFE), polyethylene (PE) and epoxy resin (ER) with respect to their influence on these processes with the aid of a model circuit breaker (MCB). Direct measurements of the arc-induced pressure rise reveal that the portion of the arc energy available for the pressure rise varies greatly (∼20%–65%) with the properties of the nozzle material. Nozzle erosion is significantly higher for materials with high values (e.g. polymers). Therefore, the lifetime of polymer nozzles is considerably shorter than that of ceramic nozzles. We have investigated the influence of the nozzle material on the decomposition products formed in the arc discharge of our MCB by studying the composition and time dependence of these products. The MCB was directly attached to the time-of-flight mass spectrometer (TOFMS) with the aid of a molecular-beam sampling system, which allowed real-time measurements of the arced gas during and after current interruption, thus providing information on the ablation mechanism and on the reaction kinetics of vaporised nozzle material with dissociated SF6. The most abundant long-lived reaction products are SF4, SOF2, C2H2, CO, and CS2. Their formation rates have been determined as functions of the nozzle material. With respect to quantities and properties of decomposition products, ceramics are superior to polymers since they form only small concentrations of corrosive and toxic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mosch, W. Hauschild, M. Kahle: InHochspannungsisolierungen mit Schwefelhexafluorid, ed. by M. Kahle (VEB Verlag Technik, Berlin 1979)

    Google Scholar 

  2. W. Hertz, H. Motschmann, H. Wittel: Proc. IEEE59, 485 (1971)

    Google Scholar 

  3. R. Meier, F.K. Kneubühl, R. Coccioni, H. Wyss, E. Fischer, H.J. Schötzau: IEEE Trans. PS-14, 390 (1986)

    Google Scholar 

  4. G. Frind, R.E. Kinsinger, E.D. Miller, H.T. Nagamatsu, H.O. Noeske: Final Rep. EPRI EL-284 General Electric, Schenectady, NY (1977)

  5. K. Ragaller, K. Reichert: InCurrent Interruption in High-Voltage Networks, ed. by K. Ragaller (Plenum, New York 1978) pp. 1–28

    Google Scholar 

  6. W. Rüegsegger, F.K. Kneubühl, H.J. Schötzau: Appl. Phys. B31, 9 (1983)

    Google Scholar 

  7. W. Rüegsegger, R. Meier, F.K. Kneubühl, H.J. Schötzau: Appl. Phys. B37, 115 (1985)

    Google Scholar 

  8. G.N. Glasoe, J.V. Lebacoz:Pulse Generators (Boston Technical, Lexington, MA 1964)

    Google Scholar 

  9. A. Kantrowitz, J. Grey: Rev. Sci. Instrum.22, 328 (1951)

    Google Scholar 

  10. J.B. Anderson, R.P. Andres, J.B. Fenn: InMolecular Beams, ed. by J. Ross (Wiley, New York 1966) pp. 275–317

    Google Scholar 

  11. J.B. French: AIAA J.3, 993 (1965)

    Google Scholar 

  12. E.L. Knuth: Appl. Mech. Rev.17, 751 (1964)

    Google Scholar 

  13. W.J. McLean: Ph.D. Thesis, Report TS-71-7, University of California, Berkeley (1971)

    Google Scholar 

  14. K. Bier, O. Hagena: InRarefied Gas Dynamics, Proc. of 3rd Intl. Symp., ed. by J.H. Laurmann (Academic, New York 1963) pp. 478–496

    Google Scholar 

  15. H. Ashkenas, F.S. Shermann: InRarefied Gas Dynamics, Proc. of 4th Intl. Symp., ed. by H. DeLeeuw (Academic New York 1966) pp. 84–105

    Google Scholar 

  16. W. Frie: Z. Phys.201, 269–294 (1967)

    Google Scholar 

  17. F.Y. Chu, C.K. Law: Proc. 6th Intl. Conf. on Gas Discharges and Their Applications, Edinburgh, Sept. 1980 (IEE, London 1980) p. 266

    Google Scholar 

  18. H. Motschmann: Siemens Forsch. Entwicklungsber.5, 278 (1976)

    Google Scholar 

  19. D.C. Strachan, D. Lidgate, G.R. Jones: J. Appl. Phys48, 2324 (1977)

    Google Scholar 

  20. J.L. Leclerc, G.R. Jones: Proc. 7th Intl. Conf. on Gas Discharges and Their Applications, London, Sept. 1982 (Peregrinus, London 1982) p. 1

    Google Scholar 

  21. L.D. Landau, E.U. Lifshitz:Fluid Mechanics, Course of Theoretical Physics, Vol. 6 (Pergamon, New York 1979)

    Google Scholar 

  22. W.M. Rohsenow, J.P. Hartnett:Handbook of Heat Transfer (McGraw-Hill, New York 1973)

    Google Scholar 

  23. C.B. Ruchti, L. Niemeyer: IEEE Trans. PS-14, 423 (1986)

    Google Scholar 

  24. J.J. Lowke: InCurrent Interruption in High-Voltage Networks, ed. by K. Ragaller (Plenum, New York 1977) pp. 299–328

    Google Scholar 

  25. P. Kovitya, J.J. Lowke: J. Phys. D17, 1197 (1984)

    Google Scholar 

  26. H.P. Graf, H.P. Meili, E. Fischer, H.J. Schötzau: Appl. Phys. B36, 33–40 (1985)

    Google Scholar 

  27. H.J. Schötzau, H.P. Meili, E. Fischer, Ch. Sturzenegger, H.P. Graf: IEEE PES SM 647-4 (1984)

  28. R. Lincke: InPlasma Diagnostics, ed. by W. Lochte-Holtgreven (North-Holland, Amsterdam 1968) pp. 347–423

    Google Scholar 

  29. W. Schnabel:Polymer Degradation (Hanser, München 1981)

    Google Scholar 

  30. H.R. Philipp, H.S. Cole, Y.S. Lin, T.A. Sitnik: Appl. Phys. Lett.48, 192–194 (1986)

    Google Scholar 

  31. F.M. Clark:Insulating Materials for Design and Engineering Practice (Wiley, New York 1962)

    Google Scholar 

  32. R.C. Weast (ed.):Handbook of Chemistry and Physics, 57th ed. (CRC, Cleveland, OH 1976)

    Google Scholar 

  33. Y.S. Touloukian:Thermophysical Properties of Matter, TPRC Data Series, Vol. 2/5 (IFI Plenum, New York 1970)

    Google Scholar 

  34. G.R. Jones, N.Y. Shammas, A.N. Prasad: IEEE Trans. PS-14, 413 (1986)

    Google Scholar 

  35. J.J. Lowke, H.C. Ludwig: J. Appl. Phys.46, 3352 (1975)

    Google Scholar 

  36. L. Niemeyer: IEEE Trans. PAS-97, 950 (1978)

    Google Scholar 

  37. P. Kovitya: IEEE Trans. PS-12, 38 (1984)

    Google Scholar 

  38. EPRI Report EL-2620 (Sept. 1982)

  39. A. Lee, L.S. Frost: IEEE Trans. PS-8, 362–367 (1980)

    Google Scholar 

  40. N.V. Steere:CRC Handbook of Laboratory Safety, 2nd ed. (CRC, Cleveland, OH 1971)

    Google Scholar 

  41. I. Sauer, F.Y. Chu, W.G. Dreibelbis, G.D. Griffin, R.H. Knight, R.J. Van Brunt: InGaseous Dielectrics IV, Proc. 4th Intl. Symp. Gaseous Dielectrics (Pergamon, New York 1984) pp. 580–594

    Google Scholar 

  42. R.J. Van Brunt: J. Res. Natl. Bur. Stand.90, 229 (1985)

    Google Scholar 

  43. C. Boudène, J.L. Cluet, G. Keib, G. Wind: Rev. Gen. Electr., special issue, 45–78 (1974)

  44. T. Nitta, Y. Shibuya, Y. Fujiwara, Y. Arahata H. Takahashi, H. Kuwahara: IEEE Trans. PAS-97, 959 (1978)

    Google Scholar 

  45. H. Latour-Slowikowska, J. Lampe, J. Slowikowski: InGaseous Dielectrics IV, Proc. 4th Intl. Symp. Gaseous Dielectrics (Pergamon, New York 1984) pp. 286–291

    Google Scholar 

  46. I. Sauers, H.W. Ellis, L.C. Frees, L.G. Christophorou: IEEE Trans. EI-17, 284 (1982)

    Google Scholar 

  47. W. Rüegsegger, R. Meier, H.J. Schötzau, F.K. Kneubühl: Helv. Phys. Acta57, 521 (1984)

    Google Scholar 

  48. R. Gilbert, J. Castonguay, A. Théorêt: J. Appl. Polym. Sci.24, 125–133 (1979)

    Google Scholar 

  49. D.E. Cooper, M. Farber, S.P. Harris: In Annual Report of the Conf. on Electr. Insul. and Dielectric Phenomena (IEEE, New York 1984) pp. 32–37

    Google Scholar 

  50. J.P. Manion, J.A. Philosophos, M.B. Robinson: IEEE Trans. EI-2, 1–10 (1967)

    Google Scholar 

  51. S. Tominaga, H. Kuwahara, K. Horooka: IEEE Trans. PAS-98, 2107 (1979)

    Google Scholar 

  52. F.Y. Chu, H.A. Stuckless, J.M. Braun: InGaseous Dielectrics IV, Proc. 4th Intl. Symp. Gaseous Dielectrics (Pergamon, New York 1984) pp. 462–472

    Google Scholar 

  53. S. Tokuyama, Y. Yoshioka, F. Nakazima, Y. Arikawa: Proc. 2nd Intl. Conf. on Gas Discharges and Their Applications, London, Sept. 1972 (IEE, London 1972) pp. 200–205

    Google Scholar 

  54. W. Becher, J. Massonne Elektrotech. Z. A91, 605 (1970)

    Google Scholar 

  55. W. Habermann, M. Lindmeyer: Calor-Emag-Mitt. H1/2, 330–334 (1969)

    Google Scholar 

  56. G. Jackson, L. Hatfield, G. Leiker, M. Kristiansen, M. Hagler, A. Donaldson, R. Curry, R. Ness, J. Marx, L. Gordon, D. Johnson: Proc. 4th Intl. Pulsed Power Conf. (IEEE, New York 1983) pp. 687–690

    Google Scholar 

  57. E. Pfender: InGaseous Electronics, ed. by N.M. Hirsh, H.J. Oskam (Academic, New York 1978) pp. 291–398

    Google Scholar 

  58. M.T.C. Fang, D.B. Newland: J. Phys. D16, 793–810 (1983)

    Google Scholar 

  59. T.H. Lee: Proc. IEEE57, 307–323 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, R., Kneubühl, F.K. & Schötzau, H.J. Mass-spectroscopic study of the influence of nozzle material on high-pressure SF6 arcs. Appl. Phys. B 48, 187–211 (1989). https://doi.org/10.1007/BF00694346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694346

PACS

Navigation